
Spoof-of-Work
Evaluating Device Authorisation in Mobile Mining Processes

Dominik Ziegler1, Bernd Prünster2, Marsalek Alexander2 and Christian Kollmann3

1Know-Center GmbH, Graz, Austria
2Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Graz, Austria

3A-Sit Plus GmbH, Vienna, Austria

Keywords: Device Authorisation, Android, Cryptocurrency, Mining, REST, App Integrity, Smartphone, Electroneum,
Remote Attestation, Key Attestation.

Abstract: Mobile mining of cryptocurrencies, without relying on CPU-heavy computations, is a novel attempt to foster
adoption of a token. However, this approach leaves room for attacks. In this paper, we perform a thorough analy-
sis of Electroneum, one of the first cryptocurrencies to introduce a mobile mining process. We show that mobile
mining, without relying on a consensus algorithm (e.g. Proof-Of-Work), is not feasible on current generation
Android smartphones. We further demonstrate that the security mechanisms employed by Electroneum can be
circumvented and that mobile mining can be exploited successfully. Based on this analysis, we discuss several
practical countermeasures, which can be applied on smartphones to enforce device authorisation and prevent
abuse.

1 INTRODUCTION

The popularity of cryptocurrencies, such as Bit-
coin (Nakamoto, 2008), has increased vastly in the past
decade. Despite this fact, mass adoption cannot be ob-
served, due to poor user experience (Devries, 2016).

In addition, cryptocurrencies typically require large
amounts of computing power, to validate transactions
and to reach a common consensus. This is attributed to
the fact that cryptocurrencies usually store their tran-
sactions in a distributed ledger (usually referred to as
blockchain). To participate in this consensus mecha-
nism, users need to solve a cryptographic puzzle. This
task is commonly called mining. As a reward, users
receive new tokens.

In theory, this process could also be replicated
on smartphones. However, mining poses a significant
strain on hardware, especially in a mobile environment
with limited battery capacity. Nevertheless, creators
of cryptocurrencies seek to foster adoption, and try to
make currencies available on mobile devices.

One approach for a mobile mining process is a so-
called Airdrop of tokens, where a large number of to-
kens is generated by the creator of the cryptocurrency
in advance. Tokens are then awarded to users, e.g., for
using a dedicated smartphone application. Hence, pho-
nes do not mine in the conventional sense. Instead,

mobile mining apps periodically benchmark the the-
oretical system performance and report performance
figures to a back-end service. Based on this, the sy-
stem awards the user with tokens. This approach sig-
nificantly reduces the load on the device. However,
one major problem of mobile mining is that the back-
end can hardly validate whether it is interfacing with a
benign application executed on a genuine device.

The scientific contribution of this paper is twofold.
First, we analyse the mobile mining process of Electro-
neum (Electroneum Ltd, 2017), one of the first crypto-
currencies to introduce mobile mining. We show that
if the reward system is not solely based on Proof-of-
Work (PoW) or similar consensus algorithms, and no
additional measures are in place to ensure execution
on a real device, it is impossible to prevent tampering
with the mobile mining process. Secondly, we discuss
currently practical countermeasures and show how to
authorise mobile devices. We further describe how to
mitigate protocol exploitation and prevent device and
app impersonation. To do so, we first introduce the
topic of cryptocurrencies and Android application se-
curity. Subsequently, we describe the Electroneum ar-
chitecture and discuss possible attack vectors. Finally,
we propose a solution based on existing as well as no-
vel approaches for device authorisation in the context
of Android applications.

380
Ziegler, D., Prünster, B., Alexander, M. and Kollmann, C.
Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes.
DOI: 10.5220/0006859003800387
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 380-387
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BACKGROUND

This work focuses on analysing the feasibility of
resource-saving cryptocurrency mining on smartpho-
nes. We, therefore, discuss cryptocurrencies in brief.
We also provide background information regarding the
Android Operating System (OS) and mobile applica-
tion development.

2.1 Cryptocurrencies

The first blockchain-based cryptocurrency, Bitcoin,
was conceived in 2008. It uses a fully decentralised
consensus algorithm and the blockchain as a distri-
buted ledger, which records all transactions in blocks.
Each block is linked to is its predecessor. To create a
block, so-called miners, try to solve a cryptographic
puzzle. Whoever manages to solve this puzzle, and
thus manages to create a new block, receives a so-
called block reward and the fees of all transactions
included in the block. This consensus mechanism is
called Proof-of-Work (PoW). The difficulty of the puz-
zle is regularly adapted with the goal of an average
block creation time of ten minutes. It is this competi-
tion among the miners which secures the blockchain.
An attacker who wants to modify or delete a block in
the blockchain must thus solve a puzzle at least as hard
as the block to replace. If this block is not on top of the
chain, the attacker must also recalculate all subsequent
blocks. Thus, an attacker needs significant computing
resources to outperform the remaining, honest miners.

However, the price of this security mechanism is
high power consumption, as all miners race against
each other and only one miner per block will finally
win and earn the reward. In recent years, several deve-
lopers thus tried to improve various cryptocurrencies
in different aspects, like scalability or privacy.

One of these cryptocurrencies is Electroneum. It
focuses on user privacy and uses the CryptoNight (Sei-
gen et al., 2013) PoW algorithm. Still, it is not opti-
mised for mining on mobile devices, as the high load
on the CPU would lead to an increased ageing rate of
specific hardware components (Leng et al., 2015). The-
refore, Electroneums’ mobile mining process does not
rely on the PoW algorithm to secure the blockchain.
Instead, Electroneum distributes pre-mined coins for
the mobile mining process (Electroneum Ltd, 2017).

2.2 Android Application Development

Android provides an ecosystem for third-party develo-
pers to create and publish applications. Applications
resemble, in principle, a zip archive file. This structure

and the fact that Android applications are typically ba-
sed on Java or Kotlin enables easy decompilation and
analysis (Enck et al., 2011). Mobile applications for
Android can also be developed using Web technology.
As such hybrid applications typically are not converted
to native instructions, code can easily be extracted.

2.3 Android Security Model

Android incorporates extensive security mecha-
nisms (Enck et al., 2009). Due to the scope of this
work, we do not provide a thorough analysis of the
architecture. Instead, we discuss specific in-place secu-
rity features necessary for the analysis of Electroneum
and refer to the official documentation1.

Android, executes each application within a dedi-
cated virtual memory in an Application Sandbox. This
process ensures that applications do not access or mo-
dify (private) files of other applications.

With Trusty2, Android also offers a Trusted Exe-
cution Environment (TEE). TEEs offer a secure and
tamper resistant runtime environment for applications,
separated from the actual OS. As of this writing, Trusty
does not support third-party applications. Instead, all
applications are developed and packaged into an image
by a single manufacturer. The digitally signed image
is then verified by the bootloader on startup.

Android provides pre-installed root Certificate Aut-
horitys (CAs) for network security. Device manufac-
turers are not allowed to modify the system provided
CAs, which are located on the read-only partition. By
default, applications only trust system provided CAs.

3 RELATED WORK

To the best of our knowledge, no extensive analysis
of the security of mobile mining approaches exists.
However, a significant amount of research has been
conducted in the field of client-side detection of ap-
plication vulnerabilities or mobile malware. Thus, we
first discuss related work targeting Android security
and provide an overview of selected device verifica-
tion and authorisation mechanisms.

3.1 Android Security

Many tools have been developed to detect malware
on Android (Enck et al., 2009; Vidas and Christin,
2014; Karbab et al., 2016). As a result, adversaries
shift their focus to so-called app repacking attacks. In

1https://source.android.com/security/
2https://source.android.com/security/trusty/

Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes

381



these attacks, an attacker modifies well-known appli-
cations, to, for example, acquire account information.
Typically, users can hardly detect whether a binary has
been tampered with. Hence, several solutions target
this problem by providing detection mechanisms or
frameworks to automatically identify rogue Android
applications (Desnos and Gueguen, 2011; Jung et al.,
2013; Zhou et al., 2013; Huang et al., 2013; Ren et al.,
2014). However, these approaches do not account for
an adversary who is actively modifying an application
to manipulate genuine functionality of the app.

Further, several studies have examined whether An-
droid applications are vulnerable to specific TLS at-
tacks or exhibit substantial flaws in their TLS imple-
mentations (Fahl et al., 2012; Georgiev et al., 2012;
Sounthiraraj et al., 2014). Results show that a signi-
ficant amount of applications are either vulnerable to
Man-In-The-Middle (MITM) attacks or do not provide
sufficient transport layer security. These studies focus
on monitoring network traffic in a passive attack sce-
nario. In contrast to that, our approach covers active,
deliberately altered network traffic.

3.2 Device Integrity & Authorisation

Multiple approaches, which allow service providers to
verify whether an Android device is in a trusted state,
have been proposed in the last decade (Nauman et al.,
2010; Bente et al., 2011; Jeong et al., 2014). These
attestation mechanisms, typically also allow detecting
if an application has been installed and whether it has
been altered or not. Thus, service providers can not
only rely on the fact that the device is in an uncompro-
mised state but also that an adversary has not tampe-
red with installed applications. However, while these
approaches provide a solution, most of them are not
integrated into the Android system. Additionally, some
approaches are either purely academic, and their proof
of concept is based on Trusted Computing (TC) and
Trusted Platform Modules (TPMs), neither of which
are currently available at large scale on mobile plat-
forms, or they are implemented in software, which, in
theory, allows an adversary with root access to tamper
with this mechanism. Hence, current service providers
cannot directly rely on these techniques. Similarly, re-
lated approaches targeting Android application inte-
grity, such as static or dynamic code integrity checks
at runtime are currently not integrated into the Android
operating system.

4 ANALYSIS: ELECTRONEUM

We provide an overview of the Electroneum mobile
miner and discuss its system security mechanisms and
properties. We further show how the mobile mining
process can be tampered with.

4.1 System Architecture

The Electroneum mobile miner is a mobile application
relying on the Apache Cordova3 framework. As such
it is implemented using mainly JavaScript and HTML.
To analyse as well as attack the application we could
thus directly modify JavaScript files. In the following,
we describe core elements of the mobile mining pro-
cess we learnt from this analysis.
Authentication & Authorisation: Electroneum enforces
a Two-Factor Authentication (2FA) mechanism con-
sisting of a combination of username and password
as well as a user-defined PIN. Furthermore, a valid
phone number is necessary. To authorise devices, the
server first authenticates the user. Subsequently, it eva-
luates the transmitted User-Agent header to identify
the accessing device. If the device is not yet known, a
verification email is sent. A reCAPTCHA4 challenge
is presented, to prevent automatic device authorisation.
A user can only continue if they can successfully solve
the reCAPTCHA. Once a user successfully authorises
a device, it can be used for mobile mining.
Benchmarking: The mobile miner application does not
rely on PoW. Instead, a custom benchmarking algo-
rithm, depicted in Algorithm 1, is used. This mecha-
nism evaluates the CPU performance without relying
on expensive hash operations. Hence, battery drain of
smartphones is reduced. In the first step of this process,
the hash duration, i.e. the maximum time the bench-
marking process is allowed to run, is retrieved from the
server. Next, the algorithm retrieves the current system
time. These two parameters serve as the termination
condition for a while loop. In each iteration, several
slow operations, i.e. regular expression matching, are
performed. At the end of each loop, the program re-
trieves the current system time again and increases a
counter (amt). As soon as the program reaches its ter-
mination condition, it sends the number of loops (amt)
to the server. The server will then determine the hash
rate awarded to the device.
Mining: One of the goals of the mobile miner appli-
cation is to reduce battery drain. Hence, the applica-
tion does not perform any network validation services.
Instead, the application periodically performs a system
benchmark. Subsequently, the mobile miner transmits

3https://cordova.apache.org
4https://www.google.com/recaptcha

SECRYPT 2018 - International Conference on Security and Cryptography

382



Algorithm 1: Benchmarking algorithm used in Electroneum
Mobile Miner.

1: hash duration← getDurationFromServer()
2: start← currentMillis()
3: end← 0
4: while end < (start+(hash duration∗1000))) do
5: regexTest(′o′,′HelloWorld!′)
6: indexO f (′o′,′HelloWorld!′)>−1
7: regexMatch(′HelloWorld′,′ o′)
8: end← currentMillis()
9: amt← amt +1

10: end while

the benchmark results to the server. Based on the cal-
culated theoretical hash rate the server awards the user
with tokens. As long as a device notifies the service
periodically, the application is considered active, and
the service continuously awards the user with tokens.

4.2 Security Mechanisms

Electroneum employs several mechanisms to prevent
fraud. We discuss prominent features we discovered.

Account Verification: To create a mobile mining
account, first, a valid email address is required. Once
the user confirms control over its address, a valid phone
number is required. The server verifies phone numbers
via an SMS-verification challenge. In each step, the
user further needs to solve a reCAPTCHA.

Maximum Hash Rate: Our analysis suggests that
the maximum hash rate for one device is limited to
50 H/s5. A device claiming better performance is auto-
matically banned. Once the device claims lower com-
puting power again, mobile mining is resumed.

Maximum Number of Devices: Electroneum does
not restrict logging into the same account with multi-
ple devices. However, our tests implicated that using
multiple devices linked to a single account does not
increase the number of tokens received.

Device Authorisation: In the process of analysing
the Electroneum API, we observed that devices seem to
be authorised based on the supplied User-Agent header
as well as the source IP address. Once the IP address
changed, the device needed to be authorised again.

Automation Protection: Electroneum claims to pro-
vide systems to protect against large automation sys-
tems. Our tests have indicated that once more than five
different accounts are used with a single IP address,
users need to reauthorise their accounts periodically.
This process too requires users to solve a reCAPTCHA
challenge.

5This number does not represent the actual hashing per-
formance. Instead, it only represents a performance index.

4.3 Attacking the Mobile Mining
Process

Based on the analysis of the system architecture, con-
ducted in Section 4.1, we describe possible approaches
to bypass the security mechanisms. The procedures
described in this section enables the emulation of an
arbitrary number of devices. As a consequence, an ad-
versary can, in theory, illegitimately obtain a virtually
unlimited number of tokens.

4.3.1 Attack Classes

We present three different methods to attack the mobile
mining process. These procedures include modifica-
tion of network traffic, modification of the application
and application impersonation.

[A1] - Modification of Network Traffic: An adver-
sary may alter network traffic transmitted to the Elec-
troneum servers. As a result, they can submit arbi-
trary values, including benchmarking results. Modi-
fication of network traffic, in most cases, does not re-
quire changing the application code. However, recent
studies have shown that Android applications are re-
lying on TLS connections on a large scale (Fahl et al.,
2012). When implemented correctly, TLS can prevent
tampering with network traffic—on uncompromised
devices at least. Considering that applications, since
Android 7.0 (Android Developers Blog, 2016), do not
automatically trust user imported CAs certificates, this
attack requires additional modifications of the mobile
operating system.
In general, several tools exist to modify network traf-
fic on Android devices. For example, traffic can either
be altered on the device directly via Virtual Private
Network (VPN) applications or via proxies running on
desktop machines such as Burp Suite6.

[A2] - App Repackaging: The Electronum mobile
miner is using the Cordova framework. Such apps do
not need to b compiled to machine code. As a result,
Cordova apps are easy targets for repackaging attacks,
as shown by (Kudo et al., 2017). When attacking the
application, an adversary can directly modify the ben-
chmarking algorithm described in Algorithm 1. Hence,
it is possible to skip benchmarking altogether. By re-
packaging the application, an adversary can thus create
modified binaries and distribute them on multiple de-
vices. As a result, high hash rates can be spoofed even
on outdated hardware.

[A3] - Application Impersonation: A significant
problem of REpresentational State Transfer (REST)
APIs is the verification of clients. In fact, by exposing
a REST API, a server can hardly distinguish between

6https://portswigger.net/burp

Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes

383



trusted and rogue clients. An adversary, who can re-
construct the network protocol, could thus impersonate
the Electroneum mobile miner. Indeed, the imperso-
nation of the application also entails that an adversary
can run multiple instances of an application on a sin-
gle machine. This fact, however, contradicts the goal
of mobile mining. An attacker who can operate a vir-
tually unlimited amount of app instances would also
gain an unjustified advantage over regular users.

4.3.2 Results

Our tests indicated that the security mechanisms can be
successfully circumvented and an arbitrary amount of
mobile miners could be emulated on a single machine.

[A1]: To test whether the Electroneum mobile mi-
ning process is vulnerable to modifications of network
traffic, we tried to directly tamper with the outgoing
network traffic of the application. The Electroneum
application does not enforce certificate pinning (c.f.
Section 5.3). Thus, we used Magisk7, to import a proxy
CA, into the system’s trust store. As a result, we were
able to tamper with the benchmarking results the appli-
cation sent to the server. Relying on this method, we
could achieve the maximum possible hash rate, even
on outdated hardware.

[A2]: We performed this attack by repackaging the
application and exchanging the benchmarking algo-
rithm. Our test device, a Samsung Galaxy S5 achieved
around 6 H/s without any modifications. After modi-
fying the source code, the modified binary was able to
claim a maximum hash rate of 50 H/s.

[A3]: We reconstructed the network protocol, used
by the mobile miner. We then developed an application
which emulates the behaviour of the Electroneum
mobile miner. We used Tor8 and fixed exit nodes to
prevent blocking of IP addresses and keep virtual
devices authorised. We set the benchmarking results
to match values between 42 H/s and 47 H/s to reduce
possible conspicuousness. With this setup, we success-
fully evaded the in-place automation protection and
emulated more than five devices on a single machine.

To summarise, all employed techniques allowed
us to either tamper with the mobile mining process
or completely emulate a device. This setup allows us
to mine approximately 9.36 ETN/day per account. A
PoW miner with a comparable hash rate, could mine
around 1.787 ETN/day (numbers based on values from

7Magisk allows gaining root access on an Android ope-
rating system without modifying the system. It has been
successfully evading virtually all relevant Frameworks ai-
med at detecting system modifications.

8https://www.torproject.org

Figure 1: Successful payout with impersonated miner.

March 2018). Figure 1 shows the successful payout of
tokens using a single emulated miner. In general, an
adversary can profit from these loopholes by creating
a large number of accounts and running multiple in-
stances on a single machine. This scheme can even be
extended to a larger scale as multiple services exist to
solve reCAPTCHA automatically. Phone number veri-
fication can also be circumvented by relying on virtual
phone numbers to receive SMS, with prices ranging
from 0.2 USD/month to 1.5 USD/month.

These results lead to one conclusion: Tamper proof
mobile mining, without consensus algorithms or pro-
per device authorisation and verification is infeasible.

5 DEVICE AUTHORISATION

We have shown that we can easily tamper with the
Electroneum mobile mining process. We argue that
this behaviour is due to two major design flaws. First,
the mobile mining process does not ensure that the
application is running on a smartphone. Second, the
benchmarking algorithm is designed to replace com-
plex computations. However, the server cannot vali-
date reported numbers, which, by definition, renders
the process practically ineffective. We propose several
currently feasible procedures, to ensure proper device
authorisation, with high certainty. Electroneum is used
as the prime example, but the methods described are
suitable for any case of device authorisation.

5.1 Remote Attestation (SafetyNet)

Remote attestation is one of the most important fea-
tures of TC (Haldar et al., 2004). It allows a server to
establish a trust relationship with a client, running in
an unmanaged environment. Although many different
approaches for remote attestation exist, in this work,
we focus on the most prominent one for Android, na-
mely SafetyNet (Android Open Source Project, 2018a).

SECRYPT 2018 - International Conference on Security and Cryptography

384



SafetyNet allows applications on Android devices to
request an attestation about the device they are running
on. Locally, SafetyNet loads (signed) code from Goo-
gle servers9. The process runs in the background and
continuously gathers data from various sources on the
device. All information gathered that way is sent to the
back-end service operated by Google and analysed in
private. The result of an attestation request reports on
e.g. a locked bootloader, a custom system image, the
certification of the manufacturer and essential integrity
features like running on a non-emulated and not-rooted
device. Additionally, the attestation result includes the
package name of the requesting app, a digest of the
application package as well as a digest of the certifi-
cate used to sign the package. However, several tools,
including Magisk, successfully bypass this basic inte-
grity check and provide a rooting method that is not
detected.

5.2 Device Attestation (Key Attestation)

Device attestation mechanisms enable a device to
prove its integrity. Typically, TEEs are used for this
process. However, as discussed in Section 2.3, Android
does not provide a TEE for third-party applications.
We present an approach, how device attestation can be
achieved on current-generation smartphones.

Since Android 7.0, applications can request attes-
tations about key pairs generated in the Android KeyS-
tore (Android Open Source Project, 2018b). The attes-
tation contains information about the key pair itself,
e.g. the algorithm, key size, and whether user authenti-
cation is required to use the private key. Optionally, the
attestation also includes information about the appli-
cation itself: the application identifier and a digest of
the signature of the package. Additionally, information
about the system may be included: The version of the
operating system, the patch level, and the state of the
verified boot chain. Most importantly, security levels
for both the attestation and the KeyStore implementa-
tion are provided. The value indicates the type of the
respective module: It may either run as a system-level
software or inside a TEE. The data structure represen-
ting the attestation can be authenticated by verifying
the chain of certificates signing the data. If the attesta-
tion was generated in secure hardware, the root certifi-
cate contains a known public key from Google.

Hence, to establish trust with a device, a server
sends an attestation challenge to the application. Sub-
sequently, the application creates a new key in the An-
droid KeyStore and attaches this challenge. Next, the
application sends the attestation, which was created

9https://koz.io/inside-safetynet/

during this process, to the server. Finally, the server ve-
rifies the transmitted attestation. If successful, access
can be granted, and the device is authorised. However,
only very few devices run Android 7.0 and support
hardware-level key attestation, and nearly all informa-
tion in the attestation structure is marked as optional.
Therefore, on most devices, the attestation is genera-
ted by the Android system in software and can thus
be tampered with by an attacker. Further, attestation
via the Android KeyStore cannot guarantee the inte-
grity of an Android application and may not include
all desirable information. However, if the KeyStore is
hardware-backed and the device is not rooted, this pro-
cess can guarantee that an application is running on a
genuine device.

5.3 Certificate Pinning

We have shown that a significant amount of applicati-
ons already relies on TLS connections to secure com-
munications between client and server. However, only
a small amount of applications also implements certifi-
cate pinning. Certificate pinning, also known as Public
Key Pinning, allows an application to “pin” a specific
X.509 certificate. In general, this mechanism enables
the application to verify a particular certificate of a
server upon connection establishment. Depending on
the desired security level, applications can choose to
either trust root, intermediate or leaf certificates. Ho-
wever, leaf certificates typically have a shorter expiry
time. Thus, applications employing certificate pinning
need to be redistributed or updated on a regular basis.
Certificate pinning also mitigates MITM attacks, as
even system-wide certificates trusted by the OS are
rejected. However, it cannot protect against repacka-
ging attacks or network traffic modification on rooted
devices.

5.4 Comparison

In the following, we will discuss how the presented
mechanisms can ensure device authorisation to a high
degree. However, it should be noted that it is currently
not possible to guarantee that an application running on
an arbitrary, unmanaged Android device has not been
modified. As a result, all attacks discussed in Section 4
are, in theory, still feasible.
Table 1 provides an overview of the aforementioned
countermeasures. It also indicates whether a technique
can mitigate a specific attack. A filled circle implies
that the countermeasure can prevent a certain attack
on unrooted devices. A partially filled circle indicates
that the effort for a successful attack can be increased
with this mechanism. An empty circle implies that this

Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes

385



Table 1: Overview of various attacks and possible countermeasures.

Traffic Modification App Repackaging App Impersonation Rooting

SafetyNet
Key Attestation
Certificate Pinning

technique does not help mitigating an attack.
SafetyNet: We argue that SafetyNet can prevent app
repackaging attacks as it can attest the certificate, the
Android Application Package (APK) was signed with.
This can also prevent app impersonation attacks, as
SafetyNet can attest whether the application runs on a
genuine device. To establish a trust relationship with
and authorise a certain client a SafetyNet attestation
can be requested.
Android KeyStore: In principle, this procedure allows
drawing conclusions about the state of a device. This
includes attestation concerning the state of the boot-
loader (unlocked or not) or installed applications. Ho-
wever, KeyStore attestation does not attest whether a
device has been rooted. Still, we can rely on this in-
formation to restrict access to a service. As a result, a
service provider can exclude devices with, unlocked
bootloaders. Indeed, KeyStore attestation suffers from
two drawbacks. First, it is not available on all devices.
Second, if the KeyStore is not hardware-backed, an
adversary can still tamper with the attestation process.
Certificate Pinning: Certificate Pinning is an effective
way to prevent monitoring or modification of network
traffic. In combination with remote or device attesta-
tion, an attacker can be prevented from tampering with
environment variables.

Summarising, applications employing all presented
approaches can significantly increase the chances for a
service provider to successfully detect the device state.

5.5 Improvements

One of the goals of the Electroneum mobile mining
process is to enforce adaption of their token. Howe-
ver, we have shown in Section 4.3 that the current im-
plementation can successfully be exploited and large-
scale app impersonation is, in theory, possible. We, the-
refore, propose several procedures, which can harden
the mobile mining process and increase the detection
rate of manipulation attempts.

First, we propose to alter the benchmarking al-
gorithm, to include server-side verification of bench-
marks. For example, the server can send some random
nonce to the device. Similar to conventional PoW
implementations, the device needs to solve a crypto-
graphic puzzle of a certain difficulty. The server then
measures the time the device needs to solve this task.

This way, repackaged applications cannot simply skip
the benchmarking process. As benchmarks are not per-
formed constantly, this approach should also not affect
battery life. However, relying on server-side verifica-
tion of benchmarks can increase the load on the server.

Naturally, this countermeasure does not prevent
app impersonation attacks. An adversary can still per-
form these calculations on a much more powerful de-
vice. Similarly, it is possible to emulate multiple devi-
ces on a single machine due to benchmarking proces-
ses not being performed constantly. Hence, we advise
to employ both SafetyNet as well as Android KeyStore
device attestation mechanism, to enforce execution on
a genuine device.

Admittedly, we cannot prevent app impersonation
on rooted devices. An adversary can still emulate a
genuine device, by forwarding attestation challenges
to a device with a modified, rooted OS. In this setting,
benchmarking computations are performed on dedi-
cated hardware, whereas valid attestation claims are
generated on a smartphone.

6 CONCLUSIONS

We have conducted an extensive analysis of the Elec-
troneum mobile mining process. The analysis shows,
that even though mechanisms to protect against auto-
mated systems exist, the in-place security mechanisms
seem to be vulnerable to app repackaging attacks as
well as app emulation. In our tests, we successfully
emulated multiple mobile miners on a single machine
leading to an accumulated hash rate equal to several
PoW miners. We further showed that for these attacks
no root access or modifications of the operating sys-
tems were necessary. Based on these vulnerabilities
we concluded that a mobile mining process without
verification of benchmark results could lead to exploi-
tation of the reward system. We further have presented
several approaches which can be used to increase the
trust relationship between server and client applicati-
ons. We adhered to responsible disclosure guidelines
and informed the developers about our findings.

SECRYPT 2018 - International Conference on Security and Cryptography

386



REFERENCES

Android Developers Blog (2016). Android Developers Blog:
Changes to Trusted Certificate Authorities in Android
Nougat.

Android Open Source Project (2018a). Protecting against
Security Threats with SafetyNet.

Android Open Source Project (2018b). Verifying Hardware-
backed Key Pairs with Key Attestation.

Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J.,
von Helden, J., and Westhuis, J. (2011). Towards
Permission-Based Attestation for the Android Platform.
In Lecture Notes in Computer Science, volume 6740
LNCS, pages 108–115.

Desnos, A. and Gueguen, G. (2011). Android: From Rever-
sing to Decompilation. Proc. of Black Hat Abu Dhabi,
pages 1–24.

Devries, P. D. (2016). An Analysis of Cryptocurrency, Bit-
coin, and the Future. International Journal of Business
Management and Commerce, 1(2):1–9.

Electroneum Ltd (2017). Electroneum overview & white
paper.

Enck, W., Octeau, D., McDaniel, P., and Swarat Chaudhuri
(2011). A Study of Android Application Security Wil-
liam. In Proceedings of the 20th USENIX Security
Symposium, pages 315–330.

Enck, W., Ongtang, M., and McDaniel, P. (2009). On Light-
weight Mobile Phone Application Certification. Pro-
ceedings of the 16th ACM conference on Computer and
communications security - CCS ’09, page 235.

Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner,
L., and Freisleben, B. (2012). Why Eve and Mal-
lory Love Android: An Analysis of Android SSL
(In)Security. Proceedings of the 2012 ACM conference
on Computer and communications security - CCS ’12,
page 50.

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D.,
and Shmatikov, V. (2012). The Most Dangerous
Code in theWorld: Validating SSL Certificates in Non-
Browser Software. In Proceedings of the 2012 ACM
conference on Computer and communications security
- CCS ’12, page 38, New York, New York, USA. ACM
Press.

Haldar, V., Chandra, D., and Franz, M. (2004). Semantic
remote attestation: a virtual machine directed approach
to trusted computing. In USENIX Virtual Machine
Research and Technology Symposium.

Huang, H., Zhu, S., Liu, P., and Wu, D. (2013). A Framework
for Evaluating Mobile App Repackaging Detection Al-
gorithms. In Huth, M., Asokan, N., Čapkun, S., Fle-
chais, I., and Coles-Kemp, L., editors, Trust and Trust-
worthy Computing, pages 169–186, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Jeong, J., Seo, D., Lee, C., Kwon, J., Lee, H., and Milburn, J.
(2014). MysteryChecker: Unpredictable attestation to
detect repackaged malicious applications in Android.
In 2014 9th International Conference on Malicious and
Unwanted Software: The Americas (MALWARE), pages
50–57. IEEE.

Jung, J.-H., Kim, J. Y., Lee, H.-C., and Yi, J. H. (2013). Re-
packaging Attack on Android Banking Applications
and Its Countermeasures. Wireless Personal Communi-
cations, 73(4):1421–1437.

Karbab, E. B., Debbabi, M., Derhab, A., and Mouheb, D.
(2016). Cypider: Building Community-Based Cyber-
Defense Infrastructure for Android Malware Detection.
ACSAC ’16 (32nd Annual Computer Security Applica-
tions Conference), pages 348–362.

Kudo, N., Yamauchi, T., and Austin, T. H. (2017). Access
Control for Plugins in Cordova-Based Hybrid Applica-
tions. In 2017 IEEE 31st International Conference on
Advanced Information Networking and Applications
(AINA), number 2, pages 1063–1069. IEEE.

Leng, F., Tan, C. M., and Pecht, M. (2015). Effect of Tem-
perature on the Aging rate of Li Ion Battery Opera-
ting above Room Temperature. Scientific Reports,
5(1):12967.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic
Cash System. www.bitcoin.org, page 9.

Nauman, M., Khan, S., Zhang, X., and Seifert, J.-P. (2010).
Beyond Kernel-Level Integrity Measurement: Enabling
Remote Attestation for the Android Platform. In
Acquisti, A., Smith, S. W., and Sadeghi, A.-R., editors,
Trust and Trustworthy Computing, pages 1–15, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Ren, C., Chen, K., and Liu, P. (2014). Droidmarking: Re-
silient SoftwareWatermarking for Impeding Android
Application Repackaging. 29th ACM/IEEE internati-
onal conference on Automated software engineering,
pages 635–646.

Seigen, Jameson, M., Nieminen, T., Neocortex, and Juarez,
A. M. (2013). CryptoNight Hash Function.

Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., and Khan,
L. (2014). SMV-HUNTER: Large Scale, Automated
Detection of SSL/TLS Man-in-the-Middle Vulnerabi-
lities in Android Apps. In Proceedings 2014 Network
and Distributed System Security Symposium, number
February, pages 23–26, Reston, VA. Internet Society.

Vidas, T. and Christin, N. (2014). Evading Android Runtime
Analysis via Sandbox Detection. Proceedings of the
9th ACM symposium on Information, computer and
communications security - ASIA CCS ’14, pages 447–
458.

Zhou, W., Zhang, X., and Jiang, X. (2013). AppInk: Water-
marking Android Apps for Repackaging Deterrence.
In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security
- ASIA CCS ’13, page 1, New York, New York, USA.
ACM Press.

Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes

387


