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Abstract: The main objective of this work is the proposal of a decentralized data structure storing a large amount of data 

under the assumption that it is not possible or convenient to use a single workstation to host all data. The 

index is distributed over a computer network and the performance of the search, insert, delete operations are 

close to the traditional indices that use a single workstation. It is based on k-d trees and it is distributed across 

a network of "peers", where each one hosts a part of the tree and uses message passing for communication 

between peers. In particular, we propose a novel version of the k-nearest neighbour algorithm that starts the 

query in a randomly chosen peer and terminates the query as soon as possible. Preliminary experiments have 

demonstrated that in about 65% of cases it starts a query in a random peer that does not involve the peer 

containing the root of the tree and in the 98% of cases it terminates the query in a peer that does not contain 

the root of the tree. 

1 INTRODUCTION 

A multidimensional data index is a building block for 

a variety of applications based on Linked open Data 

(LOD) and Big Data. The LOD paradigm is gaining 

increased attention in recent years and the size of the 

phenomenon is considerable, we are talking about 

hundreds of millions of information published in the 

form of ”concepts” and of billions of connections 

between these concepts (Abele, 2017). It is 

reasonable to assume the proliferation of new 

applications and new services that are able to take 

advantage of this huge quantity of information.  

Big Data is a term for data sets that are so large or 

complex that traditional data processing software 

applications are inadequate to deal with them. The 

proposed index fits the requirements of LOD and Big 

Data applications.  

A decentralized multidimensional data index also is 

suitable for sensor networks because they could 

collect a very large amount of multidimensional data 

(position, timestamp, temperature, pressure, etc.). 

Often a subset of the nodes of the network can 

manage a network connection, execute software and 

store data, therefore the sensor network, through these 

nodes, may implement itself the index.  

Finally, a multidimensional data index is also 

appropriate for text indexing. After the extraction of 

a set of concepts C from the text (Basile, 2007) and 

the introduction of a similarity measures d between 

them, e.g. Resnik, Leacock & Chodorow, Wu & 

Palmer (Corley, 2005), it is possible to build a metric 

space (C, d). Well known mapping algorithms, such 

as FastMap (Faloutsos, 1995) or MDS (Kruskal, 

1978), calculate a mapping between this metric space 

and a new vector space. The resulting points in this 

vector space populates an instance of the 

multidimensional data index as proposed in this work. 

Range query and k-nearest on this data structure 

query will return concepts that are also semantically 

close concepts (with respect the similarity measure 

chosen). A non-trivial example based on this 

approach for a semantic driven requirements 

consistency verification is (Gargiulo, 2015). 

2 RESEARCH IDEAS AND 

RESULTS  

This section introduces the problem description and 

our proposal to cope with it.  
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2.1 Problem Description  

Suppose we have a k-d tree “big enough” that cannot 

be handled with a single workstation. If we want to 

distribute it over a network of peers we need an 

allocation strategy that maps the set of nodes of the 

tree to the set of peers. Suppose that this mapping 

allocates the nodes of the tree to the peer 𝑃1, …, 𝑃𝑛 and 

that all edges of the tree are preserved. Of course, 

there are internal edges (i.e. edges connecting nodes 

in the same peer) and crossing edges (i.e. edges 

connecting nodes in different peers). From a logical 

point of view, it is possible to reuse the well-know 

(efficient) searching algorithms because all original 

edges of the tree are available, it does not matter 

whether they are internal or crossing edges. In 

practice, crossing edges must be managed in a special 

way because the current peer 𝑃𝑖  cannot process a node 

hosted in another peer 𝑃𝑗. In this case, 𝑃𝑖  can only 

delegate to 𝑃𝑗 the elaboration of the remaining part of 

the query sending to it the current partial result. From 

now on, 𝑃𝑖  waits for a response from 𝑃𝑗 and, in the 

meantime, it can process the next query. This 

approach has advantages and disadvantages. On one 

side, the number of points stored in a set of peers is 

greater than the number of points stored on a single 

peer and roughly the well-known search algorithms 

can be reused. In addition, multiple queries run in a 

parallel way. In fact, the number of initiated queries 

is potentially limitless even if the number of peers 

limits the number of the running queries. On the other 

side, the peer containing the root of the tree is the only 

entry point for all the new queries and it is the only 

exit point for all the responses. This is the main 

drawback and without an accurate message priority 

management the throughput of this naive distributed 

k-d tree can be worse than a traditional k-d tree. It is 

interesting to note that this behaviour does not depend 

on the allocation strategy because traditional search 

algorithms always start and terminate the elaboration 

in the root node. Hence, the need for a novel 

distributed search algorithm that starts a query in any 

randomly chosen node/peer and returns the correct 

result as soon as possible without visiting the root 

node. 

2.2 Our Proposal 

The proposal of a decentralized index for 

multidimensional data relies on a distributed tree-

based data structure and a novel random k-nearest 

neighbour algorithm, named R-KN.  

In particular, we choose k-d tree (Samet, 2006) as 

the data structure to extend. The novel R-KN 

algorithm resembles the well-known random k-

nearest neighbour (KN) algorithm, but R-KN starts 

in a random node of the tree and it relies on the 

following assertions:  

a) If the R-KN starts the elaboration from a node 

visited also by KN, with a little adjustment of the 

node status management, the R-KN returns the 

correct result.  

b) Starting from a randomly chosen node it is easy 

to find a node visited by the KN algorithm near 

to it (SNP-Starting Node Property). 

c) If the R-KN stops the elaboration of the current 

query 𝑞 in a special node, named ending node for 

q, the R-KN returns the correct result (ENP-

Ending node property).  

The R-KN algorithm is the main contribution of 

this work and it will be described in detail below 

(Gargiulo, 2017). The following section describes the 

distributed data structure. 

2.2.1 The Distributed Data Structure  

From the logical point of view, the data structure is a 

k-d tree. In k-d trees each level of the tree compares 

against 1 dimension and each node 𝑣 of the level has 

a split value with respect to that dimension. An 

internal node stores its splitting coordinate in 

𝑣. 𝑠𝑝𝑙𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and its split value in 𝑣. 𝑠𝑝𝑙𝑖𝑡. 

Internal nodes are only routing nodes and they do not 

store data points; in particular, all multidimensional 

points are stored in buckets located in the leaves of 

the k-d tree (one bucket per leaf) as described in 

(Samet, 2006) par. 1.5.1.4. The size of the bucket 

does not play a central role, it is a constant value much 

smaller than the total number of points stored in the 

tree. The k-d tree nodes, by means of an allocation 

strategy, are assigned to a set of peers 𝑃1, … , 𝑃𝑛. as 

described in section 2.1. Even if the allocation 

strategy is necessary in order to achieve the final data 

structure, almost all strategies are good. This is 

because the allocation strategy cannot affect the time 

complexity of a search algorithm. In fact, the 

searching algorithms follow the edges of the tree to 

reach the next node to process. If the edge is a 

crossing edge the current peer always hands over to 

another peer. In the worst case, the allocation strategy 

may be one to one mapping between node and peers 

and therefore the number of hops is, at worse, equal 

to the number of nodes processed by the algorithm.  

Therefore, a search algorithm on distributed k-d 

tree is as efficient as the search algorithm on k-d tree. 

In practice, every single hop adds a delay due to the 

network latency consequently a strategy that evenly 

allocates nodes to peers is preferable. 
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2.2.2 The Random K-Nearest Neighbour 
Algorithm (R-KN) 

For the purpose of describe the R-KN algorithm a 

very brief description of the KN algorithm (Samet, 

2006) may help. It alternates two phases: descending 

and ascending phases. During the descending phase, 

it selects the subtree to visit first (by comparing the 

query point with the split value stored in the current 

node); it sets the state of the node (e.g. leftSideVisited 

or rightSideVisited) and it moves to the child of the 

node. If the current node is a leaf, it adds the points 

stored in its bucket to a temporary result list 𝑅 of size 

k. If the number of points in 𝑅 exceeds k then the 

algorithm discards the points further away from the 

query point. During the ascending phase, if the other 

subtree of the current node must be visited the KN 

algorithm descends on it and it sets the state of the 

node (e.g. bothSidesVisited). If there is no need to 

visit the other subtree or the KN already visited both 

subtrees the KN ascends to the parent of the current 

node. If the current node is the root node the KN 

terminates. Here it is useful to recall how the KN 

algorithm decides whether to process the other sibling 

during the ascending phase. When the algorithm 

comebacks to 𝑣 from one of its child, it checks a 

condition that tells us if the other subtree of 𝑣 

contains, or not, points that can be added to the 

current temporary results of the query 𝑞 = (𝑝, 𝑘), 

where p is the query point. Suppose that: 𝑓 =
(𝑓1, … , 𝑓𝑑) is the farthest point in temporary result list 

𝑅 from 𝑝 = (𝑝1, … , 𝑝𝑑), and i = v.splitCoordinate, if: 

 

|𝑝𝑖 − 𝑣. 𝑠𝑝𝑙𝑖𝑡| < |𝑝𝑖 − 𝑓𝑖|  (1) 

 

Then the algorithm processes the other siblings 

also otherwise the algorithm ignores the other sibling 

(Samet 2006). Of course, we are implicitly assuming 

also that the list 𝑅 is full, otherwise the KN algorithm 

always visits the other sibling in order to fill 𝑅 

without evaluating (1). Therefore, the value 𝑘 affects 

the behaviour of the KN since if 𝑅 is empty then the 

other subtree will be always processed. As stated, the 

R-KN starts its elaboration in a node visited by the 

KN algorithm. The problem arises when R-KN 

ascends to a parent node never visited because its 

state is a null value. The «little adjustment» 

mentioned before is the following: if the algorithm 

ascends from a left (right) subtree and the state of the 

parent node is null then it sets the state in order to 

remember that the left (right) subtree was visited, e.g. 

leftSideVisited (rightSideVisited). 

The R-KN performs exactly the same steps of the 

KN algorithm except that: 

a) R-KN starts in a randomly chosen node 

belonging to the set of nodes that the KN 

visits during its execution; 

b) R-KN performs the above node state 

adjustment in its ascending phases.  

Suppose that 𝐴 is one of the two algorithm KN 

and R-KN, 𝑞 a k-nearest query for 𝑝 and let Leaves(A, 

q), Nodes(A, q) and Results(A, q) are respectively the 

unordered sets of leaves, nodes processed by 𝐴 with 

query 𝑞 and the result (the k-nearest points) of 𝐴 with 

query 𝑞. The objective is to demonstrate that:  

Theorem 1 (Correctness of R-KN algorithm): 

For each query 𝑞, if R-KN starts in a node n  

Nodes(KN, q)  Result(KN, q) = Result(R-KN, q). 

Since these sets are unordered sets, let assume that 

they are equal if and only if they contain the same 

nodes regardless the order the nodes are listed. 

Let first demonstrate two theorems: 

Theorem 2: Leaves(KN, q) = Leaves(R-KN, q)  

Result(KN, q) = Result(R-KN, q).  

Proof of theorem 2: The resulting data structure 

is a list that stores the k-nearest neighbor points of the 

point 𝑝 regardless the order the nodes are processed. 

Theorem 3: If R-KN starts in n  Nodes(KN, q) 

 Nodes(R-KN, q) = Nodes(KN, q). 

Proof of theorem 3: Suppose that n is not the root 

since if R-KN starts in the root then the proof is 

trivial. Therefore n can be an internal node or a leaf.  

Suppose n is an internal node, i.e. n  Nodes(KN, 

q) and n  Leaves(KN, q). If KN visits only one or 

both of the children of n then R-KN does the same 

because both KN and R-KN check the same 

conditions (1) in node n. The difference between the 

elaboration of KN and R-KN could be the order they 

visit the children of n but this does not affect the 

result. After, both KN and R-KN move its own 

elaboration to the parent node m of n. Now, the 

difference between KN and R-KN could be the status 

the of the node m. In fact, if R-KN has never visited 

m then it will check if the other child of m must be 

visited. If KN already visited m and the other child of 

m also then KN will move to the parent of m. R-KN 

will visit the other child of m since KN did it and 

because R-KN will check the same condition of KN. 

Therefore, R-KN will visit the children of m in 

reverse order with respect to KN but this does not 

affect the result. At this point R-KN will move to the 

parent of m as KN. The same reasoning can be applied 

to the parent of m and so on up to the root. Therefore, 

if n is an internal node then KN and R-KN visit the 

same nodes. Finally, if n is a leaf then both KN and 

R-KN in the next step will move the elaboration to the 

parent node of n and the proof will proceeds as in the 
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previous case. Now, it is possible to demonstrate the 

theorem 1. 

Proof of theorem 1: Observing that if Node(KN, 

q) = Nodes(R-KN, q)  Leaves(KN, q) = Leaves(R-

KN, q) the proof of theorem 1 follows from the 

theorems 2 and 3.  

Furthermore, the R-KN is as efficient as KN 

because they visit exactly the same set of nodes and, 

as stated above, the number of hops does not affect 

the time complexity of R-KN. To complete the first 

part of the description of the R-KN algorithm the next 

question is: How do we find a node belonging to the 

set of nodes visited by KN during its execution without 

the need to execute it? The following property, named 

Starting Node Property (SNP), helps to characterize 

this kind of node. 

2.2.3 The Starting Node Property (SNP) for 
Binary Trees  

For the sake of simplicity, the SNP for binary tree will 

be presented first. Binary trees can be considered as 

k-d trees with one dimension and all k-d tree 

algorithms (insert, delete and search) apply to binary 

tree also.  

SNP for binary trees: Let 𝑀 = {𝑚1,…𝑚𝑗} be the 

set of the nodes visited at least once by the KN 

algorithm, 𝑝 the query point, 𝑚 a node. Consider the 

following property: 

 

{
𝑚. 𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑚. max                             𝑚 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓
𝑚. 𝑙𝑒𝑓𝑡. 𝑠𝑝𝑙𝑖𝑡 ≤ 𝑝 ≤ 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑝𝑙𝑖𝑡      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
(2) 

 

If (2) holds  𝑚 ∈ 𝑀. 

Where 𝑚.𝑚𝑖𝑛 and 𝑚.𝑚𝑎𝑥 are respectively the 

minimum and the maximum values stored in the 

bucket of the leaf 𝑝; 𝑚. 𝑙𝑒𝑓𝑡 and 𝑚. 𝑟𝑖𝑔ℎ𝑡 are 

respectively the left and the right child of 𝑚.  

Proof of SNP for binary trees: Let 𝑥 be an 

internal node of the tree for which the (2) holds, then 

in the buckets of the leaves of the subtree of 𝑥 there 

must be at least a point 𝑡 that will be returned in the 

result of the query 𝑞. In fact, if the binary tree contains 

the point 𝑝 then 𝑝 is stored in the subtree of 𝑥. If the 

tree does not contain 𝑝 then the closest point to 𝑝 is 

stored in the subtree of 𝑥. Therefore, since 𝑘 ≥ 1 the 

algorithm does not return the correct result if it does 

not visit the subtree of 𝑥. If 𝑥 is a leaf the proof is the 

same. Given a query point 𝑝, using the SNP property 

a recursive algorithm can find a node 𝑚 ∈ 𝑀 starting 

from a randomly chosen node 𝑟 of the tree as follows: 
 

Procedure findStartingNode(r) 

if holdsSNP(r) OR isRoot(r) 

  return r 

 else 

  findStartingNode(r.parent) 

 end if 

End procedure 

 

Where ℎ𝑜𝑙𝑑𝑠𝑆𝑁𝑃(𝑟) returns true if the SNP 

property holds for 𝑟. Simply, the findStartingNode 

algorithm moves to the parent of the current node (if 

it exists) if the SNP is not true. Of course, there is no 

guarantee that it will stop before reaching the root. In 

order to analyze the effectivity of the 

findStartingNode algorithm it must be estimated how 

many time on average it returns the root. Traversing 

the root node depends on the value of query point 𝑝 

and the chosen random node 𝑟: if the leaf 𝑙 with the 

bucket containing 𝑝 and the node 𝑟 are in opposite 

subtrees of the root then it is imperative to traverse 

the root node. Instead, if they are in the same subtree 

intuitively there is a good chance that 

findStartingNode returns before reaching the root. 

Please note that even if the set 𝑀 depends on the 
value of 𝑘, the SNP does not depends on 𝑘 since the 

FindStartingNode algorithm try to find a node in the 

path from the root to the bucket that should contain 

the query point 𝑝. In order to estimate such 

probabilities, we compute the mean value on all 

possible choices of:  

 The query point 𝑝 (all points stored in the tree); 

 The random node 𝑚 (all nodes in the tree); 

 The bucket size 𝑏 (5, 10, 20, 30 and 40).  

Over a set of trees with size in the range of 512 to 

32.768 nodes. Since in a balanced binary tree with 𝑛 

nodes there are (𝑛 + 1) 2⁄  leaves then maximum total 

number of points stored in the tree is 𝑏(𝑛 + 1) 2⁄ . 

The result shows that the findStartingNode 

algorithm does not returns the root in about 34% of 

cases.  

The performance of the findStartingNode 

algorithm can be by improved choosing the random 

node with the following rule: given a query point 𝑝, 

choose a random node in the left subtree of the root if 

p ≤ root.split otherwise, choose a random node in the 

right subtree of the root. Please note that during the 

construction of the tree, each node can be easily and 

efficiently labelled as leftSideNode (rightSideNode) if 

it belongs to the left (right) subtree of the root. In 

practice, every new node simply inherits the label of 

its parent. The results of tests of the findStartingNode 

algorithm with this update are clearly better and it 

returns a node other than the root in about 65% of 

cases. The results still suggest the independence 

between percentage and size of the trees. 

Example 1: Let’s consider the binary tree in figure 

1 with bucket size 𝑏 = 3 and the query point 𝑝 = 41. 
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Let us suppose that the node 25 is the random 

chosen node therefore the findStartingNode starts its 

elaboration from it. Since, ℎ𝑜𝑙𝑑𝑠𝑆𝑁𝑃(25) = 𝑓𝑎𝑙𝑠𝑒 

and 𝑖𝑠𝑅𝑜𝑜𝑡(25) = 𝑓𝑎𝑙𝑠𝑒 the algorithm moves to the 

node 31. Again, both conditions are false and the next 

node is 37. The findStartingNode returns the node 37 

because ℎ𝑜𝑙𝑑𝑠𝑆𝑁𝑃(31) = 𝑡𝑟𝑢𝑒. Please note that the 

point 41 belongs to a bucket in the subtree of node 37.  

 

Figure 1: The starting node returned by findStartingNode 

with the query point 𝑝 = 41and starting in the random 

chosen node 25. 

2.2.4 The Starting Node Property (SNP) for 
K-D Trees 

In order to affirm the SNP from k-d trees the 

following definition needs:  

Definition 1 (Stripe): Let 𝑝 = (𝑝1, … , 𝑝𝑞) be a 

query point and suppose that 𝑚 is an internal node. 

Consider the following conditions:  

1. If both 𝑚. 𝑙𝑒𝑓𝑡 and 𝑚. 𝑟𝑖𝑔ℎ𝑡 are internal node 

in the same level, they have the same splitting 

coordinate i = m.left.splitCoordinate= 

m.rightCoordinate (figure 2.1): 

𝑚. 𝑙𝑒𝑓𝑡. 𝑠𝑝𝑙𝑖𝑡 ≤ 𝑝𝑖 ≤ 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑝𝑙𝑖𝑡 (3) 

 

 (If 𝑚. 𝑙𝑒𝑓𝑡. 𝑠𝑝𝑙𝑖𝑡 > 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑝𝑙𝑖𝑡 swap them) 

Here pi is the i-th coordinate of p. 

 

2. If 𝑚. 𝑙𝑒𝑓𝑡 is a leaf and 𝑚. 𝑟𝑖𝑔ℎ𝑡 is internal i = 

m.right.splitCoordinate (figure 2.2): 

𝑚. 𝑙𝑒𝑓𝑡. 𝑚𝑖𝑛𝑖 ≤ 𝑝𝑖 ≤ 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑝𝑙𝑖𝑡 (4) 

 

 (If 𝑚. 𝑙𝑒𝑓𝑡. 𝑚𝑖𝑛𝑖 > 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑝𝑙𝑖𝑡 swap them) 

3. If 𝑚. 𝑙𝑒𝑓𝑡 is a internal and 𝑚. 𝑟𝑖𝑔ℎ𝑡 is leaf i = 

m.left.splitCoordinate (figure 2.3): 

𝑚. 𝑙𝑒𝑓𝑡. 𝑠𝑝𝑙𝑖𝑡 ≤ 𝑝𝑖 ≤ 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑚𝑎𝑥𝑖 (5) 

 

(If 𝑚. 𝑙𝑒𝑓𝑡. 𝑠𝑝𝑙𝑖𝑡 > 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑚𝑎𝑥𝑖  swap them) 

 

4. If both 𝑚. 𝑙𝑒𝑓𝑡 and 𝑚. 𝑟𝑖𝑔ℎ𝑡 are leaves i = 

m.splitCoordinates (figure 2.4):  

𝑚. 𝑙𝑒𝑓𝑡. 𝑚𝑖𝑛𝑖 ≤ 𝑝𝑖 ≤ 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑚𝑎𝑥𝑖 (6) 

 

(If 𝑚. 𝑙𝑒𝑓𝑡. 𝑚𝑖𝑛𝑖 > 𝑚. 𝑟𝑖𝑔ℎ𝑡. 𝑚𝑎𝑥𝑖  swap them) 

Where 𝑚. 𝑚𝑎𝑥𝑖 (𝑚. 𝑚𝑖𝑛𝑖) is the maximum 

(minimum) value of the i-th coordinate of the points 

contained in the bucket of 𝑚. If one of the condition 

(3), (4), (5) and (6) holds the node 𝑚 is a stripe with 

respect the i-th coordinate (i-stripe) for 𝑝. In the 

above definition the first three sub-condition 

considers the cases in which at most one child of 𝑚 is 

an internal node. In these cases the split coordinate of 

that child is used. Instead, in the last case both 

children are leaves and the split coordinate of  𝑚 itself 

is used. 

 

Figure 2: The four cases listed in the definition of the stripe 

with respect the i-th coordinate (definition 1).  

The SNP for k-d tree is the following: 

SNP for k-d trees: Let 𝑀 = {𝑚1,…, 𝑚j} the set 

of the nodes visited at least once by the KN algorithm 

on k-d tree and 𝑝 = (𝑝1, … , 𝑝𝑑) the query point.  

If node 𝑚 contains in its subtree a stripe for each 

coordinate of 𝑝  𝑚 ∈ 𝑀. 

Proof of SNP for k-d trees: For the sake of 

simplicity, suppose 𝑑 = 2, with higher number of 

dimensions the proof is the same.  

Let 𝑝 = (𝑝𝑥, 𝑝𝑦) be the query point. If the SNP 

holds for a node 𝑚 then there must exist two node 𝑣 

and 𝑤, such that they are respectively stripe for the x-

coordinate and y-coordinate. That is, minSplitx ≤ px ≤ 

maxSplitx and minSplity ≤ py ≤ maxSplity. Where 

minSpliti (maxSpliti) is the value on the right (left) 

side of one the inequalities (3), (4), (5) or (6). 

Suppose, without loss of generality, that 𝑣 as an 

ancestor of 𝑤. Since the subtree of 𝑣 contains all 

points having the x-coordinate in the range from 
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minSplitx to maxSplitx and the subtree of 𝑤 contains 

all points having the y-coordinate in the range from 

minSplity to maxSplity then the subtree of 𝑤 contains 

𝑝 or the closest point to 𝑝. If the KN does not visit 𝑤 

it returns an incorrect result then 𝑤 ∈ 𝑀. Since the 

path from root to 𝑤 contains both 𝑚 and 𝑣 then also 

𝑚, 𝑣 ∈ 𝑀. Let 𝑛 be a randomly chosen node, the 

findStartingNode algorithm for k-d trees is the same 

as before except that it use the procedure 

holdSNP4KD instead of holdSNP. The procedure 

holdSNP4KD is the following: 
  
Procedure holdsSNP4KD(n) 

i = getCoordinateIndex() 

if isStripe(n, i)  

 stripes[i] = true 

 if allStripes() 

   return true 

  end if 

 end if 

 return false 

End procedure 

 

Where getCoordinateIndex() returns the i 

coordinate as in the definition 1, stripes[] is an array 

of boolean of size 𝑣 and allStripes() returns true only 

if all elements in stripes[] are true. Of course, all 

elements of stripe are initialized to false. 

Example 2: Let’s consider the k-d tree in figure 3, 

its planar representation in figure 4 and the query 

point 𝑝. Suppose that the chosen random node is 𝑦9. 

Since, ℎ𝑜𝑙𝑑𝑠𝑆𝑁𝑃4𝐾𝐷(𝑦9) = 𝑓𝑎𝑙𝑠𝑒 then 𝑦9 it is not 

a starting node for 𝑞 and the algorithm moves to 𝑥5. 
It is ℎ𝑜𝑙𝑑𝑠𝑆𝑁𝑃4𝐾𝐷(𝑥5) = 𝑓𝑎𝑙𝑠𝑒, but since the (3) 

holds then 𝑥5 is a y-stripe for 𝑝 (figure 4) and the 

algoritm sets stripes[0] = true. Because AllStripes = 

false the algorithm moves to 𝑦5 and returns it as 

starting node since 𝑦5 is a y-stripe for 𝑝 and 

AllStripes =true. The remaining part of the 

description of the R-KN algorithm concerns the 

condition to determine if a query has been completed 

before reaching the root of the tree.  

2.2.5 The Ending Node Property (ENP) for 
Binary Trees 

As already done for the Starting Node Property, first 

the Ending Node Property for binary trees will be 

introduced and it will be subsequently presented its 

extension to k-d trees. Let 𝑞 = (𝑝, 𝑘) be a query 

having two oolean attibutes: q.leftSideComplete and 

q.rightSideComplete. 

The R-KN algorithm follows the rule: suppose during 

the ascending phase the R-KN comebacks to the node 

𝑣 from one of its children. If R-KN come from the left 

(right) child of 𝑣 and the right (left) subtree of 𝑣 must 

not be visited it set q.rightSideComplete = true 

(q.leftSideComplete = true). If after the elaboration of 

𝑣 it holds that both q.leftSideComplete and 

q.rightSideComplete are true then 𝑣 is an ending 

node. In order to demonstrate that the R-KN can 

terminate its elaboration in an ending node, we first 

demonstrate that:  

Theorem 4. Given a binary tree and a query 𝑞 =
(𝑝, 𝑘). If the KN ascends to the node 𝑣 from its left 

child and the KN sets q.rightSideComplete = true 

(q.leftSideComplete = true) in 𝑣 then in the remaining 

steps of the KN no other right (left) subtree will be 

processed. Intuitively, a point stored in a leaf in a right 

subtree of an ancestor of 𝑣 is always more distant 

from 𝑝 than a point in a leaf belonging to the subtree 

of 𝑣. Therefore, if the KN does not process the right 

subtree of 𝑣, it does not process any right subtree of 

the ancestors of 𝑣. 

 
 

Figure 3: The resulting starting node returned by the 

findStartingNode with the random chosen node y9 and 

query point p. 

 

Figure 4: In the planar representation of the k-d tree, the 

gray bands represents the two stripes obtained with the 

findStartingNode starting in the random node y9. Note that 

the point p resides in the intersection of the stripes. 

Proof of therorem 4: Let 𝑅 be the list of 

temporary results and 𝑓 the farthest point in 𝑅 from 

𝑝. Because the KN comes back from the left child of 

𝑣 it holds that:  
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𝑓 < 𝑣. 𝑠𝑝𝑙𝑖𝑡 
 

(7) 

Furthermore, since q.rightSideComplete = true 

then:  

|𝑝 − 𝑣. 𝑠𝑝𝑙𝑖𝑡| ≥ |𝑝 − 𝑓| 
 

(8) 

Please, note that p < v.split because if it is true 

𝑝 ≥ 𝑣. 𝑠𝑝𝑙𝑖𝑡 then using (7) it holds that 𝑝 ≥
𝑣. 𝑠𝑝𝑙𝑖𝑡 > 𝑓 and then (𝑝 − 𝑣. 𝑠𝑝𝑙𝑖𝑡)  < (𝑝 − 𝑓) and 

this contradicts (8). Now, suppose 𝑥 = 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡, if 

𝑣 is the right child of 𝑥 then we must move to the 

parent of 𝑥 because 𝑣 itself is the right subtree of 𝑥 

and it was already processed. If 𝑣 is the left child of 𝑥 

then 𝑥. 𝑠𝑝𝑙𝑖𝑡 > 𝑣. 𝑠𝑝𝑙𝑖𝑡 by definition of binary tree. 

Therefore, it holds that (𝑥. 𝑠𝑝𝑙𝑖𝑡 − 𝑝) > (𝑣. 𝑠𝑝𝑙𝑖𝑡 −
𝑝) it follows that the right subtree of 𝑥 will not be 

visited. Finally, since it is possible to apply the same 

reasoning for each node in the path from 𝑥 to the root 

the conclusion is that no other right subtree will be 

visited. 

Theorem 5 (Correctness of the R-KN with ENP 

for binary trees). Given a binary tree and a query 𝑞, 

if the R-KN algorithm stops its elaboration in the first 

ending node 𝑣 it finds then it returns the correct 

results to query 𝑞. 

Proof of theorem 5: Since 𝑣 is an ending node 

then the KN algorithm does not visit any other left 

subtree nor right subtree along the path from 𝑣 to the 

root of the tree during the ascending phase (Theorem 

4). 

As for the SNP property, it is difficult calculate 

exactly how many time the R-KN using ENP will 

process the root. The same approach of SNP in order 

to estimate the behavior of the R-KN algorithm is 

used and in about 98% of cases the R-KN terminates 

in a node other than the root.  

Example 3: Let’s consider the binary tree in figure 

5 and the query 𝑞 = (𝑝, 𝑘) = (34,3). Suppose the R-

KN starts in the root node.  During the first 

descending phase it visits nodes 37, 31 and 34. It 

processes the leaf with bucket containing the query 

point 𝑝 = 34 and it sets 𝑅 = {34,35,36}. The R-KN 

ascends to node 34 and it checks the (1) since 𝑅 is 

full. Since (1) holds, the algorithm process the other 

sibling of 34 and it sets 𝑅 = {33,34,35} (it throws 

away the points 35 and 36 that are so far away from 

𝑝 = 34). Now, R-KN comes back to node 34 and 

since it processed both its children then the R-KN 

ascends to node 31 and checks the condition (1). 

Since |34 − 31| > |34 − 33| then the left subtree of 

node 31 must not be visited. Here, the R-KN sets 

𝑞. 𝑙𝑒𝑓𝑡𝑆𝑖𝑑𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝑡𝑟𝑢𝑒. Intuitively, this 

means that on the left side of the tree there are not 

points belonging to the result of the query. Now, the 

R-KN ascends to node 37 and again the condition (1) 

is not true since |34 − 37| > |34 − 33| and the 

algorithm sets 𝑞. 𝑟𝑖𝑔ℎ𝑡𝑆𝑖𝑑𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝑡𝑟𝑢𝑒. The 

node 37 is an ending node and the algorithm 

terminates. Please note that if R-KN starts in node 37, 

instead of at the root, it returns also the correct result 

since node 37 is a starting node for 𝑞. 

Figure 5: The ending node returned by R-KN with the query 

point p = 34. In its ascending phase, R-KN sets 

q.leftSideComplete = true in node 31 and finally it sets 

q.rightSideComplete = true in node 37. 

2.2.6 The Ending Node Property (ENP) for 
K-D Trees 

Let 𝑞 = (𝑝, 𝑘) be a query, 𝑝 = (𝑝1, … , 𝑝𝑑) a 𝑑-

dimensional point and q.leftSideComplete(i) and 

q.rightSideComplete(i) two boolean array of size d. 

The R-KN algorithm follows the rule: suppose during 

the ascending phase the R-KN comes back to the node 

𝑣 from one of its children. If R-KN comes from the 

left (right) child of 𝑣 and the right (left) subtree of 𝑣 

must not be visited it sets q.rightSideComplete(i) = 

true (q.leftSideComplete(i) = true), where i = 

v.splitCoordinate. If after the elaboration of 𝑣 it holds 

that q.leftSideComplete(i) and q.rightSideComplete(i) 

are true for all coordinates, then 𝑣 is an ending node. 

Theorem 6 (Correctness of the R-KN with ENP 

for k-dtrees). Given a k-d tree and a query 𝑞 = (𝑝, 𝑘) 

where 𝑝 = (𝑝1, … , 𝑝𝑑) is a 𝑑-dimensional point. If the 

R-KN algorithm stops its elaboration in the first 

ending node 𝑣 it finds, then it returns the correct 

results to query 𝑞. 

Proof of theorem 6: The demonstration follows 

from the observation that the Theorem 4 holds if we 

consider a single dimension. Since 𝑣 is an ending 

node, the Theorem 4 applies to all 𝑑 coordinates and 

then no other subtree will be processed in the 

remaining steps of the algorithm.  
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3 RELATED WORKS  

In the last decade multi-dimensional and high-

dimensional indexing in decentralized peer-to-peer 

(P2P) networks, received extensive research 

attention. In (Aly, 2011) there is proposal of a 

distributed k-d tree based on MapReduce framework 

(Dean, 2008). In such index structures queries are 

processed similar to the centralized approach, i.e., the 

query starts in root node and traverse the tree. These 

methods exhibit logarithmic search cost, but face a 

serious limitation. Peers that correspond to nodes 

high in the tree can quickly become overloaded as 

query processing must pass through them. In 

centralized indexes this was a desirable property 

because maintaining these nodes in main memory 

allow the minimization of the number of I/O 

operations. In distributed indexes it is a limiting factor 

leading to bottlenecks. Moreover, this causes an 

imbalance in fault tolerance: if a peer high in the tree 

fails than the system requires a significant amount of 

effort to recover. MIDAS (Tsatsanifos, 2013) is 

similar to these works and in particular, MIDAS 

implements a distributed k-d tree, where leaves 

correspond to peers, and internal nodes dictate 

message routing. MIDAS distinguishes the concepts 

of physical and virtual peer. A physical peer is an 

actual machine responsible for several peers due to 

node departures or failures, or for load balancing and 

fault tolerance purposes. A virtual peer in MIDAS 

corresponds to a leaf of the k-d tree, and 

stores/indexes all key-value tuples, whose keys reside 

in the leaves rectangle and for any point in space, 

there exists exactly one peer in MIDAS responsible 

for it. Two algorithms for Nearest Neighbour Queries 

are described: the first (expected 𝑂(log 𝑁)) has low 

latency and involve a large number of peers; the 

second (expected 𝑂(𝑙𝑜𝑔2𝑁)) has higher latency but 

involves far fewer peers. The proposed algorithms 

process point and range queries over the 

multidimensional indexed space in 𝑂(log 𝑁) hops in 

expectance. 

4 CONCLUSIONS  

The main objective of this work is the proposal of 

index with the following characteristics: 1) Must be 

used on a large amount of data. The assumption is that 

it is not possible or convenient to use a single 

workstation to host all the data; 2) It is distributed 

over a computer network and ensures the greatest 

possible benefits in terms of efficiency (search, insert, 

delete), i.e. the performance are close to the 

traditional indexes that use a single workstation. The 

basic ideas behind are a data structure, called 

Decentralized Random Trees (DRT), based on k-d 

tree and a novel k-nearest neighbour algorithm, 

named random k-nearest neighbour algorithm. The 

Decentralized Random Trees represent the main 

contribution of this work. With a DTR distributed 

over a network of peers a randomly chosen peer can 

start the propagation of a query in the network 

without involving the peer containing the root of the 

tree in about 65% of cases. Furthermore, the first peer 

that determines that the search is complete will return 

the result. With high probability, more than 98% of 

cases, that peer is not the peer containing the root. Of 

course, due the distributed nature of the DRT, more 

than one query can be running at the same time. The 

number of initiated queries is potentially limitless 

even if the number of peers limits the number of the 

running queries. 
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