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Abstract: We model a missile defence scenario where the red force infects the blue force command and control 

systems while at the same time launching re-entry vehicles toward the blue force. As a result, the blue force 

missile defence system is weakened due to loss of time, loss of engagement opportunities, loss of network 

centric capabilities etc. The impacts of the cyber-attack on missile defence metrics are determined through a 

number of key measures of effectiveness such as the probability of raid negation and the expected number 

of targets neutralized. 

1 INTRODUCTION 

In a traditional missile defence scenario, a number of 

re-entry vehicles (RVs) are launched toward a target. 

In response, the defence engages the threats with 

interceptors. Typically, such a scenario is analysed 

with the number of engagement opportunities and an 

engagement tactic to determine the metrics for 

missile defence such as the probability of raid 

annihilation, PRA , i.e. the probability of neutralizing 

all RVs. 

With the advent of cyber technologies, the red 

force (the attacker) could also launch a cyber-attack 

at the same time as a missile attack or shortly before. 

This could lead the blue force (the defender) to lose 

precious time to counter the RVs, or to lose 

engagement opportunities, or to disable the defence 

net centric capabilities or to completely incapacitate 

the defence. 

In this paper, we will model the cyber defence of 

the blue force through an epidemic model known as 

the SIR (Susceptible – Infected – Removed units) 

model (Smith?, 2008). There are of course other 

epidemic models e.g. Bailey, 1975, Hethcote, 2000 

and Keeling and Rohani, 2007. However, we feel 

that the SIR model has a suitable level of details for 

this analysis. Morris-King and Cam, 2015 and Zou 

et al., 2002 have also made use of epidemic models 

to investigate cyber vulnerabilities. The SIR model 

is described by three coupled differential equations. 

Among the simple epidemic models, this is the first 

that is not trivial and has no (elementary) known 

analytical solution. However, we were able to derive 

a relatively accurate analytical solution which is 

used to determine the time evolution of the SIR 

units. With this analytical solution, we estimate the 

impact of a cyber-attack on PRA  and other metrics. 

2 THE SIR MODEL 

The premise of the SIR model is encoded in the 

following differential equations: 

dS
aSI

dt

dI
aSI bI

dt

dR
bI

dt

 

 



 (1) 

where S is the number of susceptible units, I  is the 

number of infected unit and R is the number of 

removed units i.e. the number of units that were 

infected and then recovered; a  is the rate of 

infection and b  is the rate of recovery.  

Given that a missile attack lasts only a short time 

(approximately less than an hour), it is consistent 

with the SIR model that the population is a constant 

i.e. we assume that there is not sufficient time to add 

or remove new units. That is, S I R N   . 

Therefore, it is convenient to scale the SIR units so 

that the total population is one: 
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' ' ' / 1S I R N N      

where ' /S S N , ' /I I N , ' /R R N . For 

convenience, we refer to 'S  as S , 'I  as I  and 'R  

as R . Harko et al., 2014 do provide a solution that 

is very sophisticated. Here, we favour a more simple 

approach that gives a simple solution. 

Smith?, 2008 indicates that there are two 

equilibrium points. The first occurs when 0I I   , 

S S N   and R R N S   (the upper bar refers 

to the equilibrium values). This makes / 0dI dt   . 

Hence, there is no infection. And the second occurs 

when 0aS b   or /S S b a   which also 

implies that / 0dI dt   which makes I I N  but 

S  is decreasing due to /dS dt . Hence, this is not a 

stable equilibrium. 

However, if 
0 /S b a  , the initial value of S  at 

time zero will lead to an epidemic as the number of 

infected units I  will increase with time at time zero 

since / 0dI dt  .  

Nguyen, 2017 shows that to solve the SIR model 

is equivalent to solve the following differential 

equation: 

01 afdf
bf S e

dt

    (2) 

where 

   
0

0

t

f t I t dt   (3) 

with boundary conditions: 
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(4) 

In addition, there are two roots (Mathematica 

2011) to the RHS of Eqn (2): 

/0

1

/0

2

1 1
1,

1 1
0,

a b

a b

aS
f f W e

b a b

aS
f f W e

b a b





 
    

 

 
    

 

 (5) 

with W  the Lambert functions. For a real argument 

x , there are two branches to the Lambert functions: 

 1,W x  and  0,W x , Mathematica, 2011. Based 

on the characteristics of the Lambert function, 

Nguyen, 2017 shows that 2 0f   and
1 0f  . 

Nguyen, 2017 also shows that the RHS of Eqn (2) is 

a convex function in f .  This leads to an 

approximation of the RHS of Eqn (2) as a quadratic 

function: 

  1 21 afbf e c f f f f     (6) 

While Eqn (6) captures the convexity of Eqn (2), 

Eqn (6) does not reproduce the asymmetry of Eqn 

(2). This is so as a quadratic function in f  is a 

symmetrical function with respect to its vertex 

  1 2 / 2f f f   . Therefore, we propose an 

improvement to this approximation. 

3 NEW APPROXIMATION TO 

THE SIR MODEL 

As a correction to Eqn (6), we introduce a parameter 

  such that 

   
1 1

1 21 afbf e c f f f f
       (7) 

  is chosen so that the LHS and the RHS of Eqn (7) 

match at 
 0*

ln /a S b
f f

a


   where the LHS of 

Eqn (7) is a maximum.  

Since the LHS of Eqn (7) is a convex function, 

this is the only maximum. Hence, there is no 

ambiguity in determining : 

 *

1 2

1 2

/ 2f f f

f f


 



 (8) 

 

Figure 1: /df dt  from Eqn (2), quadratic approximation 

in Eqn (6) and asymmetric approximation Eqn (7) – (

1/ 2a  , 1/ 3b  , 0 0.99S  , 0 0.01I  and 0 0R  ). 
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Figure 2: /df dt  from Eqn (2), quadratic approximation 

in Eqn (6) and asymmetric approximation Eqn (7) – (

3 / 2a  , 1/ 3b  , 0 0.99S  , 
0 0.01I  and 0 0R  ). 

Figure 1 shows /df dt as a function of f  for 

three cases: the exact case, the quadratic 

approximation and the asymmetric approximation. 

We assume that 1/ 2a  , 1/ 3b  , 0 0.99S  , 

0 0.01I  and 0 0R  .  It can be seen that the three 

cases are similar.  

Figure 2 also shows /df dt as a function of f  

for three cases: the exact case, the quadratic 

approximation and the asymmetric approximation. 

We assume that 3 / 2a  , 1/ 3b  , 0 0.99S  , 

0 0.01I  and 0 0R  .  It can be seen that the 

quadratic approximation is distinct from the two 

other cases. 

Note that the values of the above parameters -- 

a , b , 
0S ,

0I and
0R -- were used for illustration 

purposes only. 

Using the approximation on the RHS of Eqn (7), 

i.e. 

   
1 1

1 2

df
c f f f f

dt

  
    (9) 

or 

   
1 1

1 2

df
dt

c f f f f
  


 

 
 

We obtain: 

   

 
1 2

2 1

1 f f f f
t A

c f f

 




  

  
 

 
 

Since 0f   when 0t  , we get: 

 
1

2 2 1

1 1f
A

c f f f





 
   

  
 (10) 

Matching Eqn (7) at 
*f f dictates that: 

  

   
0

1 1
* *

1 2

1 / 1 ln /b a a S b
c

f f f f
  

   


  
 (11) 

Now that all of the parameters are well defined, 

we could solve Eqn (9): 

2 1

2
1

f f
f f

u


 


 (12) 

where 

   
1/

2 1u c f f t A


         (13) 

Since /I df dt , we get: 

 

 

2 1

2 1

2
1

c f f u
I

u

  



 (14) 

By manipulating Eqn (1), Nguyen, 2017 shows 

that: 

 
0

a f t
S S e

 
   (15) 

and 

 R b f t   (16) 

4 PROPERTIES OF THE 

APPROXIMATION 

The maximum of I  occurs when / 0dI dt  . Using 

Eqn (14), we get: 

 
 

 

1
*

2

max 2 1 2
*1

u
I c f f

u



   


 (17) 

where  

* 1

1
u









 (18) 

This corresponds to 
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 *

*
u

t A
c




 


 (19) 

Taking the limit as t   of Eqn (14) yields: 

lim 0
t

I


  (20) 

Similarly, 

2lim
t

f f


  (21) 

Therefore, 

2

0lim
a f

t
S S e

 


   (22) 

and 

2lim
t

R b f


   (23) 

Note that by taking the limit 0  , we recover 

the results of Nguyen 2017 i.e. 

 2 11

0
2

lim
c f f tf

u e
f

  



 
  
 

 (24) 

We display below S , I and R  as a function of 

time. The exact case is obtained numerically using 

Mathematica, 2011. 

Note that we could also determine the time when 

I decreases to a small amount  after it reaches the 

maximum value. That is, 

 

 

2 1

2 1

2
1

c f f u
I

u




  

 


 (25) 

or 

 
21 ' 1u u      (26) 

where 

 
2

2 1

'
c f f


 

 
 (27) 

We use perturbation theory to get the first order 

approximation for  2

0 1u u u O      by 

expanding Eqn (26) as a series in powers of . By 

carefully the value of u that occurs after the 

maximum of I , we get: 

 0

1 2 ' 1 4 ' 1
2 '

2 ' '
u O

 


 

    
   

  

(28) 

and 

 0

1 2 ' 1 4 ' 1
2 '

2 ' '
u O

 


 

    
   

  

(29) 

 

 

 

 
 0 0

1

0

ln ln '
2 '

1 2 ' 1 '

u u
u O

u




 


   

   
 (30) 

Hence, 

  2

0 1u u O
t A

c



 



  
 


 (31) 

This works for very small values of   and very 

small values of ' . An alternative, accurate and 

efficient way to determine the time is to use the 

rigorous bisection methodology in Press et al. 1992 

where would be bracketed in the interval: 

0

1
1,

'
u



 
 

 
 (32) 

The corresponding time can be determined in a 

similar way to Eqn (19) (without the * ). 

Figures 3, 4 and 5 show that the approximations 

reproduce the characteristics of the exact numerical 

solution. S  decreases monotonically as a function 

of time. I  increases and then decreases as a 

function of time. R  increases monotonically as a 

function of time. The asymmetric approximation is 

clearly closer to the exact solution than the quadratic 

approximation. More importantly, the asymmetric 

approximation replicates the asymmetry of /df dt  

which is essential to the SIR model since there is no 

reason for the independent parameters a  and b  to 

combine in a way such that /df dt is symmetric in f . 

 

Figure 3: S  as a function of time for the exact case, the 

quadratic approximation and the asymmetric 

approximation. 
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Figure 4: I  as a function of time for the exact case, the 

quadratic approximation and the asymmetric 

approximation. 

 

Figure 5: R  as a function of time for the exact case, the 

quadratic approximation and the asymmetric 

approximation. 

5 EFFECTS ON MISSILE 

DEFENCE 

To examine the impacts of infection on missile 

defence capabilities, we consider a scenario where 

there are three re-entry vehicles (RVs) and six 

interceptors. We assume that there are two 

engagement opportunities. 

Normally, given the speeds and ranges involved 

Cranford, 2004 could be used to determine the 

number of engagement opportunities for ballistic 

missile trajectories. The key metrics are the 

probability of raid annihilation  PRA  -- the 

probability of neutralizing all RVs, the expected 

number of RVs neutralized  ERVN  and the 

expected number of interceptors expended  ENIE . 

These metrics are parametrized by the single shot 

probability of a hit H . 

When the defence is infected with viruses, the 

missile defence capabilities could also be affected. 

As shown in Figure 4, it takes the defence about 

twenty minutes to remove the infection. We consider 

below three possible scenarios: 

A. The defence is unaffected; 

B. The defence loses one engagement 

opportunity and 

C. The defence loses its coordination such as 

its network centric capabilities. 

In scenario A, the defence uses a shoot-look-

shoot tactic. It engages each RV with one interceptor 

at each engagement opportunity. If the RV is 

neutralized then the defence will stop engaging that 

RV. Otherwise, the defence will re-engage the RV 

with another interceptor until the defence runs out of 

interceptors or engagement opportunities. The 

metrics for scenario A are given below. 

 
3

21PRA M   (33) 

 23 1ERVN M    (34) 

3 3ENIE M    (35) 

where 1M H  . 

In scenario B, the defence will launch all of its 

interceptors at the second engagement opportunity. 

This gives: 

 
3

21PRA M   (36) 

 23 1ERVN M    (37) 

6ENIE   (38) 

In scenario C, the defence loses its coordination 

hence it cannot allocate the interceptors optimally 

among the RVs. The optimal allocation occurs when 

the defence assigns the interceptors as evenly as 

possible among the RVs, Soland, 1987, at each 

engagement opportunity. The possible allocations 

are determined in Nguyen and Miah, 2015 as shown 

in Table 1. 

Table 1: All possible engagement allocations against three 

RVs. 

Engagement allocation RV 1 RV 2 RV 3 

1 0   0  6  

2 0  1  5  

3 0  2  4  

4 0  3  3  

5 1  1  4  

6 1  2  3  

7 (Optimal Salvo tactic) 2  2  2  
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Assuming that each allocation in Table 1 is 

equally probable then PRA  can be expressed as: 

7

1

1

7
i

i

PRA p


   (39) 

where 

1 2 3 4, , , 0p p p p   (40) 

   2 4

5 1 1p M M     (41) 

     2 3

6 1 1 1p M M M       (42) 

 
3

2

7 1p M   (43) 

As well, ERVN  can be expressed as: 

7

1

1

7
i

i

ERVN e


   (44) 

6

1 1e M   (45) 

5

2 2e M M    (46) 

2 4

3 2e M M    (47) 

3

4 2 2e M    (48) 

4

5 3 2e M M     (49) 

2 3

6 3e M M M     (50) 

2

7 3 3e M    (51) 

Also, ENIE  is given by: 

6ENIE   (52) 

 

Figure 6: PRA  as a function of the single shot probability 

of a hit .H  

Figures 6, 7 and 8 plot the missile defence 

metrics as a function of the single shot probability of 

a hit H . It is seen that PRA and ERVN  are the 

same for scenario A and for scenario B. However,  
 

   

 

Figure 7: ERVN  as a function of the single shot 

probability of a hit .H  

 

Figure 8: ENIE  as a function of the single shot 

probability of a hit .H  

they are substantially lower for scenario C. This is 

due to the fact that in scenario C, the engagement 

allocation is not optimal.  

ENIE is equal to six for scenario B and scenario 

C but is decreasing as a function of H for scenario 

A. This means that in scenario B and in scenario C, 

the defence launches all of its interceptors. This is 

very dangerous as the defence will not have any 

interceptors left to engage unexpected RVs or to re-

engage RVs that were missed due to malfunctions of 

the defence systems. For scenario A, with a typical 

H of seventy percent, Figure 8 shows that the 

defence will have expended four interceptors 

implying the defence will have two interceptors 

remaining for unexpected events. As H increases, 

ENIE decreases and so the number of interceptors 

saved increases. 

We observe that when the number of RVs and 

the number of interceptors are large, the metrics 

such as PRA and ERVN can be efficiently 

determined using a generating function e.g. Nguyen 

et al., 1997. Missile defence can also be modelled 

using Markov chains e.g. Menq et al., 2007 and 

globally optimized using dynamic programming e.g. 

Soland, 1987. 
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6 CONCLUSIONS 

In this paper, we examine a missile attack scenario 

combined with a cyber-attack scenario. To do that, 

we solve the SIR model using an approximate 

solution which reproduces all of the characteristics 

of the problem such as the asymmetry, the trends in 

time evolution of the parameters I , S and R as well 

as their long term behaviours.  

It could also be argued that the asymmetric 

approximation is in itself an epidemic model in the 

same way that the SIR model is an epidemic model. 

They are both anchored on similar assumptions. And 

they both generate similar results. 

We show that the missile defence effectiveness 

of the blue force can be critically affected when the 

red force launches a cyber-attack at the same time as 

a missile attack. 

To our knowledge, the degradations of a missile 

defence system due to a cyber-attack have not been 

explicitly modelled. In the future, we would like to 

examine closely how command and control systems 

are affected by a cyber-attack. To do that, we will 

investigate in depth the complexity of command and 

control systems and the nature of cyber-attacks.  
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