
Towards Supporting the Extended DevOps Approach through
Multi-cloud Architectural Patterns for Design and Pre-deployment

A Tool Supported Approach

Juncal Alonso1, Marisa Escalante1, Lena Farid2, Maria Jose Lopez1, Leire Orue-Echevarria1
and Simon Dutkowski2

1ICT Divsion, TECNALIA, Bizkaia Technology Park, Derio, Spain
2Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany

Keywords: Cloud Computing, Multi-cloud, Continuous Design, Continuous Pre-deployment, Deployment Optimization,
DevOps.

Abstract: Recently the world of Cloud Computing is witnessing two major trends: Multi-cloud applications pushed by
the increasing diversity of Cloud services leading to hybrid infrastructures and the DevOps paradigm,
promising increased trust, faster software releases, and the ability to solve critical issues quickly (Steinborn,
2018). This paper presents a solution for merging and adapting both trends so that the benefits for software
developers and operators are multiplied. The authors describe a tool-supported approach to extend the DevOps
philosophy with the objective of supporting the design and pre-deployment of multi-cloud software
applications. The paper begins with the presentation of the theoretical concepts, the proceeds with the
description of the developed tools and the discussion of the validation performed with a sandbox application.

1 INTRODUCTION

In the past few years, DevOps has become a common
word. DevOps is a set of practices that automates the
processes between software development (Dev) and
IT teams (Ops) so they can build, test, release and
deploy software applications more quickly, reliably
and continuously. In traditional DevOps approaches,
IT roles are merged and communication is enhanced
to improve the production release frequency and
maintain software quality (Riungu-Kalliosaari et al.,
2016). The foreseen benefits of the DevOps
philosophy include increased trust, faster software
releases, automated testing and the ability to solve
critical issues quickly.

In parallel, the world of cloud computing is
witnessing a growing trend by the increasing diversity
of cloud services offerings leading to hybrid and
multi-cloud infrastructures, which are available for
complex software applications that can profit from
these variety of offers and features.

Multi-cloud can be understood as the use of
multiple computing services for the deployment of a
single application or service across different cloud
technologies and/or Cloud Service Providers. This

may consist of PaaS, IaaS and SaaS entities
(Gavilanes et al., 2017). This definition of multi-
cloud, when referring to the resources where different
components are deployed, includes services which
are in disperse cloud providers or different cloud
platforms (regardless of vendor) (Escalante et al.,
2017)

Following this definition, the authors understand
“multi-cloud” based applications, as software
applications that are defined as a set of components
distributed across heterogeneous cloud resources but
that still succeed in interoperating as a single whole.

Developing, deploying and operating such multi-
cloud applications present challenging shortcomings,
that have not been deeply analysed nor supported by
current DevOps solutions. These multi-cloud specific
peculiarities include:
 Applications need to be responsive to

hybrid/multi-cloud model scenario in which an
application that is executing in a concrete set of
cloud services bursts into a new one when the
working conditions are not met. This implies that
the application architecture shall be re-designed to
be “multi-cloud” aware simplifying the cloud
application assembly and the deployment process.

Alonso, J., Escalante, M., Farid, L., Lopez, M., Orue-Echevarria, L. and Dutkowski, S.
Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool Supported Approach.
DOI: 10.5220/0006856008130823
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 813-823
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

813

 Means shall be provided to manage and assess
cloud deployment alternatives to better support
cloud re-deployment decisions. This implies
profiling and classifying application components
and cloud nodes, as well as analysing and
simulating the behaviour of the application to
support the deployment decision making process
considering additional factors such as Non-
Functional Requirements (NFR), namely
performance, availability, localization, cost, or
risks associated with the change of cloud
resources. Multi-cloud has value only when the
right providers are selected, whether public or
private (combined into different cloud
deployment models), to meet functional and NFR.
But the manual selection and combination of
those Cloud Services to create the best
deployment scenario may imply huge effort, time
and knowledge needs.

 Existing cloud services shall be made available
dynamically, broadly and cross border. so that
software providers can re-use and combine cloud
services, assembling a dynamic and re-
configurable network of interoperable, legally
secured, quality assessed (against SLAs) single
and composite cloud services,

The current paper presents a solution proposed by the
authors extending the DevOps approach with the
objective of supporting the design and pre-
deployment of multi-cloud software applications,
while facing the aforementioned challenges, imposed
by the peculiarities of the multi-cloud deployment.

2 EXTENDED DEVOPS
APPROACH FOR
MULTI-CLOUD
APPLICATIONS

2.1 Traditional DevOps

DevOps refers (DECIDE Consortium, 2017) to the
emerging professional movement and philosophy that
advocates for a collaborative working relationship
between Development and IT Operations, lowering
barriers and silo-based teams, resulting in the fast
flow of planned work (i.e., high deploy rates, better
quality and faster releases), while simultaneously
increasing the reliability, stability, and resilience of
the production environment. This is often called the
“DevOps Paradox” (Edwards, 2015): “Going faster
brings higher quality, lower costs, and better
outcomes”. DevOps pivots around three axes

(UpGuard, 2016): processes, people and technology.
From the people perspective, DevOps symbolizes a
cultural change where collaboration and cooperation
are key pillars, and this often results in an increased
understanding to prioritize requests that the business
needs. From the processes perspective, DevOps
advocates for more agile change processes, with an
increased rate of acceptance for new features,
improved quality in software developments, a
decrease in number of incidents per release and an
increased time to market and velocity to pass from
development to production. Finally, from the
technology point of view, DevOps results in an
application with a reduced number of defects and
therefore with more quality, and in an increased
deployment of features.

After an analysis of the current coverage of the
DevOps approach to the peculiarities of multi-cloud
applications and considering the phases of the
software development lifecycle (SDLC), and
software operation lifecycle (SOLC) of these targeted
applications, the authors propose a novel extended
DevOps approach to overcome current shortcomings.

2.2 Extended DevOps = DevOps +
Continuous Architecting +
Pre-deployment

The work presented here is being developed in the
context of the DECIDE project, that proposes an
extension of the “traditional” DevOps approach on
both axis: Dev and Ops. This paper, however,
presents an approach for the extension of the
Development phase. For the Dev axis, the authors
propose to extend the development phase with
previous and subsequent activities that cover: 1) the
architectural design for multi-cloud applications (at
generic level and specific to non-functional
requirements), 2) the election of the best deployment
configuration based on theoretical simulations. With
this in mind, the authors propose an “Extended Dev”
covering:
 Multi-cloud applications continuous architecting

and development
 Multi-cloud applications (pre) deployment

2.2.1 Existing Approaches and Tools

There are some on-going initiatives to create a
DevOps framework integrating development and
operation tools into a unique framework.

The Eclipse Cloud Development project (Eclipse
Cloud Development, 2018), composed of four sub-
projects (Che, Orion, Dirigible and Flux), is aiming

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

814

for a rich IDE to be executed through the browser.
This could be considered as DevOps but it does not
provide other advanced features. IBM Bluemix
DevOps Services (IBM BlueMix, 2016) can be used
by a web-based IDE or plug-ins for the most common
IDEs. It allows the automatic build and deployment
to IBMs cloud platform Bluemix, built on top of the
PaaS engine CloudFoundry. BlueMix also covers
continuous integration mechanisms as the update of
deployed applications. None of these tools, cover the
peculiarities of the multi-cloud applications at
architectural level, nor analyse the impact of non-
functional properties in the design of the multi-cloud
application and vice-versa.

For the deployment simulation, the authors have
not found a similar tool.

However, most of these initiatives, open source
projects and commercial tools do not fully support the
SDLC and SOLC of a multi-cloud application as they
target one cloud platform at a time, and also miss
other aspects related with the architectural aspects of
the applications or the definition of the “best”
deployment configurations (DECIDE Consortium,
2017).

At research level, it has been established in
different works, that the adoption of DevOps and/or
Continuous Delivery (CD) brings new challenges to
software development and thus affects the design of
applications. There are numerous works dedicated to
this topic. Some of which, deal with architecting for
CD in terms of tooling (Mojtaba, 2015) and
compliance with Architecturally Significant
Requirements (ASR) (Chen, 2015). These
approaches are meaningful and very much needed as
they have proven to facilitate the deployability,
modifiability, security, monitorability, loggability,
and testability of applications (Chen, 2015).

However, when it comes to Cloud technologies,
especially multi-cloud, other tools, requirements and
best practices for Cloud native applications are
needed on top of the aforementioned because herein
additional architectural challenges are permitted.

There has been little research in the multi-cloud
domain targeted at the design process in conjunction
with the pre-deployment of (and ultimately
DevOps/CD) for multi-cloud native applications, as it
is a fairly new field. The existing models and systems
are still maturing.

Nevertheless, tools for architectural best practices
or patterns for cloud native applications have been
researched in the ARTIST project (Kopanelli et al.,
2015) and MODAClouds (Di Nitto et al., 2017).

The ARTIST project produced a refined list of
Cloud Computing optimization patterns (ARTIST

Consortium, 2014) for migrating legacy applications
into the Cloud enhancing the non-functional
properties and MODAClouds produced a set of
concepts and patterns targeted at multi-cloud.
MODAClouds additionally looked at DevOps tooling
for application design, cloud services selection and
automated deployment. Another point that differs
these two projects from the authors’ goals is that they
considered an application as a whole in contrast to
investigating a decomposed application and each
component’s individual requirements and business
needs.

2.2.2 Challenges

In the following table, the authors summarize the
challenges encountered in each of the phases and sub-
phases of the traditional DevOps approach, when
applying it to multi-cloud applications. Some of the
challenges encountered have served as motivation for
the proposal of the tools and mechanisms exposed in
section 3.

Table 1: Challenges identified at “Dev” phase.

Sub-phase Challenge
Design NFR specification

Design
Best practices for multi-cloud
architectural design

Implementation Multi-cloud Development support
Integration Integration of tools in the Dev phase

Pre-deployment
Application (nodes and
communication included)
profiling/classification

Pre-deployment
Automatic Theoretical deployment
generation

Pre-deployment CSP modeling
Pre-deployment Simulation (deployment)
Pre-deployment Automatic Cloud services discovery
Optimization Code optimization
Design/Pre-deployment (MC)SLA definition

In this paper, the Multi Cloud Service Level
Agreement (MCSLA) definition and the proposed
solution on how to approach this challenge in the
context of the multi-cloud applications Dev phase has
not been described.

3 TOOLS AND MECHANISMS
SUPPORTING THE DESIGN
AND PRE-DEPLOYMENT OF
MULTI-CLOUD
APPLICATIONS

As presented in the previous section, the extension of

Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool
Supported Approach

815

the Dev phase introduces new activities to be carried
out by the developers of multi-cloud applications,
both before and after the actual development phase
takes place, which currently are not supported by
existing tools. The DECIDE project aims to
implement several tools which support these new
activities incorporated to the DevOps cycle. In the
following section, the functional description,
structural architecture and technology used for the
implementation of these supporting components are
explained.

3.1 ARCHITECT: Continuous
Architecting

Continuous architecting is a step introduced in order
to support the design process in an application’s
lifecycle with the motivation of moving back and
forth within said lifecycle in order to satisfy the needs
of other DevOps phases, such as continuous pre-
deployment, continuous deployment, monitoring, etc.
in a multi-cloud context.

Furthermore, when integrating the design process
into DevOps, the adoption of business and technical
requirements (i.e. NFRs or deployment targets)
becomes possible at a very early stage of the
applications lifecycle and thus, any defined
requirement from Dev side is easily injected into each
Ops task (from CI/CT to pre-deployment, through
deployment and monitoring).

In light of the novelty and peculiarities of multi-
cloud deployment and operation, developers and
organisations may not be familiar with applying the
best architectural solutions for complying in such an
environment. Therefore, the authors propose a tool as
part of the continuous architecting phase which
incorporates a large number of best practices, namely
multi-cloud architectural patterns. This will aid
developers in tackling multi-cloud idiosyncrasies.

3.1.1 Multi-cloud Architectural Patterns

A design or architectural pattern provides a general,
reusable solution to a commonly occurring problem
in the development and/or deployment of software
components (Gamma, et al., 1995). The solutions are
provided as descriptions and are never a fully finished
design. This is intentional in order for these patterns
to be applicable to a wide range of scenarios and
remain vendor agnostic.

In view of this, the use of architectural patterns in
object-oriented programming and distributed
applications has dramatically improved many aspects
in software and systems engineering, such as their

quality, speed maintainability and accessibility. For
the same reason, a large number of Cloud Computing
architectural patterns have been developed (Fehling,
et al., 2014).

Since the focus of the DECIDE project is to aid
developers in designing multi-cloud aware
applications (and not single-cloud aware), the authors
have curated a catalogue of multi-cloud architectural
patterns consisting of a number of cloud computing
patterns for distributed applications (and presumably
non-cloud patterns). The patterns collectively address
the multi-cloud peculiarities. The patterns have been
categorised as fundamental, development,
deployment and optimisation patterns (Farid, et al.,
2017).

Fundamental patterns are those deemed necessary
for the use of the DECIDE DevOps Framework and
provide a minimal set that needs to be applied. An
example of such pattern would be to containerize the
application.

Development patterns are those that aid the
developer with best practices for building a multi-
cloud application. Example patterns are: distributed
application (splitting the application into
microservices), loose coupling or stateless.

Deployment patterns address how the deployment
configuration for multi-cloud applications should be
handled. For instance, managing the deployment
scripts as well as storing them should be designed
from a multi-cloud perspective. Here types of
technological risks as well as geographical locations
of the components (data or business logic) are
accounted for. Furthermore, the deployment patterns
take into account DECIDE principles of re-
adaptability and re-deployment for multi-cloud
environments.

Optimization patterns are those that aid the
developer in improving the applications NFRs by
taking adequate measures in optimizing the
application code to reflect on these requirements.
Optimization patterns can optimize the use of cloud
resources, such as elasticity. An example is
leveraging a cloud persistence layer instead of
implementing it as part of the application.

In the context of DECIDE, these patterns will be
fed into the ARCHITECT tool. ARCHITECT will
then use different information about the application
along with the NFRs to recommend multi-cloud
architectural patterns for the developers.

3.1.2 The ARCHITECT Tool

The ARCHITECT tool holds a catalogue of
architectural patterns and supports the developer with

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

816

preparing the application for a multi-cloud
deployment scenario by recommending a set of
(multi-)cloud architectural patterns, which must or
should be applied to the application.

By preparing the application for a multi-cloud
deployment scenario, the authors mean optimising an
application’s development and deployment in order
for an application to be dynamically re-adapted and
re-deployed.

The patterns recommendation is based on the
selected and prioritized NFRs as well as on additional
data concerning the application and its components.
The recommended patterns provide a description of
how these patterns can and may be applied to the
source code. The tool is designed to be close to the
development process, yet is language agnostic and
can be run as a RESTful microservice.

Structural Description
The ARCHITECT component has a set of functional
requirements that can be summed up into the
following functionalities:
 Provide/ recommend users (i.e. the developer)

architectural patterns based on their prioritized
NFRs as well as additional information (supplied
by the users), with guidelines on how to apply
them, to which component (e.g. microservice) it
needs to be applied and in which order.

 Provide a repository of multi-cloud architectural
patterns.

Figure 1: Component Diagram of ARCHITECT.

ARCHITECT is decomposed in several
functional blocks and interfaces. It consists of three
core elements, as depicted in the figure above. A
frontend for user interaction, the application
description manager for dealing with the DECIDE
project model, and finally the patterns catalogue with
the pattern inference engine.

 User Frontend. This element depends on the
context. For example, if ARCHITECT is
integrated in an IDE or is a web based solution,
this part provides the mechanism for plugging in

the ARCHITECT component. Its main task is the
interaction with the developer and it provides the
necessary user interfaces to view and manage the
patterns and also to trigger the recommendation
process. The User Frontend is the workflow-
controlling component of ARCHITECT.

 Application Manager. This element is responsible
for a convenient abstraction level for the
information model of the DECIDE application. It
manages all application information in a
persistent manner. That means, it encapsulates
and hides the technical details, (e.g. the fact that
the application description is coded and stored as
a JSON structure inside a code repository).

 Patterns. This element contains a catalogue of
patterns, NFRs and their relationships. The
contained information can be enriched to hold
additional information experienced over time.
The patterns catalogue provides functions that
allow the inferring of patterns based on a given set
of NFRs and optionally some fixed patterns.

Technical Description
ARCHITECT’s Patterns component is implemented
as an autonomous Java library and its functionality is
offered also as a RESTful microservice and as such is
accessible for other implementations. This allows an
easy integration of ARCHITECT in a polyglot
environment

For instance, its functionality can be integrated via
web-based tools by using its API or directly into a
Java client, such as an IDE (e.g. Eclipse).

The first attempt for the pattern recommendation
is realised using semantic technologies. The patterns
are semantically enriched by using ontology based
techniques and rely on the NFRs for inferring viable
patterns.

The means for communicating with the pre-
deployment phase (OPTIMUS tool) is realised using
a common DevOps mechanism. The recommended
patterns, which are relevant for the pre-deployment
phase, are stored in the Application Description, a
JSON file in a git repository. This file acts as a single
point of truth for the multi-cloud application and may
be easily managed and accessed via the Application
Manager library.

The Application Manager library encapsulates all
git operations for reading and writing to the
Application Description JSON file (Farid et al.,
2017).

3.2 OPTIMUS: Continuous Simulation

DECIDE OPTIMUS deployment simulation tool eva-

Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool
Supported Approach

817

luates and optimizes the characteristics of the multi-
cloud application deployment from the developer’s
perspective considering a set of provided cloud
resources alternatives.

DECIDE OPTIMUS provides the best possible
deployment application topology, based on the non-
functional requirements set by the developer and the
requirements of the multi-cloud application,
automating the provisioning and selection of
deployment schemas for multi-cloud applications.

Figure 2: OPTIMUS High level architecture.

3.2.1 Structural Description

DECIDE OPTIMUS consists of three main
components and each of them provides the
corresponding functionality:

 Application Classification
The Application Classification subcomponent
interacts with the developer through OPTIMUS UI,
from where the developer provides the information
about the multi-cloud application that OPTIMUS
needs to classify each of the microservices of the
multi-cloud application. The Application
Classification process will match the information
stored about the types of microservices and the
characteristics associated with each of the multi-
cloud application microservices.

The concept "types of microservices" can be
found in the OPTIMUS architecture and in the related
references to the classification process. Each of the
microservices need a Cloud Service that fulfils the
requirements for deploying it properly. Type of
microservices groups a set of characteristics that are
required from a Cloud Service to be selected and
matched with a specific microservice.

The output of the classification is stored into the
Apps Classification Repository, physically located in
the Application Description JSON file.

The Types management subcomponent manages
the system knowledge about the Cloud Services that
the microservices need to be deployed.

 Theoretical deployment generation
Once the classification is completed, knowing the
type of each microservice, OPTIMUS is capable to

work out the Cloud Services that are suitable for it.
The Deployment Types Repo Management performs
the equivalence among the microservices types and
the CSPs in which they could be theoretically
deployed.

Considering the classification, the characteristics
of each microservice and the NFRs associated to them
by the developer, the Theoretical Deployment
Preparation creates a list of requirements to invoke to
the Advanced Cloud Service (meta-) intermediator
(ACSmI) Discovery Service and obtain the Cloud
Services that meet them.

This request is composed of generic Cloud
Services, and the list of resources that the
microservices need. This functionality requires
interacting with ACSmI’s API to obtain the sorted list
of Cloud Services that meet the criteria requested.

 Simulation
Keeping in mind the obtained group of different
possibilities for the deployment, a complex algorithm
performs a combination of all these possibilities and
scores them in a list. The first theoretical deployment
in that list will be the "best schema", and if this
schema has not been selected before (checking the
historical deployment configurations repository), it is
presented to the developer.

Within the continuous approach of DECIDE
OPTIMUS tool, this Simulation phase can be
triggered the first time when the application is
deployed, by the developer, or it can be triggered
when a violation of the MCSLA occurs. In this case,
the current deployment configuration is invalidated
and OPTIMUS should obtain another best schema for
the deployment, considering the new circumstances.

3.2.2 Technical Description

The Classification module and the UI for collecting
the information about the microservices, has been
developed as an eclipse plugin using Eclipse Java EE
IDE for Web Developers, Version Oxygen.1 Release
(4.7.1). The simulation process is a RESTful service
that could be invoked from different points of the
DECIDE framework.

3.3 ACSmI: Continuous Resource
Discovery

The Advanced Cloud Service (meta-) intermediator
(ACSmI) (Escalante et al., 2017) aims to provide the
means for the discovery, contracting, managing and
monitoring of different cloud service offerings. In this
paper, the authors explained the approach followed
by the ACSmI discovery functionality.

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

818

As authors mentioned in (Escalante et al., 2017),
ACSmI Discovery component covers the
functionality of services discovery based on the
request passed by OPTIMUS. To be able to discover
services, these services should be endorsed
previously in the service registry. The endorse
functionality, as well as, the modification and
deletion of the services in the registry are also covered
by this component. The most relevant requirements
covered in this component are:
 Collect the requirements of OPTIMUS, these

requirements are specified following the different
terms defined for the modelling of the CSPs and
their services. This allows for an automatic
comparison of the requirements with the services
stored in the registry.

 Provide a list of services from the service registry
that fulfil (totally or partially) the requirements
specified by OPTIMUS.

 Provide means to create, read, update and delete
the services registry.

 To allow CSPs or ACSmI administrator (for
Large CSPs) to endorse their services in the
service registry. The registry of each service
covers the different terms defined in the
modelling of the CSPs and their services. This
allows the automatic discovery of the services
from the registry.

3.3.1 Structural Description

ACSmI discovery component is structured in four
main components, as shown in Figure 3.

Figure 3: ACSmI Discovery Components.

 Frontend. This component has two main
objectives: 1) To implement the graphical
interface to allow inserting the requirements for
the discovery of the services as well as to allow
CSPs to introduce the information regarding their
services, 2) To manage users. This component

enables to create, read, update and delete users in
ACSmI discovery.

 Backend. This component is in charge of 1)
carrying out the discovery of the services based on
the information provided by the user and 2) the
endorsement of the services based on the
information provided by the CSP through the
frontend. To carry out these activities, this
component manages the database to create, delete,
modify the service types, services, CSPs, etc.

 Registry. This component coordinates the
communication between the frontend and the
backend.

 Database, which stores the services. This
component is a MySQL database, following the
data model shown in the Figure 4.

Figure 4: ACSmI Cloud services model.

3.3.2 Technical Description

ACSmI Discovery has been developed using
JHipster. The main objective of JHipster (JHipster,
2015) is to generate a modern and complete web
application or microservice architecture. JHipster is
not a development framework, it is more a frontend
and backend generator based on different
technologies. JHipster allows the use of Swagger to
define the communication between the frontend and
backend. Each functional component communicates
with the other through REST API, even though these
components are in the same service of the backend.

4 THE SOCKSHOP
MICRO-SERVICE BASED
APPLICATION: INITIAL
APPROACH VALIDATION

The SockShop App (Weaveworks, 2016) has been
selected as an exemplary application to showcases
which multi-cloud patterns can be applied in order to
render it multi-cloud aware and which Cloud Services
fit best in a multi-cloud scenario.

Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool
Supported Approach

819

The different components developed and used for
the validation of the proposed approach
(ARCHITECT, OPTIMUS, ACSmI) are still isolated
components (not integrated) so that the results
obtained through the exercise performed with the
SockShop application within the three components
are not linked. In the next versions, the validation will
be done with the integrated components so that the
results obtained through the different components are
coherent.

Again, multi-cloud aware in the context of the
DECIDE project implies that the application is
distributed over multiple heterogeneous CSPs and
can be seamlessly re-deployed, i.e. ported across
CSPs and re-adapted.

4.1 SockShop Architecture

The selected application is a loosely coupled
microservices demo application. It simulates the user-
facing part of an e-commerce website that sells socks.
It is open source software and has been developed
with the intention to aid in demonstrating and testing
microservices and cloud native technologies
(Weaveworks, 2016).

With this in mind, the SockShop App is designed
to provide as many microservices as possible. The
microservices are designed to encapsulate
functionality required in an e-commerce site and are,
of course, loosely coupled. The microservices are
designed to have minimal expectations and use DNS
to find other services. The Application uses a message
broker for sending messages by means of queues
(Weaveworks, 2016). All services communicate
using REST over HTTP. Furthermore, the SockShop
App is polyglot as it is built using Spring Boot
(Spring, n.d.), Go kit (Bourgon, 2017) and Node.js
(Node.js Foundation, n.d.) and is packaged in Docker
(Docker, n.d.) containers. Figure 5 shows the original
architecture of the application.

Figure 5: SockShop Application Architecture
(Weaveworks, 2016).

4.2 Preparing for Extended DevOps

For the SockShop App a set of NFRs have been
defined, based on hypothetical assumptions in the
context of an e-commerce application and prioritize
them as follows:
 Scalability – Hypothetically, it is assumed that

market research and data analytics show that the
user base is active during morning hours and after
8 PM otherwise unpredictable workloads can be
expected.

 Performance – the performance of the application
is important as the users expect rendering of the
website and the transactions speed to be at most 2
seconds.

 Availability – To maintain a good reputation the
service has to be available at 99% or at all times.

 Cost – As the SockShop is a start-up, keeping
costs to a minimum is vital.

With this list of NFRs set, the pattern
recommendation can commence with regards to
preparing the application for a multi-cloud
environment.

4.3 Candidate DECIDE Patterns

As understood by the wider software engineering
community, architectural patterns provide solutions
or best practices for commonly occurring problems
(Fehling et al., 2014). With a pattern-based approach,
developers can be guided in preparing their
applications for a multi-cloud environment and
knowledge can be acquired with regards to the most
optimal deployment topology.

This section introduces a selection of design
patterns that address the NFRs and the original
architecture, Furthermore, insight is given with
regards to their relevance for the SockShop App.

DECIDE Fundamental Patterns
The SockShop App fulfils evidently a number of
patterns that are fundamental for the use of the
DECIDE Framework. These are:
 Distributed Application - The SockShop App

consists of microservices. This allows the
application to be deployed in a distributed manner
and thus make use of a multi-cloud strategy.

 Loose Coupling - The microservices
communicate via REST over HTTP.

 Three-Tier Cloud Application - Front-end,
Business Logic (Order, Shipping, Payment),
Persistence (Order, User, Catalogue, Cart)

 Containerization (Farid et al., 2017) – The Sock-

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

820

Shop App is developed as container-based
architecture.

With these patterns the ground work for the NFRs:
Scalability, Performance, Cost and Availability
can start to be addressed.

Other fundamental patterns that still need to be
applied are:
 Managed Configuration – Deployment and

configuration scripts have to be stored in a central
area external to the built binaries.

 Service Registry - The SockShop App uses DNS
to discover services. As DNS propagation is slow,
using DNS tables is probably problematic in a
multi-cloud scenario, because of re-deployment
and access issues. Furthermore, given the fact,
that many instances will be spawned or scaled out
and there is probably a number of
communications taking place between the
different microservices, this needs to be handled
by a service. Therefore, the authors propose the
service registry pattern, with which a type of
database or table dynamically holds the current
location of the services, their instances and
locations. Registration and de-registration of the
service instances takes place during start-up and
shutdown, respectively.

DECIDE Optimization Patterns
 Elastic Load Balancer – As workloads are

unpredictable at certain times (during the day) it
is vital to scale out automatically depending on the
current experienced workload. The components
resulting in being scaled out by an elastic load
balancer are Front-End, Order, Payment, User,
Catalogue and Cart.

 Elastic Queue – since the SockShop App uses
message queues in its architecture and scalability
is an important NFR, an Elastic Queue should be
employed to manage the number of instances
(Shipping and QueueMaster) depending on the
number requests to be queued.

DECIDE Development Patterns
The SockShop App fulfils a number of development
patterns that are part of the DECIDE multi-cloud
pattern catalogue. These are:
 Data Access Component – The microservices,

which access a data base are themselves
implemented in a way that isolates complexity of
data, enable additional data consistency, and
ensure adjustability of handled data elements to
meet different customer requirements.

 User Interface Component – The front-end
microservice is decoupled from the rest of the

application (i.e. microservices) and loosely
coupled. The front-end is therefore, exchangeable
and customisable. Furthermore, it can be scaled
out independently if need be.

 Processing Component – The SockShop App’s
microservices can be scaled out independently, as
separation of concerns has been considered here
at the design time of the application.

DECIDE Deployment Patterns
 Hybrid * - The patterns involving hybrid cloud,

such as hybrid user interface, hybrid processing,
hybrid data, hybrid backup, hybrid backend, and
hybrid application functions (Fehling et al., 2014)
all involve using multiple hosting environments
that best suit the requirements and needs of the
application. This is relevant in a multi-cloud
strategy and can drastically reduce cost if, for
instance, certain microservices do not require
elasticity they can be hosted on a private cloud
that does not feature these capabilities. Also
sharing IT-resources between different tenants
can drastically reduce costs.

4.4 Resulting Architecture

Figure 6 depicts the architecture for the SockShop
App after the recommended patterns have been
applied. As one can see, an independent
Configuration Manager component has been
introduced to allow for dynamic configuration of the
microservices as well as allow other automated
deployment and provisioning tools to access the
configuration information needed for their tasks.

Furthermore, a Service Registry has been
introduced in order to facilitate the discovery of the
location of the microservices that have been newly
instantiated by the Elastic Load Balancer. And lastly
an Elastic Queue manages the number of needed
Queue Masters depending on the number of the
messages received by the Rabbit MQ.

Figure 6: Resulting Architecture of SockShop Application.

Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool
Supported Approach

821

4.5 OPTIMUS. Classification

Once the developer knows which are the different
microservices of the application, he can introduce
information related to them through the Classification
User Interface.

The collected data include the nature of the
microservice (developed by the user or not), if it is
Stateless, if it needs a IP to expose it publicly to
access to it, the dependencies among the rest of the
microservices (order), if it uses a detachable resource
and its characteristics, and the Non- Functional
requirements.

Finally, when the information about all
microservices is completed, based on the groups of
Cloud Services managed by the tool, the result of the
classification for the SockShop Application would be
as presented in the next section.

4.6 OPTIMUS. Simulation

The simulation process, based on the previous
classification made, includes as a first step, the
association among each microservice and the group
of Cloud Services that can be suitable for their
deployments, as is depicted in the table 2.

Table 2: Cloud Services classification for the SockShop
Application.

Microservice Type of Cloud Service needed

Front-end VM or Container (with Public IP)

Order VM or Container + DB

Payment VM or Container.

User VM or Container + DB

Catalogue VM or Container + DB

Cart VM or Container + DB

Shipping VM or Container.

QueueMaster VM or Container + QueueSystem

The NFRs are very important aspects in order to
be able to select the best deployment within the
DECIDE framework. Considering these NFRs,
assigned by the developer, and the group of Cloud
Services selected in the Classification phase,
OPTIMUS creates a specific request to invoke to the
ACSmI Discovery Service.

Considering location as one of NFRs selected and
the value set to Ireland, OPTIMUS could build the
structure of the request to perform, for the two first
microservices.

The service exposed by ACSmI Discovery will be
invoked including the prior mentioned request, and as
a result, OPTIMUS would receive a list of Cloud
Services that fulfil the requirements.

Figure 7: Request to invoke to ACSmI Discovery.

Figure 8 shows the ACSmI Discovery response
for the request made.

Figure 8: ACSmI Discovery Cloud Services options.

Figure 9: Ranked options for the deployment.

OPTIMUS Simulation process is a complex
algorithm allowing the developer to obtain the best
deployment schema, based on a set of characteristics
that are important for the proper functioning of the
multi-cloud application. Taking into account all those
inputs and the knowledge about the Cloud Services
and how the different combinations of them can
impact to the general performance, OPTIMUS
Simulation establishes a rank of the Cloud Services in
order to assign the first of them to the best
Deployment Schema. Considering the Location
values and the cost for some of the options, the result
of the simulation will be the one shown in the Figure
9.

The developer will accept the Deployment offered
and confirm it as the Best Deployment Schema, using
the OPTIMUS User Interface.

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

822

This deployment schema would be transformed
into the concrete deployment script and will be usde
to support the Ops (Operation) phase of the multi-
cloud application.

5 CONCLUSIONS AND FUTURE
WORK

This paper has presented a tool-based approach for
the adaptation of the DevOps philosophy to the
specific case and needs of applications distributed
over different cloud resources (multi-cloud
applications).

The solution described intends to solve some of
the challenges of multi-cloud applications design.
These challenges include:
 Applications need to be responsive to

hybrid/multi-cloud model scenario.
 Means shall be provided to manage and assess

cloud deployment alternatives to better support
cloud resources selection and discovery.

 Existing cloud services shall be made available
dynamically, broadly and cross border.

The novel concept and first versions of the tools
created for the implementation of the extended “Dev”
concept has been validated in a sandbox scenario with
the SockShop application. Future work will include
the complete development (including all the
functionalities) of the presented tools (ARCHITECT,
OPTIMUS and ACSmI), their integration into a
holistic DevOps toolchain and their validations on
real business scenarios.

ACKNOWLEDGEMENTS

The project leading to this paper has received funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No
731533.

REFERENCES

ARTIST Consortium, 2014. D9.4 Collection of
optimization patterns, s.l.: s.n.

Bourgon, P., 2017. Go Kit. [Online] Available at:
https://gokit.io/ [Accessed 10 March 2018].

Chen, L., 2015. Towards Architecting for Continuous
Delivery. In 12th Working IEEE/IFIP Conference on
Software Architecture (WICSA).

DECIDE Consortium, 2017. DECIDE Grant Agreement,
s.l.: s.n.

Di Nitto, E., Matthews, P., Petcu, D. & Solberg, A., 2017.
Model-Driven Development and Operation of Multi-
Cloud Applications. 1 ed. s.l.:Springer International
Publishing.

Docker, n.d. Docker. [Online] Available at:
https://www.docker.com/ [Accessed November 2017].

Eclipse Cloud Development, 2018. Eclipse Cloud
Development. [Online] Available at:
http://www.eclipse.org/ecd/ [Accessed March 2018].

Edwards, D., 2015. DevOps paradox: Going Faster Brings
Higher Quality, Lower Costs, & Better Outcomes, s.l.:
s.n.

Escalante, M. et al., 2017. D5.1 ACSmI requirements and
technical design, s.l.: s.n.

Escalante, M. et al., 2017. D5.2 Initial Advanced Cloud
Service meta-Intermediator (ACSmI), s.l.: s.n.

Farid, L. et al., 2017. Initial architectural patterns for
implementation, deployment and optimisation, s.l.: s.n.

Fehling, C. et al., 2014. Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud
Applications. s.l.:Springer.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software.. s.l.:Addison-Wesley.

Gavilanes, J. et al., 2017. D2.1-Detailed Requirements
Specification, s.l.: s.n.

IBM BlueMix, 2016. IBM BlueMix DevOps services.
[Online] Available at: hub.jazz.net [Accessed 2018].

JHipster, 2015. JHipster. [Online] Available at:
http://www.jhipster.tech/ [Accessed November 2017].

Kopanelli, A. et al., 2015. A Model Driven Approach for
Supporting the Cloud Target Selection Process. s.l.,
Elsevier.

Mojtaba, S., 2015. Architecting for DevOps and
Continuous Deployment. In proceedings of the ASWEC
2015 24th Australasian Software Engineering
Conference (ASWRC '15 Vol. II).

Node.js Foundation, n.d. Node.js. [Online] Available at:
nodejs.org [Accessed 2018 march 2018].

Riungu-Kalliosaari, L. et al., 2016. DevOps Adoption
Benefits and Challenges in Practice: A Case Study. s.l.,
International Conference on Product-Focused Software
Process Improvement.

Spring, n.d. Spring Boot. [Online] Available at:
https://projects.spring.io/spring-boot/ [Accessed
November 2017].

Steinborn, T., 2018. The future of DevOps is mastery of
multi-cloud environments, s.l.: Open Source.

UpGuard, 2016. The four prerequisites for DevOps success,
s.l.: s.n.

Weaveworks, 2016. SockShop App. [Online] Available at:
https://microservices-demo.github.io/

Towards Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for Design and Pre-deployment - A Tool
Supported Approach

823

