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Abstract: This paper presents the design and implementation of a training simulator for the teleoperated robot Telemax. 

Telemax is used at CERN for inspection and maintenance operations to reduce the exposure of personnel to 

radiation. The robot is modelled using a robot description format and spawned in the robotic simulator 

Gazebo. Control schemes are implemented in ROS in order to actuate the robotic arm in both joint-by-joint 

space and operational-space. Control of the robot base is also modelled. A graphical user interface is used in 

order to interface with the simulation, and control the robot with the help of live images coming from the 

robot’s on-board cameras. The resulting simulator was tested by robot operators at CERN and is envisaged to 

be of great help in the training of new operators, as well as in the testing of robot interventions in new scenarios 

and environments. 

1 INTRODUCTION 

At the European Council for Nuclear Research 

(CERN), the safety of personnel is given the utmost 

importance. In fact, teleoperated robots are used for 

inspection and maintenance in areas that are prone to 

radiation contamination, such as in the Large Hadron 

Collider (LHC). One of the robots used for this 

purpose is Telemax which is shown in Figure 1. 

Telemax is an explosive ordnance disposal (EOD) 

robot manufactured by Telerob (Telerob, 2017). It is 

equipped with tracked wheels for enhanced mobility, 

with a seven degrees of freedom manipulator to 

perform various tasks, and with six colour cameras 

used for inspection and to provide visual feedback 

during teleoperation.  

Operators need to be well trained to use such 

robots during various complex interventions. 

However, the robots are not always available for 

training, and it can be unsafe for a novice operator to 

test dangerous manoeuvers on the real robot itself. 

Moreover, it can be risky to try out new manipulation 

procedures on the real robot since it can lead to 

expensive damages. In such situations, the use of 

training simulators is very convenient. Training 

simulators are a virtual medium where the operators 

can use a virtual imitation of the robots to learn how 

to operate them safer and better. 

In literature, one can find a number of works on 

EOD robot simulators. In (Li et al., 2007) information 

is provided about the software used to build both the 

robot model and its simulated environment. In 

addition, the authors document the kinematic model 

of their robot, the collision detection algorithm and 

how to grade the training system. Schoor et al. (2012) 

present the training stages of EOD robots, and the  
 

 

Figure 1: The teleoperated robot, Telemax, during one of its 

maintenance procedures at CERN. 
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operational requirements for realistic training 

simulation, such as 3D rendering techniques. Their 

paper also discusses a number of challenges that are 

typically encountered when building robot 

simulations, such as the challenge to simulate 

gripping. However, neither of the aforementioned 

works gives any detail on the robot simulation 

software itself, such as how the robot was visually 

modelled and how the control system was 

implemented.  

Szenaris GmbH, a company that supplies training 

and simulation solutions, has put on the market a 

virtual reality robotic vehicle simulation (Szenaris 

GmbH, 2016) for both teleoperated robots, Telemax 

and Teodor. The software can control the arm, base, 

and camera using the actual remote control of the 

vehicles Telemax and Teodor in a virtual training 

environment, such as in an aircraft or in a building. 

Unfortunately, this software does not allow the user 

to customise the robot model and its virtual 

environment. For this reason, it cannot be used with 

altered robot models, such as to reflect hardware 

changes and add-ons, or to design custom training 

scenarios. As expected, the inner workings of this 

software are not documented in literature.  

For this reason, it was decided that in order to 

have the required customisability and full flexibility 

to generate new training scenarios and other features, 

it is best to design and implement a custom robot 

simulator using generic robot simulation software 

that includes physics and visualisation engines. This 

is the main contribution of the work reported in this 

paper. 

Various commercial, as well as open-source 

software for simulation of different robots is 

available. Gazebo, as reported in the survey by Ivaldi 

et al. (2014), is one of the most used and popular robot 

simulation software. Gazebo offers a robust physics 

engine, high quality graphics, and convenient 

programming and graphical interfaces. It also offers 

applications such as data visualisation, simulation of 

remote environments, and even reverse engineering 

of black-box systems. In Gazebo all objects have a 

defined mass, velocity, friction, and other physical 

attributes. Hence, when a force is exerted on an 

object, all the physics is simulated for a realistic 

behaviour. Gazebo maintains all functions provided 

by the physics engine, open dynamic engine (ODE), 

to simulate the dynamics and kinematics of bodies. 

Gazebo is also compatible with ROS (Quigley et al., 

2009). ROS is a robot framework that can be used to 

write code for robot control, and is adaptable to 

different robot platforms. In this work, Gazebo is 

used as the robotic simulator, with ROS acting as the 

middleware between the user and the model in order 

to control the robot model in Gazebo. Apart from the 

benefits found in literature, Gazebo and ROS were 

chosen since these software were already used at 

CERN for other projects. Hence, it is easier to 

integrate all projects together.  

2 SYSTEM OVERVIEW 

Figure 2 provides an overview of the designed 

simulator and its operation. The generic robotic 

simulator Gazebo, which runs on a Linux computer, 

is used to simulate the physics and the visuals of the 

realistic and functional custom-made model of 

Telemax. Thus, Gazebo can provide all the sensors’ 

states, including the state of all the joints declared in 

the model of the robot, as well as information on the 

cameras that Telemax is equipped with, since these 

are also modelled and simulated. On the other hand, 

ROS is used to actuate the robot via the available 

control library, get the required actuators’ data from 

the controllers developed in the mentioned library, 

and send it to Gazebo to actuate the joints. The user 

can operate the simulator using either a keyboard or a 

specifically designed GUI that runs on Windows. In 

order to capture the information from the user, 

analyse it, and feed it to ROS, executable programs 

were written. The output of virtual cameras is also 

streamed on a web server using ROS libraries. This 

allows the user to access the cameras’ data and have 

it displayed in real-time via the GUI. 

 

Figure 2: Block diagram of the operation of the simulator. 
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3 SYSTEM MODELLING 

For the simulator to be as realistic as possible, both 

the mathematical and visual models of the robot 

needed to be as faithful to the real robot as possible. 

The mathematical model of the robot was derived and 

tested. This was followed by the visual modelling of 

the robot using a robot description format. 

Furthermore, a simple test environment was also 

modelled for the robot to operate in. 

3.1 Kinematic Model of the Robotic 
Arm 

The first step in obtaining the kinematic model of 

Telemax’s robotic arm, was to determine the Denavit-

Hartenberg parameters. In this manner the reference 

frames could be attached properly to the links of the 

robot’s arm. This was done by accurately sketching 

the robotic arm’s configuration, to clearly show all 

the joints and their frames as depicted in Figure 3. 

Then, the Denavit-Hartenberg convention (Sciavicco 

and Siciliano, 2005) was used to generate the 

transformation matrix of each link with respect to the 

parent link. At the end, the transformation matrix 

between the base reference frame and the end-effector 

was found by multiplying all transformation matrices. 

3.2 Physical Model of Telemax 

The first step in modelling a robot in ROS is to create 

a 3D mock-up of the robot in a CAD modelling tool 

such as Inventor (Autodesk, 2017). Then, each link of 

the model that has a different degree of freedom is 

exported in the STL file format (since it is a geometry 

file format supported by URDF). This enables the 

links to perform different movements once in 

operation. The model is simulated in ROS by using 

URDF (Coleman, 2013).  

URDF is an XML format that describes a robot 

model, its links, and the joints connecting the links 

together. The link element describes the body, both 

kinematically and dynamically. This includes the 

visual part of the body, the collision part, and its 

inertial properties. The collision and inertial 

properties are important to model the robot in 

Gazebo. The joint is defined by the joint type, in this 

case there were: six revolute joints and one prismatic 

joint for the robotic arm. Another four revolute joints 

were defined for the flippers of the robotic base. 

Furthermore, each joint is defined by its joint 

position. The limitations of rotation or extension, and 

the maximum joint effort and velocity are also 

defined for each joint. The position of the frames of 

the non-fixed joints were set according to the 

kinematic chain derived. Another useful element used 

is the transmission element. This element describes 

the relationship between joints and their actuators. 

The cameras mounted on the robot are also modelled 

using an ROS plugin, the camera_controller plugin 

(Gazebo, 2017). This plugin acquired the cameras’ 

data from Gazebo and outputs it to the user as an 

image. Once the model is defined, it is spawned into 

Gazebo. 

3.3 Physical Model of the Environment 

A simple test environment was also set up using a 

procedure similar to that followed to build the model 

of the virtual robot. A custom training scenario was 

built to test the basic functionalities of the robot. This 

includes stairs and ramps, and different objects that 

are used to test grasping and handling training 

procedures. 

 

Figure 3: The joints and links comprising Telemax's robotic 

arm. 
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4 SYSTEM DESIGN 

4.1 Control of the Robot’s Joints 

To actuate the joints of the robot, the ros_control 

(Lamprianidis, 2017) package in ROS is used. A ROS 

controller is assigned to each of the robot’s joints. The 

controller needs to be compatible with the hardware 

interface declared in the transmission tag in the 

URDF. This is because the hardware interface acts as 

the mediator between the controller and, in this case, 

the simulator. It is able to convert from joint torques 

to motor torques, and gives access to read and 

command actuator properties in Gazebo. On the other 

hand, the ROS controller uses a feedback mechanism 

where the controller receives a reference value, such 

as a desired joint angle, and varies the control variable 

(or effort) to adjust the controlled output accordingly, 

based on the signals fed back from the sensors. The 

closed-loop control scheme uses a Proportional 

Integral Derivative (PID) loop. 

The joint position controller and the effort joint 

interface are implemented on the joints of the robotic 

arm and the joints of the flippers. However, during 

teleoperation, the user cannot control the joints by 

sending a reference angle, but rather by sending a 

desired velocity. Hence, a velocity controller needed 

to be emulated to change the velocity reference input 

from the user to a reference position of the joints 

(angle in case of revolute joints). This is done by 

incrementing the angle or position value of each joint 

with a constant value every time a specific key on the 

keyboard is pressed and until the key is released. 

Thus, the joints move with a constant velocity. If the 

velocity needs to be changed, the user can decrease or 

increase the constant value of increment until it 

reaches its limits. 

4.2 Design of the Robotic Arm Control 

System 

The robotic arm can be controlled in two modes, 

either in a joint-by-joint control mode or in 

operational-space control mode. In the former the 

user controls each joint individually. In the 

operational-space control mode, the user specifies the 

required end-effector position and orientation in 

operational space (also referred to as Cartesian 

space). Then, a controller is used to find the required 

joint variables, qd, so that the manipulator reaches the 

reference position and orientation in 3D space. 

Figure 4 depicts the adopted joint-by-joint control 

scheme.  Every  time  the  user  presses  the  keyboard  

 

Figure 4: Joint-by-joint control scheme. 

button corresponding to a joint, the current actual 

joint angle (in case of revolute joints) or joint position 

(in case of prismatic joints) qa is read from Gazebo 

and increased (or decreased) by adding (or 

subtracting) the constant value, inc. This constant is 

set according to the speed predefined by the user. 

Consequently, the desired joint angle, qd, is 

computed. This value is then sent to the joint angle 

controller that uses an internal feedback mechanism 

to calculate the torque required to actuate the joints 

according to the PID control algorithm. The 

controller developed in ros_control is enclosed in the 

blue dotted box in Figure 4 and allows only the 

reference joint position as an input.  
The operational-space control scheme is shown in 

Figure 5. Once the user activates the operational-
space control mode, the actual joint angles qa are used 
to find the matrix xa, containing the orientation R(qa) 
and the position P(qa) (as in (1)) of the end-effector, 
by performing the forward kinematics. 

𝐱𝐚 = [
𝐑(𝐪𝐚) 𝐏(𝐪𝐚)

𝟎 𝟏
] (1) 

Then, each time the user needs to change the 

position/orientation of the end-effector, the new 

desired rotational matrix xd which is a function of the 

desired joint angles qd is found using the 

incrementing vector, inc. This vector contains six 

constants, three that give an increment in the x, y, and 

z axis of the end-effector (incx, incy, and incz), and 

three that give a rotation around the x (yaw), y (pitch), 

and z (roll) axis (incψ, incθ, and incφ). To find the 

new position of the end-effector, the first three 

constants of inc are added with the current x, y, and z 

position (xx, xy, and xz) as follows 

𝐏(𝐪𝐝) = [

xx + incx

xy + incy

xz + incz

] (2) 

To find the orientation of the new frame, R(qd), as 

denoted by Siciliano and Sciavicco (2005), the 

composition of successive rotations with respect to a 

fixed frame is obtained by premultiplying of the single 

rotation matrices in the order of the given sequence of 

rotations.  

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

286



 

Figure 5: Operational-space control scheme. 

Hence, 

𝐑(𝐪𝐝) = 𝐑(𝐪𝐚)𝐑(𝛟) (3) 

where, 𝐑(𝛟) is the orientation matrix as a 

function of the desired increment angles 

(incψ, incθ, and incφ). Hence, this matrix gives the 

desired rotation transformation. In (Sciavicco and 

Siciliano, 2005), the authors also show that the 

orientation matrix R(ϕ) is given by 

𝐑(𝛟) = 

[

cφcθ cφsθsψ − sφcψ cφsθcψ + sφcψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

] 

(4) 

In this equation, c and s denote the cosine and sine 

trigonometric functions of the subscript angle 

respectively.  

Taking,  

[

ψ
θ
φ

] = [

incψ

incθ

incφ

] (5) 

the set of angles in (5) are computed in (4), and the 

orientation matrix that the actual coordinate frame 

needs to be rotated with, is found. In order to find the 

final desired orientation matrix, R(qd), R(qa) and 

R(ϕ) are multiplied together as in (3). Once the 

required rotation matrix xd, is found, one can move 

on to change from the coordinate space to the joint 

space. To find the joint variables required for the 

robotic arm to move to the desired position and 

orientation, the inverse kinematics are computed on 

the desired frame. Following this, the newly 

computed reference joints are passed through the joint 

angle controller that is the same as that used in the 

joint-by-joint control. 

For the computation of the kinematics that were 

used in the operational-space control, the Kinematics 

and Dynamics Library (KDL) (Orocos, 2017a) by the 

Orocos Project (Orocos, 2017b) was used. It provides 

generic forward and inverse kinematic solvers by the 

use of numerical solutions. The forward kinematic 

solver of KDL is used in real time to calculate the 

forward kinematics of the manipulator. To calculate 

the inverse kinematics, the solver TRAC-IK (Beeson 

and Ames, 2015) was used. TRAC-IK gives solution 

in a relatively low computational time whilst taking 

in consideration the joint limits. The gripper of the 

robotic arm was also modelled and controlled in a 

similar way to the joint-by-joint control scheme. The 

gripper consists of six revolute joints which are 

moved simultaneously in order to open and close its 

claws.  

4.3 Control of the Robot Base 

The mobile base of Telemax consists of four flippers 

which can be rotated clockwise and anti-clockwise 

for better maneuverability and to make the base reach 

different heights. These flippers are modelled in ROS 

as revolute joints and are controlled in a similar 

manner to the joint-by-joint scheme. Telemax is also 

equipped with tracked wheels. Since Gazebo does not 

support tracked vehicles, a way around the issue of 

simulating the tracked wheel behaviour needed to be 

found. A plugin developed by Team Hector (2017) 

was used to simulate the wheels. The motion is led by 

a simple controller that exerts forces on the main 

robot based on commanded linear and rotational 

velocities. 

4.4 Graphical User Interface 

The user can interface with the simulator via a 

keyboard, by which the user can switch from one 

mode to another and move the robotic arm, or the 

robot base, using the assigned key. Furthermore, The 

interface is shown in Figure 6, a GUI developed by 

the robotics team at CERN (Lunghi, Marin Prades 

and Di Castro, 2016) is interfaced with the simulator. 

The user can control the robot using a keyboard or a 
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joystick and can only use the output of the cameras 

mounted on the robot for teleoperation. 

 

Figure 6: The GUI used with the simulator. 

5 RESULTS 

To achieve the best computational performance, 

different parameters of the physics engine were 

adjusted in a heuristic manner, in order to reach a 

compromise between the accuracy of the simulation  
and its performance. Then, the step response of each 

joint was analysed in order to tune the corresponding 

PID parameters for a non-oscillatory, accurate but 

fast response. The results are shown in Figure 7, 

where (a) shows the step responses for each joint of 

the manipulator and (b) shows the effort of each joint 

of the manipulator.  
In order to test the operational-space control 

scheme, the robotic arm was programmed to follow 

different trajectories, both in 2D and 3D, leaving the 

base at rest. The base was left at rest since during 

interventions, at CERN, the control and movement of 

the manipulator is done whilst the base is stationary. 

This test was done by feeding the desired coordinates 

in the x, y, and z axes into the operational-space 

control scheme. Figure 8 shows the robotic arm 

tracking a spiral trajectory with very little error. Some 

minor deviations are noticed in Figure 8 and these are 

attributed to the PID’s inability to compensate fully 

for the system’s coupling effects and nonlinearities. 

The gripper of the robot was tested by grasping 

different objects that have different weights and 

shapes, such as a pallet as seen in Figure 9. The 

experiments included also grasping and carrying 

around a briefcase, grabbing a small cube from one 

box and placing it into another one by using only 

visual feedback from the on-board cameras. As in 

reality, the operator can deduce that an object is 

grasped either visually or by performing some 

movements with the arm such as moving the arm 

upwards. 
 

 

Time (seconds) 

(a) 

Time (seconds) 

(b) 

Figure 7: (a) shows the step response for each joint, where 

the blue graph shows the reference input and the red graph 

shows the controlled joint variables. (b) shows the effort 

force (Nm) of each joint. 

Figure 10 shows a testing exercise of the 

simulated robotic base. In this test the operator drove 

the robot around a maze and made it climb different 

obstacles. By controlling the flippers of the robot, 

Telemax was able to successfully climb up a 

maximum height of 50 cm. Finally, Figure 11 

provides a complete picture of the simulation in use.  
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Figure 8: Tracking of a 3D spiral trajectory. Blue plot shows 

the desired path and red plot shows the path followed. Error 

with time in the x, y, z directions are shown underneath for 

each trajectory. 

 

Figure 9: Telemax robot operated to grasp and handle 

objects. 

 

Figure 10: Telemax operated to climb up stairs by setting 

the flippers accordingly. 

 

Figure 11: Telemax simulation using visual feedback from 

the on-board cameras of teleoperation. 

The figure shows the robot being operated in a virtual 

environment in Gazebo and it also shows the visual 

feedback from its onboard cameras made available to 

the operator. These exercises help users to gain 

confidence in the control of Telemax. 

6 CONCLUSIONS 

This paper presented the physical and dynamic 

modelling of a realistic simulated version of the robot 

Telemax, as well as its controller in its working 

environment. The virtual robot was designed, 

implemented, and simulated in the generic robotic 

simulator Gazebo. The physical model was built 

using the robotic description format, URDF. To set an 

interface between the user and the robot, and the robot 

and the simulator, ROS was used. ROS was also used 

in order to implement the control algorithms of the 

robot. 

The robotic arm was modelled by deriving its 

kinematic equations. Then, a control system was 

implemented to drive the robotic arm in two different 

modes, namely: joint-by-joint mode and operational-

space mode. The gripper was also modelled to open 

and close accordingly. The drive of the robotic base 

was also developed by using a velocity control loop 

where the linear or angular reference velocity of the 

base is specified and varied by the user in real-time. 

Furthermore, another angle control loop is used for 

the control of the four flippers of the robotic base. 

For the main operation of the robot, a keyboard as 

well as a GUI developed at CERN for the 

teleoperation of the robots, were interfaced with the 

simulator. As in real scenarios, the robots are 

teleoperated, hence the operators use the cameras 

mounted on the robot for visual feedback. These 

cameras were also modelled so that the user can make 

use of them to control the robot during training. This 

helps the user gain more confidence in teleoperation. 

Finally, tests were performed to evaluate the 

robustness of the system developed.  
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To render the system more realistic, future work 

can interface the actual remote control with the 

simulator, such that the user obtains the same feel as 

when operating the real robot. Furthermore, a better 

solution needs to be found to simulate the tracked 

wheels. Moreover, the gripping function of the robot 

needs to be tested on more objects that differ in shape 

and weight to test the robustness of the simulator in 

this respect. 

In conclusion, a simple to use, low-cost, 

reprogrammable and effective training simulator for 

the EOD robot Telemax was developed. Operators of 

Telemax at CERN performed some tests with the 

robotic arm and the drive of the robot. Positive 

feedback about the training simulator in general was 

given. The operators agreed that such simulator is 

easy to use and the manipulation is very realistic. 

Furthermore, the operators stated that such tool is 

very useful in the training procedure both for new 

operators as well as for training before interventions. 

One of the advantages of having such a model is that 

it can be adapted and tested in different scenarios. 

Moreover, using this system, other robots can be 

modelled and allowed to interact together in Gazebo. 

Hence, when operators are on the real scene, time is 

gained as operators are prepared before hand. 
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