
Analysis of Ensemble Models for Aging Related Bug Prediction in 
Software Systems 

Shubham Sharma and Sandeep Kumar 
Computer Science and Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India 

 

Keywords: Aging Related Bugs, Software Fault Prediction, Software Aging, Stacking, Bagging, Boosting. 

Abstract: With the evolution of the software industry, the growing software complexity led to the increase in the 
number of software faults. According to the study, the software faults are responsible for many unplanned 
system outages and affects the reputation of the company. Many techniques are proposed in order to avoid 
the software failures but still software failures are common. Many software faults and failures are outcomes 
of a phenomenon, called software aging. In this work, we have presented the use of various ensemble 
models for development of approach to predict the Aging Related Bugs (ARB). A comparative analysis of 
different ensemble techniques, bagging, boosting and stacking have been presented with their comparison 
with the base learning techniques which has not been explored in the prediction of ARBs. The experimental 
study has been performed on the LINUX and MYSQL bug datasets collected from Software Aging and 
Rejuvenation Repository. 

1 INTRODUCTION 

The complexity of the software system are growing 
continuously. It has resulted in increasing the rate of 
software failure causing undesirable behaviour of 
the system along with poor services and sometimes 
complete outages. Dealing with software faults is 
very important task. Faulty modules present in a 
software deteriorates the quality of the software and 
also increases the overall cost of the software system 
(Menzies et al., 2010). 

Various studies (Huang et al., 1995; Trivedi et 
al., 2000) indicated that in many cases software 
aging phenomenon is responsible for software 
failures. Software Aging refers to the phenomenon 
observed in many software systems, such that it 
results in increased run time of the system as well as 
increased failure rate.  

It is very necessary to identify the aging 
phenomenon in the early stage of the software 
development, in order to prevent the damage and 
extra cost needed to cope up the software aging 
effect at the later stages of software development. 
The sooner these aging related bugs are predicted, 
the lower it will cost to remove or modify these 
bugs. The objective of the prediction of these aging 
related bugs is to make them available to the tester, 
even before the software testing phase takes place.  

Software rejuvenation is the mechanism used to 
counter the effects of the software aging. It is very 
effective in nullifying the effect of ARBs (Aging 
Related Bugs) during runtime phase (Vaidyanathan 
and Trivedi, 2005; Zhao et al., 2008), but it can be 
more economical and effective to use them at early 
stage (Matias and Paulo Filho, 2006). Thus, it is 
very helpful to predict the aging related bugs as 
early as possible. Thus, we aim to predict the ARB’s 
in a software system in order to minimize their 
effect. 

We may take necessary preventive measures, but 
our ability to understand the software and predict its 
future is uncertain and we can approximate it to 
certain level only. Over the period of time, we will 
somehow make certain assumptions that will be 
inconsistent with our initial assumptions. Preventive 
measures are effective but cannot eliminate the 
aging completely (Ahmed, 2016). 

Various works such as (Cotroneo et al., 2013; 
Qin et al., 2015) are available which study the use of 
various learning models for ARB prediction. In 
addition, works such as (Ahmed, 2016) have 
explored the use of some ensemble methods for a 
learning technique for ARB prediction. However, 
there is a need to study the behaviour of various 
ensemble methods for different learning models for 
ARB prediction. In this work, we have presented the 

256
Sharma, S. and Kumar, S.
Analysis of Ensemble Models for Aging Related Bug Prediction in Software Systems.
DOI: 10.5220/0006847702560263
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 256-263
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



analysis of ensemble models to predict aging related 
bugs, which are responsible for the software aging 
phenomenon. Evaluation has been performed on the 
datasets available from software aging and 
rejuvenation repository (Cotroneo et al., 2013). 
Preliminarily, we have evaluated various machine 
learning techniques such as Support Vector 
Machines, Naïve Bayes, Logistic regression, 
Multilayer perceptron, K Nearest Neighbour and 
Decision tree to predict the bugs. These techniques 
are highly explored in the area of software fault 
prediction but the study of these commonly used 
techniques in comparison with their ensemble 
methods has not been explored for the prediction of 
aging related bugs in software system. Thus, we 
have developed ensemble models using bagging, 
boosting and stacking methods on these machine 
learning techniques. We have compared these 
ensemble models with each other and also with the 
participating base learning models. 

The paper is organized as follows: Section 2 
presents the related works done regarding software 
aging. Section 3 describes the work plan followed by 
us for developing various ensembles for prediction 
of software aging. Section 4 describes the 
experimental set up used for performing the 
experimentation. Section 5 presents experimental 
results and analysis followed by conclusion in 
section 6. 

2 RELATED WORKS 

Andrzejak and Silva (2008) presented an empirical 
study for prediction of software aging using SVM, 
Naïve Bayes and decision trees techniques. 
However, the testing was limited and the authors 
didn’t explore their approach for the cases involving 
multiple resources and in dynamic environment.  

In another work, Cotroneo et al., (2013) tried to 
find the aging prone source code files and predicted 
the aging related bugs using predictor variables. 
Furthermore, Qin et al., (2015) presented a TLAP 
(Transfer learning based aging bug prediction) 
approach which provides cross project prediction 
using transfer learning among different projects. It 
used the cross project approach, where the dataset of 
multiple project was used to develop and train a 
prediction model that can be used to test any of these 
projects and have shown significant improvement in 
prediction performance. 

In Cotroneo et al., (2011), various works in the 
field of software aging and rejuvenations were 
surveyed and it highlighted the aspects that requires 

special attention and the important trends observed 
in various experiments performed in software aging 
and rejuvenation field. It also highlighted the various 
aging indicators which should be focused during 
prediction and provide a direction for further study.  

It is evident from the works such as Misrili et al., 
(2011), Wang et al., (2011), Khoshgoftaar et al., 
(2003) and Aljamann and Elish (2009) that ensemble 
methods helps in achieving better prediction 
accuracy in comparison with individual machine 
learning techniques. But, all these works are used in 
the field of software fault prediction in order to 
predict the software modules to be faulty or non-
faulty.  

But as per the study by Cotroneo et al., (2011), 
the ensembles methods are rarely used in the field of 
software aging to find the aging related bugs in the 
software system and is not fully explored. Thus, it is 
required to construct and evaluate ensemble methods 
for finding the aging related bugs. This paper 
presents the ensemble methods for predicting the 
aging related bugs in the software system. 

3 ENSEMBLE LEARNING BASED 
ARB PREDICTION 

In this section, we present the ensemble based 
prediction model to predict the aging related bugs. 
Using this process, various ensemble methods such 
as bagging, boosting, stacking, etc. are explored to 
predict the ARB’s.  

Our main target for prediction is to do prediction 
at the level of a file with reference to its proneness 
for ARB. We have to predict whether the file is 
ARB (Age related bug) prone or ARB-free. Samples 
are classified into two classes. We are concerned 
with the presence of ARBs in a file, not their count. 
Even if file contains one ARB, it is considered as 
ARB prone, else it is considered as ARB free. 

The aging dataset used suffers from the class 
imbalance problem as the number of bugs belonging 
to ARB prone class is very less in comparison to 
ARB free class. So, we perform the class imbalance 
mitigation procedure to counter the effect of class 
imbalance problem (Qin et al., 2015). After the class 
imbalance mitigation procedure, we split the dataset 
into five parts according to bug proportion and then 
assign four parts for training the model, while one 
part is used for testing the model. Each case of 
experiment is done five times and the mean value of 
output is used as the final output in order to avoid 
any occasional error. The final output of the 

Analysis of Ensemble Models for Aging Related Bug Prediction in Software Systems

257



ensemble model is the mean of five iterations of 
each case. 

The flowchart of the ARB prediction process is 
shown in Fig. 1. 

 

 

Figure 1: ARB Prediction process. 

4 EXPERIMENTAL SETUP 

4.1 Background 

4.1.1 Machine Learning Methods Used 

We have used Naïve Bayes, SVM, Logistic 
Regression, KNN, MLP and Decision Tree, MLP for 
the prediction of aging related bugs. These are 
highly explored machine learning techniques in the 
area of software fault prediction and are rarely 
explored in prediction of ARB’s. In this section, we 
have discussed these techniques in brief. 
 

Naïve Bayes: Naïve Bayes classifier is a 
classification technique, which works on the 
independence between the predictor variables. It 
uses Bayes theorem, which finds conditional 
probabilities among variables. A Naïve Bayes 
classifier considers various features and checks their 
contribution independently to the probability of 
occurrence of any event (Dumais et al., 1998). 
 

Support Vector Machines: Support vector 
machines (SVM’s) are linear classifiers which is 
generally used for two class problem. Its working is 
based on margin maximization principle. It classifies 
the data optimally into two categories by 

constructing hyperplanes in higher dimensional 
space. The idea of SVM is to select the hyperplane 
that separates the two classes with maximum margin 
from the hyperplane (Adankon and Cheriet, 2009). 
We have used SVM with radial kernel basis function 
for this implementation.  
 

Logistic Regression: It is a statistical model which 
uses fitting of logistic curve to the dataset. It is 
generally preferred when the outcome variable or 
target variable is dichotomous. It is used for 
estimation of discrete values based on the given 
independent variables. It provides output in terms of 
probability. Generally, it can be used for both two 
class problem as well as for multi class problem 
(Cohen et al., 2009).  
 

K Nearest Neighbour (KNN): It is a classification 
algorithm, which is non-parametric in nature. It 
selects an unlabelled dataset point and assigns it to 
the nearest set of already classified set of points by 
majority vote of its nearest neighbours. It is well 
suited for multi-modal classes but can perform on 
two class problem too. It needs many iterations and 
is lazy in nature. Its efficiency is dependent on 
selecting a good value of ‘k’, where ‘k’ refers to the 
number of nearest neighbour points which are used 
for voting while classifying a data point into one of 
the classes (Cover, 1968). 
 

Multilayer Perceptron (MLP): Multilayer 
Perceptron (MLP) or neural network (NN) is a 
machine learning algorithm that works on the 
principle of biological neural network (Kotsiantis, 
2007). It consist of series of processing layers 
interconnected, with each connection possessing 
some weight. During training, based on the 
knowledge of domain, it develops a representation 
that maps input space to output space. MLP uses 
supervised learning technique called back-
propagation to train the network. 
 

Decision Tree: Decision tree are the trees that 
classify the example by sorting them on the basis of 
their feature value. Decision Tree classifier 
generates a tree based on C4.5 algorithm (Quinlan, 
2014). Each node represents one of the feature of the 
example to be classified and the branch from that 
node represents a value that can be assumed by that 
node. The feature that divides the training examples 
most appropriately would be used at root node. 
Similarly at each level, the feature that best divided 
the training data represents the node at that level 
(Kotsiantis, 2007).   

ICSOFT 2018 - 13th International Conference on Software Technologies

258



4.1.2 Ensemble Methods Used 

The ensemble methods used to predict the aging 
related bugs are Bagging, Boosting and Stacking. In 
this section, we have discussed these methods in 
brief. 
 

Bagging: Bagging uses Bootstrap Aggregating 
algorithm for classification process (Breiman, 1996). 
In bagging, various classifiers used as members of 
ensemble are constructed from different training 
datasets, and the combined prediction is usually the 
uniform averaging or voting over all the members. 
Each classifier is trained on sample training example 
take from training dataset with replacement such that 
size of each sample equals the size of actual training 
dataset. 
 

Boosting: Boosting is one of the popular ensemble 
technique, which generally uses AdaBoost algorithm 
(Freund and Schapire, 1996). It uses sequential 
training of models and performs training using 
multiple iterations, with a new model used for 
training in each iteration. It constructs an ensemble 
by using different example weights at different 
iterations. The prediction output is combined using 
voting on output of each classifier. 
 

Stacking: Stacking is an ensemble technique which 
needs two level of models to construct an ensemble 
(Wolpert, 1992). These are base models, also called 
as level-0, and meta-model or level-1 model. The 
level-0 models uses bootstrap samples of the training 
dataset, and the output of these base models are fed 
as input to a level-1 model. The meta-model aims to 
classify the target correctly by combining the 
outputs of base models and correcting the mistakes 
made by base models.  

4.1.3 Evaluation Metrics 

There are several performance measures to evaluate 
the performance of the classifier and some of the 
most common performance measures are: Accuracy, 
Recall, F-measure, and Precision.  

For classification problem, with data points 
belonging to two classes positive and negative class, 
TP defines Positives correctly predicted, TN- 
Negatives correctly predicted, FP- Positive wrongly 
predicted as Negative and FN – Negative falsely 
predicted as positive. 
Accuracy – Accuracy performance measure 
calculates the number of data points correctly 
predicted. It is calculated by the equation-1; 
 

Accuracy=(TP+TN)*100/(TP+FN+FP+TN) (1)
 

Recall (True Positive Rate (TPR)) – It calculates 
the fraction of positive class data points predicted as 
positive. The equation-2 is used to calculate it;  
 

Recall(TPR) = TP / (TP + FN) (2)
 

Precision- Precision is the fraction of predicted 
positive class that is actually positive class. It is 
calculated by equation-3: 
 

Precision = TP / (TP + FP ) (3)
 

F-measure - F-measure depends on recall and 
precision and is defined by equation-4:  

 

F-measure=2*Prec.*TPR/(Prec.+TPR) (4)

4.2 Class Imbalance Mitigation 
Procedure 

Class imbalance is one of the major challenges and it 
represents the cases where the examples in one class 
is very less as compared to other classes. The class 
with higher size of data is majority class, while the 
class with smaller size is considered as minority 
class.  

Minority class is unable to draw attention of 
classifiers in comparison to the majority classes. 

Let us assume that D is a dataset with N samples 
and out of it a part of dataset Dmin, includes the 
examples belonging to the minority class (ARB 
prone class in our case) with size Nmin, and another 
part of dataset, Dmax contains the Nmax examples 
belonging to the majority class (ARB free classes).  

We calculate R = Nmax / Nmin, termed as size 
ratio to calculate the relation between the size of 
minority and majority class. Consider that Omin and 
Omax are the sizes of the parts of datasets after the 
mitigation process. During mitigation, we keep the 
majority class as it is, such that size of Omax equals 
Nmax while we change the minority class by 
enlarging it such that size of Omin = R * Nmin. Thus, 
both the majority and minority classes are now 
equally attended and considered by the classifier 
(Qin et al., 2015). 

4.3 Dataset and Tools Used 

An overview of software aging datasets are shown in 
Table 1 (Cotroneo et al., 2013) above. We have used 
two real software system datasets: Linux and 
MySQL. We have performed analysis on four 
subsystems of Linux project and three subsystems of 
MySQL project as described above in Table 1 
(Cotroneo et al., 2013). 

Analysis of Ensemble Models for Aging Related Bug Prediction in Software Systems

259



Table 1: An overview of software aging datasets. 

Project Subsystem ARB’s Files ARB- prone files % ARB-prone files 

Linux 

Network Drivers 9 

3400 20 0.59% 
Other Drivers 4 

Filesystem 5 

IPv4 2 

MySQL 

Storage Engine 6 

470 39 8.3% Duplicate files 5 

Optimization files 5 

 
The datasets consists of aging-related metrics 

(Huang et al., 1995) namely AllocOps, DeallocOps, 
DerefSet and other memory usage related metrics 
(Cotroneo et al., 2013) along with Halstead and 
McCabe complexity metrics. Tai et al., (1997) 
provide the details about all these metrics.  

Tools Used: 
All the implementation in this work have been 

done in Python programming language version 
3.5.0. 

5 EXPERIMENTAL RESULTS 

In this section, we have presented experimental 
results by performing ARB prediction by using 
SVM, KNN, Decision Tree, Multi-Layer Perceptron 
(MLP), Logistic Regression and Naïve Bayes and 
subsequently by applying stacking, bagging and 
boosting based ensemble models on each of these 
learning models. The comparative analysis and the 
conclusive observations are also discussed. In this 
section, we have presented experimental results by 
performing ARB prediction by using SVM, KNN, 
Decision Tree, Multi-Layer Perceptron (MLP), 
Logistic Regression and Naïve Bayes and 
subsequently by applying stacking, bagging and 
boosting based ensemble models on each of these 
learning models. The comparative analysis and the 
conclusive observations are also discussed. 

In this experimentation, AdaBoost algorithm 
(Freund and Schapire, 1996) is used to model the 
boosting based ensemble method. Also, for 
implementing bagging and stacking approaches, we 
have used bootstrap aggregating algorithm 
(Breiman, 1996) and stacking algorithm (Wolpert, 
1992) respectively. 

Tables 2,3,4,5 shows the detailed result of the 
experiments performed in terms of accuracy, recall, 
precision and f-measure. 

Table 2 shows the detailed analysis of machine 
learning algorithms such as SVM, Decision Tree, 

KNN, MLP, Naïve Bayes and Logistic regression. 
SVM performs best in terms of accuracy and recall, 
while logistic regression is performing worst. In 
terms of precision and f-measure, decision tree 
performs best, whereas Naïve Bayes shows the 
worst performance. 

Table 3 contains the detailed analysis of Bagging 
based ensembles.SVM performs best in terms of 
accuracy, recall, precision and f-measure. Logistic 
Regression performed worst in terms of accuracy 
and recall, while Naïve Bayes performed worst in 
terms of precision and F-measure. 

Table 4 shows the detailed analysis of boosting 
based ensembles Decision tree performs best in 
terms of accuracy, recall, precision and f-measure 
and SVM performs worst in every performance 
parameter. 

Table 5 shows the performance of stacking based 
ensemble performed on top three performing 
learning models: SVM, KNN and Decision tree. The 
combination stack of SVM, KNN and Decision tree 
outperformed other ensembles in terms of accuracy, 
recall, precision and f-measure.  

From the analysis of these results, following 
observations are drawn: 
1. The accuracy for the used machine learning 

techniques are generally high (generally >0.75). 
TNR is also quite high. Recall is comparatively 
low in range of 0.57-0.96. 

2. The classification accuracy of SVM is very high 
(>0.95 in most of the cases) and it predicts best 
as compared to other classification techniques. 

3. The ensemble learning methods improve the 
prediction accuracy of the machine learning 
algorithms in almost all the cases for ARB 
prediction as shown in figure 3 and 4.  

4. The performance of the weak learners such as 
Logistic regression, Naïve Bayes and MLP is 
significantly improved by the useof ensemble 
models as shown in figure 3 and 4. 

 

ICSOFT 2018 - 13th International Conference on Software Technologies

260



Table 2: Comparative analysis of different classifiers. 

Technique used Accuracy Recall Precision F-measure 

SVM 0.9891 0.9892 0.8461 0.8523 

Naïve Bayes 0.6894 0.8496 0.4620 0.5994 

Logistic Regression 0.6296 0.5789 0.9823 0.7320 

Decision Tree 0.9807 0.9654 0.9545 0.9484 

Multi-Layer Perceptron 0.7173 0.6476 0.9962 0.7849 

KNN 0.9193 0.8545 0.9509 0.8882 

Table 3: Comparative analysis of different classifiers using Bagging approach. 

Technique used Accuracy Recall Precision F-measure 

Bagging on SVM 0.9961 0.9952 0.9937 0.9961 

Bagging on Naïve Bayes 0.7364 0.8550 0.5570 0.6731 

Bagging on LR  0.6746 0.5985 0.9512 0.7121 

Bagging on Decision Tree 0.9960 0.9922 0.9845 0.9960 

Bagging on KNN 0.9712 0.9556 0.9862 0.9706 

Bagging on MLP 0.7476 0.6368 0.9112 0.7758 

Table 4: Comparative analysis of different classifiers using Boosting approach. 

Criterion Accuracy Recall Precision F-measure 

Boosting on SVM 0.5661 0.5652 0.6137 0.5561 

Boosting on Naïve Bayes 0.7990 0.7850 0.7870 0.7731 

Boosting on LR 0.5646 0.5385 0.8852 0.5721 

Boosting on Decision Tree 0.9757 0.9632 0.9889 0.9758 

Boosting on KNN 0.9244 0.8448 0.9459 0.8912 

Boosting on MLP 0.7194 0.6884 0.9084 0.7842 

Table 5: Comparative analysis of different classifiers using Stacking approach. 

Criterion Accuracy Recall Precision F-measure 

Stack of SVM 0.9881 0.9622 0.9871 0.9861 

Stack of KNN 0.9771 0.9785 0.9855 0.9731 

Stack of DT 0.9655 0.9641 0.9489 0.9717 

Stack of (SVM+KNN+DT) 0.9889 0.9778 0.9685 0.9888 
 

Based on this experimental analysis, the following 
research questions can be answered as below: 
RQ1: How do ensemble methods perform in the 
prediction of aging related bugs? 
Answer: It has been found that discussed ensemble 
methods shows good prediction accuracy, precision, 
and recall for almost every dataset.  
RQ2: How do ensemble methods perform in 
comparison to basic machine learning techniques? 
Answer: When compared with the individual 
learning techniques, we found that ensemble 
methods have either performed better or at least 
comparable with that of individual base learning 
techniques in every parameter.  

RQ3: How does the ensemble methods affect the 
performance of the learning models? 
Answer: It is observed from the experimental study 
that ensemble methods improved the performance of 
most of the base learners. Weak learners like Naïve 
Bayes, Logistic regression and MLP show 
significant improvement, while SVM, KNN and 
Decision Tree performed same or have shown little 
improvement in every parameter. 
RQ4: Are the accuracies of various used ensembles 
comparable? 
Answer: From Fig. 3 and Fig. 4, it can be observed 
that the accuracy obtained from the various 
ensembles are comparable with each other. 
 

Analysis of Ensemble Models for Aging Related Bug Prediction in Software Systems

261



 

Figure 2: Prediction Accuracy for various classifiers used. 

 

Figure 3: Comparison of Prediction Accuracy of Bagging 
and Boosting ensemble with Base Learning Techniques. 

 

Figure 4: Comparative analysis of performance of base 
learning techniques with stacking approach. 

6 CONCLUSIONS 

In this paper, we have investigated the use of some 
machine learning techniques and ensemble methods 
such as bagging, boosting and stacking for the 
prediction of ARBs by building a classifier from the 
examples of ARBs; and then using it to classify new 
files as “ARB prone” or “ARB free”. The study was 
performed on the LINUX and MYSQL bug datasets 
available in IEEE software aging and rejuvenation 
repository. For this purpose, we have used six highly 
explored machine learning techniques such as SVM, 
KNN, Decision Tree, Naive Bayes and Logistic 
Regression and evaluated their performance along 
with their ensembles. This approach have produced 
significant results in software fault prediction, but 
not explored in prediction of ARB’s. The 

experimental analysis highlights that the use of 
ensemble models is effective in improving the 
prediction accuracy of the base learning techniques 
and have significant improvement with prediction 
accuracy close to 0.99 in some cases. The high 
accuracy using ensemble methods can be helpful in 
identifying ARB’s accurately at early stages and can 
reduce the cost and damage caused due to software 
aging. In the future, we can evaluate the 
performance of these ensembles with different 
combination rules. 

ACKNOWLEDGEMENTS 

This publication is part of the R&D work undertaken 
in the project under the Visvesvaraya PhD Scheme 
of Ministry of Electronics & Information 
Technology, Government of India, being 
implemented by Digital India Corporation (formerly 
Media Lab Asia). 

REFERENCES 

Adankon, M. M. and Cheriet, M. (2009). Support vector 
machine. In Encyclopedia of biometrics, pages 1303– 
1308. Springer.  

Ahmed, A., (2016). Predicting software aging related bugs 
from imbalanced datasets by using data mining 
techniques. In IOSR Journal of Computer 
Engineering (IOSR-JCE), volume 18, pages 27-35. 

Aljamaan, H. I. and Elish, M. O. (2009). An empirical 
study of bagging and boosting ensembles for 
identifying faulty classes in object-oriented software. 
In Computational Intelligence and Data Mining, 2009. 
CIDM’09. IEEE Symposium on, pages 187–194. 
IEEE. 

Andrzejak, A. and Silva, L. (2008). Using machine 
learning for non-intrusive modeling and prediction of 
software aging. In Network Operations and 
Management Symposium, 2008, pages 25–32. IEEE. 

Breiman, L. (1996). Bagging predictors. Machine 
learning, 24(2):123–140.  

Cohen, I., Chase, J. S., Goldszmidt, M., Kelly, T., and 
Symons, J. (2004). Correlating instrumentation data to 
system states: A building block for automated 
diagnosis and control. In OSDI, volume 4, pages 16–
16.  

Cotroneo, D., Natella, R., and Pietrantuono, R. (2013). 
Predicting aging-related bugs using software 
complexity metrics. Performance Evaluation, 
70(3):163–178.  

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S. 
(2011). Software aging and rejuvenation: Where we 
are and where we are going. In Software Aging and 

ICSOFT 2018 - 13th International Conference on Software Technologies

262



Rejuvenation (WoSAR), 2011 IEEE Third 
International Workshop on, pages 1–6. IEEE.  

Cover, T. M. (1968). Rates of convergence for nearest 
neighbor procedures. In Proceedings of the Hawaii 
International Conference on Systems Sciences, pages 
413–415. 

Dumais, S., Platt, J., Heckerman, D., and Sahami, M. 
(1998). Inductive learning algorithms and 
representations for text categorization. In Proceedings 
of the seventh international conference on Information 
and knowledge management, pages 148–155. ACM.  

Freund, Y., Schapire, R. E., et al. (1996). Experiments 
with a new boosting algorithm. In Icml, volume 96, 
pages 148–156. Bari, Italy.  

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D. 
(1995). Software rejuvenation: Analysis, module and 
applications. In Fault-Tolerant Computing, 1995. 
FTCS-25. Digest of Papers., Twenty-Fifth 
International Symposium on, pages 381–390. IEEE.  

Khoshgoftaar, T. M., Geleyn, E., and Nguyen, L. (2003). 
Empirical case studies of combining software quality 
classification models. In Quality Software, 2003. 
Proceedings. Third International Conference on, 
pages 40–49. IEEE.  

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). 
Supervised machine learning: A review of 
classification techniques. Emerging artificial 
intelligence applications in computer engineering, 
160:3–24.  

Matias, R. and Paulo Filho, J. (2006). An experimental 
study on software aging and rejuvenation in web 
servers. In Computer Software and Applications Con 
ference, 2006. COMPSAC’06. 30th Annual 
International, volume 1, pages 189–196. IEEE.  

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., 
and Bener, A. (2010). Defect prediction from static 
code features: current results, limitations, new 
approaches. Automated Software Engineering, 
17(4):375–407.  

Mısırlı, A. T., Bener, A. B., and Turhan, B. (2011). An 
industrial case study of classifier ensembles for 
locating software defects. Software Quality Journal, 
19(3):515–536.  

Qin, F., Zheng, Z., Bai, C., Qiao, Y., Zhang, Z., and Chen, 
C. (2015). Cross-project aging related bug prediction. 
In Software Quality, Reliability and Security (QRS), 
2015 IEEE International Conference on, pages 43–48. 
IEEE.  

Quinlan, J. R. (2014). C4. 5: programs for machine 
learning. Elsevier.  

Singh, A., Thakur, N., and Sharma, A. (2016). A review of 
supervised machine learning algorithms. In Computing 
for Sustainable Global Development (INDIACom), 
2016 3rd International Conference on, pages 1310–
1315. IEEE.  

Tai, A. T., Chau, S. N., Alkalaj, L., and Hecht, H. (1997). 
On-board preventive maintenance: Analysis of 
effectiveness and optimal duty period. In Object-
Oriented Real-Time Dependable Systems, 1997. 
Proceedings., Third International Workshop on, pages 

40–47. IEEE.  
Trivedi, K. S., Vaidyanathan, K., and Goseva-

Popstojanova, K. (2000). Modeling and analysis of 
software aging and rejuvenation. In Simulation 
Symposium, 2000.(SS 2000) Proceedings. 33rd 
Annual, pages 270–279. IEEE.  

Vaidyanathan, K. and Trivedi, K. S. (2005). A 
comprehensive model for software rejuvenation. IEEE 
Transactions on Dependable and Secure Computing, 
2(2):124–137.  

Wang, T., Li, W., Shi, H., and Liu, Z. (2011). Software 
defect prediction based on classifiers ensemble. 
Journal of Information & Computational Science, 
8(16):4241–4254.  

Wolpert, D. H. (1992). Stacked generalization. Neural 
networks, 5(2):241–259.  

Zhao, L., Song, Q., and Zhu, L. (2008). Common software 
aging-related faults in fault-tolerant systems. In 
Computational Intelligence for Modelling Control & 
Automation, 2008 International Conference on, pages 
327–331. IEEE. 

Analysis of Ensemble Models for Aging Related Bug Prediction in Software Systems

263


