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Abstract: Encryption is a key technical control for safeguarding sensitive data against internal and external threats. It 
is also a requirement for complying with several industry standards and government regulations. While 
Transport Layer Security (TLS) is widely accepted as the standard solution for encrypting data in transit, no 
single solution has achieved similar status for encrypting data at rest. This is particularly true for database 
encryption where current approaches are forcing organizations to compromise either on the security side or 
on the database side. In this paper, we discuss the design and implementation of a holistic database 
encryption approach which allows organizations to meet their security and compliance requirements without 
having to sacrifice any critical database or security properties. 

1 INTRODUCTION 

Internal threats, external threats, government 
regulations, and industry standards require 
organizations to implement security controls to 
ensure information is adequately protected. Failure 
to do so can have a negative impact on an 
organization such as loss of customer data, damage 
to brand reputation, and even financial penalties. 
Encryption is a key technical control for protecting 
information. It is also an explicitly stated 
requirement for compliance with many regulations 
and standards such as the General Data Protection 
Regulation (Voigt et al., 2017) and the Payment 
Card Industry Data Security Standard (Chuvakin and 
Williams, 2009). 

While TLS is widely accepted as the standard 
solution for encrypting data in transit, no single 
solution has achieved similar status for encrypting 
data at rest. This is particularly true for database 
encryption where current approaches are forcing 
organizations to compromise either on the security 
side or on the database side. Indeed, database 
encryption poses some very unique challenges as not 
only the solution needs to be sound from a security 
perspective, but it also needs to coexist in harmony 
with critical database properties such as 
performance, integrity, availability, and 
compression. 

The rest of this paper is organized as follows. 
Section 2 discusses the related work around database 

encryption. In section 3, we state our contributions. 
Section 4 defines the threats our database encryption 
solution defends against. In section 5, we describe 
our solution design in full details. Lastly, section 6 
summarizes our approach and outlines our future 
work. 

2 RELATED WORK 

Current database encryption solutions can be divided 
into four main categories: Column encryption 
(Benfield and Swagerman, 2001), tablespace 
encryption (Freeman, 2008), file system encryption 
(Anto, 2018), and self-encrypting disks (Dufrasne et 
al., 2016). Unfortunately, each of these solutions 
forces the organization to make a compromise either 
on the database side or on the security side.  

Column encryption negatively affects database 
performance as queries with range predicates cannot 
benefit from index-based access plans to limit the 
data to read from the table. Instead, the database 
system is forced to read the entire table to evaluate 
the query. Tablespace encryption may leave certain 
data vulnerable to attacks when, for example, an 
administrator inadvertently takes an action that 
moves data from an encrypted tablespace to an 
unencrypted one. An example of such action would 
be the creation of a materialized query table (MQT) 
to speed up the execution of data warehousing 
queries. File system encryption and self-encrypted 
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disks provide no protection against privileged users 
on the operating system. As long as the file 
permissions allow access, such users can easily view 
the content of the database by browsing the 
underlying files on the operating system. 

3 CONTRIBUTIONS 

The crux of our contribution is the design of a 
holistic database encryption approach which allows 
organizations to meet their security and compliance 
requirements without having to make compromises 
either on the security side or on the database side. 
Our solution improves over the state of the art 
discussed above as follows:  

 Pervasiveness: All data is encrypted whether it is 
user tablespace data, system tablespace data, 
temporary tablespace data, transaction logs data, 
or database backups data. 

 Security: The database content is not vulnerable 
to attacks by malicious administrators who may 
choose to bypass the database and access the 
database indirectly through the file system 
interfaces. 

 Performance: The database system is not forced 
to dismiss index-based access plans to answer 
queries with range predicates.  

 Breadth: The solution is built into the database 
engine itself which means that it is available on 
all platforms where the database system itself 
runs. Also, it does not force the database system 
to dismiss the opportunity to bypass the file 
system and write data directly to raw devices in 
order to boost performance. 

 Quantum-safety: The implementation does not 
make use of asymmetric encryption to wrap data 
encryption keys. Data encryption keys are 
wrapped with symmetric encryption (Chandra et 
al., 2014). Therefore, the implementation is safe 
against future attacks by quantum computers 
implementing Shor’s algorithm which is known 
to break asymmetric encryption that is based on 
integer factorization such as RSA or on discrete 
logarithms such as Diffie-Hellman (Shor, 1997). 
Additionally, the default encryption key size is 
256 bits. This also makes the implementation 
safe against future attacks by quantum computers 
implementing Grover’s algorithm which is 
known to offer a quadratic improvement in 
brute-force attacks on symmetric encryption 
schemes like AES (Grover, 1996). 

We have also implemented the solution in a 
commercial database system (IBM DB2 for Linux, 
Unix, and Windows). 

4 THREAT MODEL 

We focus on protecting data at rest. For protecting 
data in transit between a database server and a client 
application against eavesdroppers, we assume TLS 
has been configured to provide this protection. TLS 
is the standard for protecting data in transit and is 
implemented by all major database systems. 

The content of a database deployed on a given 
database server can be accessed in two different 
ways: Directly and indirectly. Direct access is when 
users interact with the database using the usual 
database interfaces such as querying the database 
tables using SQL. In this context, we assume that the 
database authentication and authorization 
mechanisms have been configured to ensure that 
data is accessible only to the appropriate users. 
Authentication ensures that users are who they claim 
they are while authorization ensures that 
authenticated users have access only to those objects 
or elements within objects for which they have been 
granted permissions (Rjaibi and Bird, 2004). 

Indirect access is when a user chooses to bypass 
the database system altogether and uses operating 
system commands to browse the content of the 
database. For example, on Linux, the following 
command would display the content of the physical 
file associated with a given tablespace: 

 

strings 
‘/u01/database/payroll_tbspace’ 
 

This command will be executed by the operating 
system bypassing all the database authentication and 
authorization controls.  

Our solution addresses this threat by encrypting 
the database and ensuring that such encryption is 
under the control of the database system itself. This 
means that if a user chooses to bypass the database 
system as shown above, the operating system 
command will return cipher text which will be of no 
value to the attacker.  

An attacker may also choose to access the 
database content from decommissioned hard drives 
or by physically stealing such hard drives. Our 
solution addresses this concern as well because the 
attacker will only find cipher text on those drives. 
Figure 1 gives a high level overview of our database 
threat model. 
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Figure 1: Database threat model. 

5 DATABASE ENCRYPTION 
DESIGN 

5.1 Encryption Key Management 

Encryption key management is a critical aspect of an 
encryption solution. Our solution uses two types of 
encryption keys: A Data Encryption Key (DEK) and 
a Master Key (MK). 

The DEK is the encryption key used to encrypt 
the actual data in the database. It is automatically 
generated by the database system at database 
creation time. The DEK is encrypted with the MK 
and stored within the database configuration 
structures together with the following attributes: 

 The encryption key size: This is the length of the 
encryption key in bits (e.g., 256 bits).  

 The encryption algorithm: This is the symmetric 
encryption algorithm used to encrypt the data 
with the DEK (e.g., AES). 

 The master key label: This is the unique 
identifier of the master key within the external 
management system. For example, if the external 
management system is a Hardware Security 
Module (HSM), then the database system will 
call out to the HSM and ask it to either encrypt 
or decrypt the DEK as required. A call to decrypt 
the DEK is done once when the database system 
starts up. A call to encrypt the DEK is also done 
once when the database is created.  

 The master key integrity value: To guard against 
the (rare) event where the MK acquired at some 
future point in the life of the database is not the 
one that was actually used to encrypt the DEK, 
we calculate an integrity value for the MK. We 
do this by applying a Hash Message 
Authentication Code (HMAC) function to the 
MK and store the result. Before making use of 

the DEK, we first compute an HMAC based on 
the MK acquired. If the computed HMAC and 
the stored HMAC match this implies that the 
master key acquired is indeed the one that was 
used to encrypt the DEK. Although rare, this is 
important to avoid corrupting data through 
decryption with the wrong key. 

The MK is the encryption key used to encrypt the 
DEK. Only a unique identifier of the MK is stored 
within the database configuration structures. The 
MK itself is stored in an external key management 
system such as an HSM. 

The reasons for choosing these two types of keys 
are security, performance, and availability. By 
storing the MK physically away from the database 
system, we are assured that compromise of the 
database system infrastructure does not give the 
attacker access to both the encrypted data and the 
encryption keys. Additionally, the concept of MK 
allows database administrators to rotate encryption 
keys without impacting the database performance or 
worse requiring the database to be taken offline to 
complete the operation. In fact, rotating the MK only 
requires decrypting the DEK with the old MK and 
re-encrypting it again with the new MK. In contrast, 
rotating the DEK requires reading the whole 
database, decrypting the data with old DEK, re-
encrypting it with the new DEK, and writing it back 
to disk. Thus, the two types of keys we chose in our 
solution design (DEK and MK) allow administrators 
to meet their regulatory compliance needs around 
rotating encryption keys without necessarily having 
to incur a performance penalty or take a downtime. 

5.2 Data Encryption 

Implementing security in database systems is always 
a delicate balance between meeting the security 
requirements, and ensuring that security coexists in 
harmony with other critical database features such as 
performance, compression, and availability. For 
database encryption, this means that the placement 
of the encryption run-time processing is key to 
designing an effective solution. 

5.2.1 Encryption Run-time Placement 

Our design places the encryption run-time 
processing just above the database I/O layer in the 
database kernel stack. The reasons for this choice are 
the following: 

 Pervasiveness: This ensures that all data is 
encrypted whether it is user tablespace data, 
system tablespace data, temporary tablespace 
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data, or transaction logs data. 

 Transparency: This ensures that encryption has 
no impact on database schemas and user 
applications. In fact, encryption can be thought 
of as invisible to them. 

 Performance: This ensures that data stored in the 
database buffer cache remains in clear text. 
Consequently, encryption imposes no restrictions 
on the database system when it comes to 
selecting the most efficient plan to execute a 
query (e.g., queries with range predicates). 

 Compression: Database systems implement 
compression techniques to reduce the size of the 
data stored on disk. Typically, these techniques 
look for repeating patterns in order to avoid 
storing all copies of such patterns. Encryption, 
by definition, removes all patterns. This means 
that the order in which compression and 
encryption are performed is important. For 
example, if encryption is performed first, then 
the compression rate will be zero as encryption 
will leave no patterns. Thus, placing our 
encryption run-time processing just above the 
database I/O layer ensures that encryption and 
compression can coexist in harmony. 

5.2.2 Encryption Run-time Processing 

The encryption run-time processing consists of two 
functions: Encryption and decryption. Encryption 
takes place when the database system is writing data 
out to the storage system. Decryption happens when 
the database system is reading data in from the 
storage system. 

While the solution can easily support any 
symmetric block cipher for encryption/decryption, 
we have chosen to implement support for only AES 
and 3DES as they are the most commonly used 
block ciphers. AES is actually the standard 
symmetric block cipher. Block ciphers support many 
modes of operations. Electronic Code Book (ECB) 
is the easiest mode to implement but is also the 
weakest from a security perspective. This is because 
in ECB mode the same clear text input will always 
result in the same cipher text. This may be fine for 
encrypting small pieces of data such as a password, 
but not for database encryption as this will introduce 
patterns and may compromise the encryption 
solution.  Instead, we have chosen to use the Cipher 
Block Chaining (CBC) mode as it does not introduce 
patterns. This means we need to provide an 
initialization vector when calling the block cipher in 
CBC mode for encryption, as well as maintain that 
initialization vector in our meta-data so that it is 

available for decryption purposes. Note that the 
initialization vector is not meant to be a secret. It 
only needs to be random. 

When writing data to the file system, the 
database system writes them in chunks to minimize 
the I/O overhead. A chunk is a collection of data 
pages where each page is 4KB in size. A page is set 
of rows, and a database table is a collection of pages. 
This poses an interesting question as to the level of 
granularity to adopt for encryption. We have chosen 
the data page to be that level granularity.  A row 
level granularity would have had a higher impact on 
performance as encryption calls would have to be 
made for each row separately. A chunk level 
granularity would have created a dependency 
between the pages in that chunk due to the chaining 
inherent to the CBC mode. For example, to decrypt 
page 5, one must first decrypt pages 1, 2, 3, and 4. 
This would have had a negative impact on query 
performance as it diminishes the value of index-
based access. 

It is also worth noting that the data page level 
granularity has allowed us to avoid having to 
needlessly increase the database size due to 
encryption. In fact, encryption block ciphers such as 
AES and 3DES encrypt data one block at a time. For 
example, the block size for AES is 16 Bytes. This 
means that when the clear text to encrypt is not an 
exact multiple of the block size, padding is required 
and this obviously increases the cipher text 
compared to the original clear text. Fortunately, the 
choice of a data page for the encryption granularity 
avoids this problem as data pages are always an 
exact multiple of the encryption block size. 

5.2.3 Transaction Logs 

Transaction logs are files where the database system 
logs transactions such as insert, delete, and update 
operations. They are a critical component for 
ensuring the integrity of the database as well as for 
allowing recoverability of the database following a 
database crash. The structure of a transaction log file 
consists of two pieces: A header which contains 
meta-data about the file, and a payload which 
contains the actual database transaction details. 

In section 5.2.2 above, we have seen how the 
placement of the encryption run-time ensures that all 
data written to disk, including transaction logs, is 
automatically encrypted. However, transaction logs 
pose one additional challenge. In a database 
recovery scenario, we must be able to decrypt the 
transaction logs even when the database system is 
down. This means that we cannot rely on the DEK 
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related information (section 5.1 above) to decrypt 
the transaction logs as the database system may be 
offline. To address this challenge, the transaction 
logs structure has been extended so that these logs 
are self-contained when decryption is required. More 
specifically, the header piece of the transaction logs 
structure has been extended so that it contains its 
own copy of the DEK related information. This also 
opens the door for an opportunity to further boost 
security by generating a separate DEK for the 
transaction logs that is distinct from the DEK for the 
database. 

5.2.4 Database Backups 

A database backup is a copy of the database content 
at a given point in time. Database systems provide a 
command and/or API to allow users to take those 
backups. In the case of a database crash, the 
database can be recovered to the state it was at when 
the last backup was taken. Additionally, when 
healthy transaction logs from the damaged database 
are available, it is possible to recover the database to 
a further point in time by reapplying the database 
transactions from the transaction logs. Like 
transaction logs, a database backup consists of two 
pieces: A header which contains meta-data about the 
backup, and a payload which contains the actual 
copy of the database. 

Database backups pose the same challenge as 
transaction logs in the sense that they too need to be 
self-contained when decryption is required. 
Consequently, this challenge is addressed in the 
same way by extending the database backup header 
piece so that it contains its own copy of the DEK 
related information. Like transaction logs, database 
backups have their own unique DEK. 

6 CONCLUSION AND FUTURE 
WORK 

In this paper, we have presented a holistic approach 
to database encryption which allows organizations to 
meet their security and compliance needs without 
having to make compromises either on the security 
side or on the database side. Figure 2 gives a high 
level overview of the architecture, which we 
implemented in IBM DB2 for Linux, Unix, and 
Windows. 

In our future work, we intend to enhance our 
holistic database encryption solution to better 
address two challenges. The first challenge is 
encrypting existing databases. Unlike newly created 

databases, an existing database already has data and 
turning encryption on for that database means not 
only encrypting new incoming data, but also 
encrypting that existing data. The current solution 
requires the organization to turn on the encryption 
for the existing database during a scheduled database 
maintenance window. This is because the current 
approach for encrypting an existing database works 
by having the database administrator take a backup 
of the existing database and then restoring it using 
the RESTORE DATABASE command. While 
processing the restore, the database system encrypts 
the data as that is analogous to new incoming data. 
We would like to allow database administrators to 
turn on encryption for their existing databases 
without having to wait for a scheduled maintenance 
window. To do so, we plan to investigate creating a 
background process which encrypts the database 
incrementally while the database system continues 
to serve applications. The main challenge would be 
finding out how to perform this incremental 
encryption without compromising the data integrity. 
 

 

Figure 2: Database encryption architecture. 

The second challenge is rotating the DEK online. 
Currently, our solution allows rotating only the MK 
online. While rotating the MK is usually sufficient, 
there may be situations where rotating the DEK 
itself is required. Currently, the only way to do this 
is during a scheduled maintenance window 
following the same database backup and restore 
discussed above. We believe that the solution for 
encrypting existing databases without having to wait 
for scheduled maintenance window would also 
allow rotating the DEK online as that is 
fundamentally the same problem. That is, in both 
cases, the database content needs to be read, re-
encrypted with a new DEK, and written back to disk. 
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