
Holistic Database Encryption

Walid Rjaibi
IBM Canada Lab, 8200 Warden Avenue, Markham, Ontario, Canada

Keywords: Databases, Encryption, Key Management, Security, Compliance.

Abstract: Encryption is a key technical control for safeguarding sensitive data against internal and external threats. It
is also a requirement for complying with several industry standards and government regulations. While
Transport Layer Security (TLS) is widely accepted as the standard solution for encrypting data in transit, no
single solution has achieved similar status for encrypting data at rest. This is particularly true for database
encryption where current approaches are forcing organizations to compromise either on the security side or
on the database side. In this paper, we discuss the design and implementation of a holistic database
encryption approach which allows organizations to meet their security and compliance requirements without
having to sacrifice any critical database or security properties.

1 INTRODUCTION

Internal threats, external threats, government
regulations, and industry standards require
organizations to implement security controls to
ensure information is adequately protected. Failure
to do so can have a negative impact on an
organization such as loss of customer data, damage
to brand reputation, and even financial penalties.
Encryption is a key technical control for protecting
information. It is also an explicitly stated
requirement for compliance with many regulations
and standards such as the General Data Protection
Regulation (Voigt et al., 2017) and the Payment
Card Industry Data Security Standard (Chuvakin and
Williams, 2009).

While TLS is widely accepted as the standard
solution for encrypting data in transit, no single
solution has achieved similar status for encrypting
data at rest. This is particularly true for database
encryption where current approaches are forcing
organizations to compromise either on the security
side or on the database side. Indeed, database
encryption poses some very unique challenges as not
only the solution needs to be sound from a security
perspective, but it also needs to coexist in harmony
with critical database properties such as
performance, integrity, availability, and
compression.

The rest of this paper is organized as follows.
Section 2 discusses the related work around database

encryption. In section 3, we state our contributions.
Section 4 defines the threats our database encryption
solution defends against. In section 5, we describe
our solution design in full details. Lastly, section 6
summarizes our approach and outlines our future
work.

2 RELATED WORK

Current database encryption solutions can be divided
into four main categories: Column encryption
(Benfield and Swagerman, 2001), tablespace
encryption (Freeman, 2008), file system encryption
(Anto, 2018), and self-encrypting disks (Dufrasne et
al., 2016). Unfortunately, each of these solutions
forces the organization to make a compromise either
on the database side or on the security side.

Column encryption negatively affects database
performance as queries with range predicates cannot
benefit from index-based access plans to limit the
data to read from the table. Instead, the database
system is forced to read the entire table to evaluate
the query. Tablespace encryption may leave certain
data vulnerable to attacks when, for example, an
administrator inadvertently takes an action that
moves data from an encrypted tablespace to an
unencrypted one. An example of such action would
be the creation of a materialized query table (MQT)
to speed up the execution of data warehousing
queries. File system encryption and self-encrypted

472
Rjaibi, W.
Holistic Database Encryption.
DOI: 10.5220/0006833604720477
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 472-477
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

disks provide no protection against privileged users
on the operating system. As long as the file
permissions allow access, such users can easily view
the content of the database by browsing the
underlying files on the operating system.

3 CONTRIBUTIONS

The crux of our contribution is the design of a
holistic database encryption approach which allows
organizations to meet their security and compliance
requirements without having to make compromises
either on the security side or on the database side.
Our solution improves over the state of the art
discussed above as follows:

 Pervasiveness: All data is encrypted whether it is
user tablespace data, system tablespace data,
temporary tablespace data, transaction logs data,
or database backups data.

 Security: The database content is not vulnerable
to attacks by malicious administrators who may
choose to bypass the database and access the
database indirectly through the file system
interfaces.

 Performance: The database system is not forced
to dismiss index-based access plans to answer
queries with range predicates.

 Breadth: The solution is built into the database
engine itself which means that it is available on
all platforms where the database system itself
runs. Also, it does not force the database system
to dismiss the opportunity to bypass the file
system and write data directly to raw devices in
order to boost performance.

 Quantum-safety: The implementation does not
make use of asymmetric encryption to wrap data
encryption keys. Data encryption keys are
wrapped with symmetric encryption (Chandra et
al., 2014). Therefore, the implementation is safe
against future attacks by quantum computers
implementing Shor’s algorithm which is known
to break asymmetric encryption that is based on
integer factorization such as RSA or on discrete
logarithms such as Diffie-Hellman (Shor, 1997).
Additionally, the default encryption key size is
256 bits. This also makes the implementation
safe against future attacks by quantum computers
implementing Grover’s algorithm which is
known to offer a quadratic improvement in
brute-force attacks on symmetric encryption
schemes like AES (Grover, 1996).

We have also implemented the solution in a
commercial database system (IBM DB2 for Linux,
Unix, and Windows).

4 THREAT MODEL

We focus on protecting data at rest. For protecting
data in transit between a database server and a client
application against eavesdroppers, we assume TLS
has been configured to provide this protection. TLS
is the standard for protecting data in transit and is
implemented by all major database systems.

The content of a database deployed on a given
database server can be accessed in two different
ways: Directly and indirectly. Direct access is when
users interact with the database using the usual
database interfaces such as querying the database
tables using SQL. In this context, we assume that the
database authentication and authorization
mechanisms have been configured to ensure that
data is accessible only to the appropriate users.
Authentication ensures that users are who they claim
they are while authorization ensures that
authenticated users have access only to those objects
or elements within objects for which they have been
granted permissions (Rjaibi and Bird, 2004).

Indirect access is when a user chooses to bypass
the database system altogether and uses operating
system commands to browse the content of the
database. For example, on Linux, the following
command would display the content of the physical
file associated with a given tablespace:

strings
‘/u01/database/payroll_tbspace’

This command will be executed by the operating
system bypassing all the database authentication and
authorization controls.

Our solution addresses this threat by encrypting
the database and ensuring that such encryption is
under the control of the database system itself. This
means that if a user chooses to bypass the database
system as shown above, the operating system
command will return cipher text which will be of no
value to the attacker.

An attacker may also choose to access the
database content from decommissioned hard drives
or by physically stealing such hard drives. Our
solution addresses this concern as well because the
attacker will only find cipher text on those drives.
Figure 1 gives a high level overview of our database
threat model.

Holistic Database Encryption

473

Figure 1: Database threat model.

5 DATABASE ENCRYPTION
DESIGN

5.1 Encryption Key Management

Encryption key management is a critical aspect of an
encryption solution. Our solution uses two types of
encryption keys: A Data Encryption Key (DEK) and
a Master Key (MK).

The DEK is the encryption key used to encrypt
the actual data in the database. It is automatically
generated by the database system at database
creation time. The DEK is encrypted with the MK
and stored within the database configuration
structures together with the following attributes:

 The encryption key size: This is the length of the
encryption key in bits (e.g., 256 bits).

 The encryption algorithm: This is the symmetric
encryption algorithm used to encrypt the data
with the DEK (e.g., AES).

 The master key label: This is the unique
identifier of the master key within the external
management system. For example, if the external
management system is a Hardware Security
Module (HSM), then the database system will
call out to the HSM and ask it to either encrypt
or decrypt the DEK as required. A call to decrypt
the DEK is done once when the database system
starts up. A call to encrypt the DEK is also done
once when the database is created.

 The master key integrity value: To guard against
the (rare) event where the MK acquired at some
future point in the life of the database is not the
one that was actually used to encrypt the DEK,
we calculate an integrity value for the MK. We
do this by applying a Hash Message
Authentication Code (HMAC) function to the
MK and store the result. Before making use of

the DEK, we first compute an HMAC based on
the MK acquired. If the computed HMAC and
the stored HMAC match this implies that the
master key acquired is indeed the one that was
used to encrypt the DEK. Although rare, this is
important to avoid corrupting data through
decryption with the wrong key.

The MK is the encryption key used to encrypt the
DEK. Only a unique identifier of the MK is stored
within the database configuration structures. The
MK itself is stored in an external key management
system such as an HSM.

The reasons for choosing these two types of keys
are security, performance, and availability. By
storing the MK physically away from the database
system, we are assured that compromise of the
database system infrastructure does not give the
attacker access to both the encrypted data and the
encryption keys. Additionally, the concept of MK
allows database administrators to rotate encryption
keys without impacting the database performance or
worse requiring the database to be taken offline to
complete the operation. In fact, rotating the MK only
requires decrypting the DEK with the old MK and
re-encrypting it again with the new MK. In contrast,
rotating the DEK requires reading the whole
database, decrypting the data with old DEK, re-
encrypting it with the new DEK, and writing it back
to disk. Thus, the two types of keys we chose in our
solution design (DEK and MK) allow administrators
to meet their regulatory compliance needs around
rotating encryption keys without necessarily having
to incur a performance penalty or take a downtime.

5.2 Data Encryption

Implementing security in database systems is always
a delicate balance between meeting the security
requirements, and ensuring that security coexists in
harmony with other critical database features such as
performance, compression, and availability. For
database encryption, this means that the placement
of the encryption run-time processing is key to
designing an effective solution.

5.2.1 Encryption Run-time Placement

Our design places the encryption run-time
processing just above the database I/O layer in the
database kernel stack. The reasons for this choice are
the following:

 Pervasiveness: This ensures that all data is
encrypted whether it is user tablespace data,
system tablespace data, temporary tablespace

SECRYPT 2018 - International Conference on Security and Cryptography

474

data, or transaction logs data.

 Transparency: This ensures that encryption has
no impact on database schemas and user
applications. In fact, encryption can be thought
of as invisible to them.

 Performance: This ensures that data stored in the
database buffer cache remains in clear text.
Consequently, encryption imposes no restrictions
on the database system when it comes to
selecting the most efficient plan to execute a
query (e.g., queries with range predicates).

 Compression: Database systems implement
compression techniques to reduce the size of the
data stored on disk. Typically, these techniques
look for repeating patterns in order to avoid
storing all copies of such patterns. Encryption,
by definition, removes all patterns. This means
that the order in which compression and
encryption are performed is important. For
example, if encryption is performed first, then
the compression rate will be zero as encryption
will leave no patterns. Thus, placing our
encryption run-time processing just above the
database I/O layer ensures that encryption and
compression can coexist in harmony.

5.2.2 Encryption Run-time Processing

The encryption run-time processing consists of two
functions: Encryption and decryption. Encryption
takes place when the database system is writing data
out to the storage system. Decryption happens when
the database system is reading data in from the
storage system.

While the solution can easily support any
symmetric block cipher for encryption/decryption,
we have chosen to implement support for only AES
and 3DES as they are the most commonly used
block ciphers. AES is actually the standard
symmetric block cipher. Block ciphers support many
modes of operations. Electronic Code Book (ECB)
is the easiest mode to implement but is also the
weakest from a security perspective. This is because
in ECB mode the same clear text input will always
result in the same cipher text. This may be fine for
encrypting small pieces of data such as a password,
but not for database encryption as this will introduce
patterns and may compromise the encryption
solution. Instead, we have chosen to use the Cipher
Block Chaining (CBC) mode as it does not introduce
patterns. This means we need to provide an
initialization vector when calling the block cipher in
CBC mode for encryption, as well as maintain that
initialization vector in our meta-data so that it is

available for decryption purposes. Note that the
initialization vector is not meant to be a secret. It
only needs to be random.

When writing data to the file system, the
database system writes them in chunks to minimize
the I/O overhead. A chunk is a collection of data
pages where each page is 4KB in size. A page is set
of rows, and a database table is a collection of pages.
This poses an interesting question as to the level of
granularity to adopt for encryption. We have chosen
the data page to be that level granularity. A row
level granularity would have had a higher impact on
performance as encryption calls would have to be
made for each row separately. A chunk level
granularity would have created a dependency
between the pages in that chunk due to the chaining
inherent to the CBC mode. For example, to decrypt
page 5, one must first decrypt pages 1, 2, 3, and 4.
This would have had a negative impact on query
performance as it diminishes the value of index-
based access.

It is also worth noting that the data page level
granularity has allowed us to avoid having to
needlessly increase the database size due to
encryption. In fact, encryption block ciphers such as
AES and 3DES encrypt data one block at a time. For
example, the block size for AES is 16 Bytes. This
means that when the clear text to encrypt is not an
exact multiple of the block size, padding is required
and this obviously increases the cipher text
compared to the original clear text. Fortunately, the
choice of a data page for the encryption granularity
avoids this problem as data pages are always an
exact multiple of the encryption block size.

5.2.3 Transaction Logs

Transaction logs are files where the database system
logs transactions such as insert, delete, and update
operations. They are a critical component for
ensuring the integrity of the database as well as for
allowing recoverability of the database following a
database crash. The structure of a transaction log file
consists of two pieces: A header which contains
meta-data about the file, and a payload which
contains the actual database transaction details.

In section 5.2.2 above, we have seen how the
placement of the encryption run-time ensures that all
data written to disk, including transaction logs, is
automatically encrypted. However, transaction logs
pose one additional challenge. In a database
recovery scenario, we must be able to decrypt the
transaction logs even when the database system is
down. This means that we cannot rely on the DEK

Holistic Database Encryption

475

related information (section 5.1 above) to decrypt
the transaction logs as the database system may be
offline. To address this challenge, the transaction
logs structure has been extended so that these logs
are self-contained when decryption is required. More
specifically, the header piece of the transaction logs
structure has been extended so that it contains its
own copy of the DEK related information. This also
opens the door for an opportunity to further boost
security by generating a separate DEK for the
transaction logs that is distinct from the DEK for the
database.

5.2.4 Database Backups

A database backup is a copy of the database content
at a given point in time. Database systems provide a
command and/or API to allow users to take those
backups. In the case of a database crash, the
database can be recovered to the state it was at when
the last backup was taken. Additionally, when
healthy transaction logs from the damaged database
are available, it is possible to recover the database to
a further point in time by reapplying the database
transactions from the transaction logs. Like
transaction logs, a database backup consists of two
pieces: A header which contains meta-data about the
backup, and a payload which contains the actual
copy of the database.

Database backups pose the same challenge as
transaction logs in the sense that they too need to be
self-contained when decryption is required.
Consequently, this challenge is addressed in the
same way by extending the database backup header
piece so that it contains its own copy of the DEK
related information. Like transaction logs, database
backups have their own unique DEK.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a holistic approach
to database encryption which allows organizations to
meet their security and compliance needs without
having to make compromises either on the security
side or on the database side. Figure 2 gives a high
level overview of the architecture, which we
implemented in IBM DB2 for Linux, Unix, and
Windows.

In our future work, we intend to enhance our
holistic database encryption solution to better
address two challenges. The first challenge is
encrypting existing databases. Unlike newly created

databases, an existing database already has data and
turning encryption on for that database means not
only encrypting new incoming data, but also
encrypting that existing data. The current solution
requires the organization to turn on the encryption
for the existing database during a scheduled database
maintenance window. This is because the current
approach for encrypting an existing database works
by having the database administrator take a backup
of the existing database and then restoring it using
the RESTORE DATABASE command. While
processing the restore, the database system encrypts
the data as that is analogous to new incoming data.
We would like to allow database administrators to
turn on encryption for their existing databases
without having to wait for a scheduled maintenance
window. To do so, we plan to investigate creating a
background process which encrypts the database
incrementally while the database system continues
to serve applications. The main challenge would be
finding out how to perform this incremental
encryption without compromising the data integrity.

Figure 2: Database encryption architecture.

The second challenge is rotating the DEK online.
Currently, our solution allows rotating only the MK
online. While rotating the MK is usually sufficient,
there may be situations where rotating the DEK
itself is required. Currently, the only way to do this
is during a scheduled maintenance window
following the same database backup and restore
discussed above. We believe that the solution for
encrypting existing databases without having to wait
for scheduled maintenance window would also
allow rotating the DEK online as that is
fundamentally the same problem. That is, in both
cases, the database content needs to be read, re-
encrypted with a new DEK, and written back to disk.

SECRYPT 2018 - International Conference on Security and Cryptography

476

ACKNOWLEDGEMENTS

The author would like to thank Saifedine Rjaibi and
Devan Shah for their valuable comments.

REFERENCES

Rjaibi, W., Bird, P., 2004. A Multi-Purpose
Implementation of Mandatory Access Control in
Relational Database Management Systems. In
VLDB’04, 30th International Conference on Very
Large Data Bases. Morgan Kaufmann.

Chandra, S., Paira, S., Alam, S., Sanyal, G., 2014. A
Comparative Survey of Symmetric and Asymmetric
Key Cryptography. In ICECCE’14, International
Conference on Electronics, Communication and
Computational Engineering. IEEE.

Grover, L., 1996. A Fast Quantum Mechanical Algorithm
for Database Search. In STOC’96, 28th Annual ACM
Symposium on Theory of computing. ACM.

Shor, P., 1997. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM Journal on Computing, Volume 26
Issue 5.

Dufrasne, B., Brunson, S., Reinhart, A., Tondini, R., Wolf,
R., 2016. IBM DS8880 Data-at-rest Encryption, IBM
Redbooks. New York, 7th edition.

Benfield, B., Swagerman, R., 2001. Encrypting Data
Values in DB2 Universal Database. IBM
DeveloperWorks.

Anto, J., 2008. Understanding EFS. IBM
DeveloperWorks.

Freeman, R., 2008. Oracle Database 11g New Features,
McGraw-Hill.

Voigt, P., Von Dem Bussche, A., 2017. The EU General
Data Protection Regulation (GDPR), Springer
International.

Chuvakin, A., Williams, B., 2009. PCI Compliance:
Understand and Implement Effective PCI Data
Security Standard Compliance, Elsevier.

Holistic Database Encryption

477

