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Abstract: Swirlwave is a middleware that enables peer-to-peer and distributed computing for Internet-connected de-
vices that lack publicly reachable Internet Protocol (IP) addresses, that can be expected to disconnect from
the network for periods of time, and that frequently change network locations. This is the typical case for
smartphones. The middleware fits into the friend-to-friend subcategory of peer-to-peer systems, meaning that
the overlay network is built on top of already existing trust relationships among its users. It is independent of
clouds and application servers, it supports encryption for confidentiality and authentication, and it aims to be
easily extensible for new applications. The solution described in this paper is implemented for smartphones
running the Android operating system, but its principles are not limited to this.

1 INTRODUCTION

Smartphones and their Internet features are used in a
wide range of areas in people’s lives. Examples are
online banking, keeping up with news, education, ca-
reer, looking up health information, sharing pictures
and videos, social networking, navigating in traffic,
just to mention a few. In the U.S. 77 % use their phone
to share pictures, videos, or comments about events
happening in their community, and nearly one-in-
three smartphone owners frequently use their phone
for navigation (Smith, 2015).

The way a user accesses such services is generally
through apps supported by an online service, where
data is stored in the service provider’s data centers
or cloud services. This makes it possible to access
data from multiple devices, and share with others,
for example by sending a picture to friends through
Snapchat1. In this case, the picture is uploaded to
Snapchat’s servers, the recipient friends are notified
and can see the picture in their Snapchat app, which
downloads the picture from the Snapchat data center.

Smartphone apps that let users share and commu-
nicate with others over the Internet are commonly
supported by cloud services, where communication
passes through the cloud data centers. This can be a
source of privacy concerns. In addition to storing data
that the user uploads, many other types of data con-

1https://www.snapchat.com

cerning the app are managed there. The provider of
the app usually gathers metadata about user activities,
such as whom they communicate with, when, where,
how often and about what.

The extensive use of cloud services also raises
concerns with respect to waste of computing re-
sources. Smartphones today have as much process-
ing power, memory, and storage capacity as a typical
desktop PC a decade ago. With the increasing popu-
larity of smartphones (Myers, 2016), it seems sensible
to explore ways to harness more of these hardware re-
sources.

An alternative to the cloud-based solutions is to
enable smartphones to communicate directly in a
peer-to-peer fashion over the Internet. However, this
is not a trivial solution, since smartphones usually
lack publicly reachable IP addresses and often change
networks, which makes it difficult to keep track of the
devices’ addresses. Most smartphone apps of today,
therefore, depend on clouds or application servers
as middlemen to enable communication between de-
vices.

In this work, we describe a novel approach to
mobile peer-to-peer communication in wide area net-
works, which allows direct communication between
devices that frequently change networks and lack
public IP addresses. We introduce Swirlware, a mid-
dleware that enables wide area peer-to-peer commu-
nication for smartphones, without the need for clouds
or application servers for storing, processing, or shar-
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ing data. Our approach also supports incorporating
smartphones as nodes in a peer-to-peer or distributed
system, so that storage and processing capacities of
the smartphones can be utilized as part of a bigger
whole.

Experiments show that Swirlwave handles cloud-
less, mobile peer-to-peer communication well. It en-
ables smartphones to be directly reached and sup-
ports continued communication when devices move
between networks.

In the following, we first compare Swirlwave to
related work. We then give an overview of the pro-
posed system, describing the architecture and under-
lying communication. Section 4 describes the Swirl-
wave middleware. Experiments and results are pre-
sented in Section 5, while the last sections present
discussions and conclusion.

2 RELATED WORK

The Swirlwave middleware provides a novel solution
to peer-to-peer mobile communication, where obsta-
cles, such as unreachable IP addresses, disconnec-
tions and frequently changing network locations, are
handled. We here describe how Swirlwave relates to
previous work on mobile communication.

Popescu et al. (Popescu et al., 2006) describe a
friend-to-friend (F2F) architecture, called Turtle, for
safe sharing of sensitive data. As Swirlwave, it builds
an overlay network from pre-existing trust relation-
ships. Turtle differs from Swirlwave by being a the-
oretical description of a file sharing network archi-
tecture, where search queries are flooded through the
network. Swirlwave, on the other hand, is a mid-
dleware enabling friend-to-friend networking without
being tied to specific applications.

A variety of apps for using smartphones as servers
exist, for example, web servers for Android, but they
only work as part of a local area network. To connect,
clients must be on the same local area network as the
server. This is a serious restriction when using mo-
bile devices. Swirlwave enables smartphone server
apps to be available outside local area networks and
continue communicating with clients despite network
changes.

Orbot2 allows smartphones to be reached outside
local area networks, but it has no mechanism for
changing addresses when the smartphone changes lo-
cation. This problem is solved in Swirlwave, which
handles address changes.

Thali3 is a Microsoft sponsored experimental plat-
2https://guardianproject.info/apps/orbot
3http://thaliproject.org

form for building peer web. It is described as an open-
source software platform for creating apps that exploit
the power of personal devices and put people in con-
trol of their data. Thali planned to use the Tor Onion
Service protocol4 (called hidden services at the time),
the same protocol as Swirlwave builds on, but aban-
doned the idea, since onion services were designed for
stationary services, not mobile ones.5 It is clear from
the project’s homepage that Thali instead communi-
cates over Bluetooth Low Energy (BLE), Bluetooth,
and Wi-Fi direct, none of which are wide area com-
munications. In contrast to Thali, Swirlwave provides
functionality that enables the use of the Tor Onion
Service protocol on mobile devices, can thus support
wide area mobile communication.

3 MOBILE PEER-TO-PEER
COMMUNICATION WITHOUT
PUBLIC IP ADDRESS

This section describes the architecture for Swirlwave
and how it builds on Tor and the Tor Onion Service
protocol6. We also describe the problem of unreach-
able IP addresses.

3.1 Unreachable Addresses

Usually, when a personal computer is connected to the
Internet, other computers cannot directly contact it.
This is because of network address translation (NAT).
The computer can initiate contact with a server, but
it cannot act as a server itself. The same is true for
smartphones. The reason is that computers are not
directly connected to the Internet, but are part of a
local area network (LAN) that communicates with the
outside world through a router.

Devices on a LAN are assigned IP addresses that
are only valid inside the LAN. In the most common
configuration, IPs are assigned by a DHCP-server. A
device is given an address when it connects to a LAN,
but this address can be different the next time the de-
vice connects to the same network.

When a computer connects to a server on the Inter-
net, the server will see the IP of the router. The server
sends its replies to the router, which performs network
address translation and routes the traffic to the correct
computer (Comer, 2014). IPs of computers inside the
LAN are not reachable from the Internet. This is also

4https://www.torproject.org/docs/onion-
services.html.en

5http://thaliproject.org/ThaliAndTorHiddenServices
6https://www.torproject.org
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the case for smartphones connected to the Internet via
local Wi-Fi or cellular data such as 4G.

3.2 Architecture

A system based on Swirlwave has a shared-nothing
architecture with independent and self-sufficient
nodes that do not share memory or disk storage. The
nodes will generally run on separate physical devices,
most notably smartphones connected to the Internet
through Wi-Fi or cellular data. It is a peer-to-peer
system that does not rely on cloud computing or ap-
plication server middleboxes.

3.2.1 Friend-to-Friend Network

Swirlwave is based on friend-to-friend (F2F) net-
working (Bricklin, 2000), a category of unstruc-
tured, private peer-to-peer networking where peers
only connect directly to already known peers (friends)
(Rogers and Bhatti, 2007). Friendships are commuta-
tive, but not automatically transitive.

In Figure 1, peers A, B, and D are all friends and
can connect to each other. Peer C is only friends with
B, and cannot contact A and D directly. However, it is
possible to reach unknown, faraway peers indirectly.
Using a far-reaching query, A can ask B to relay the
query to its friends, which again could query friends,
and so on.

Figure 1: Friend-to-friend network.

Friend-to-friend networks are useful for dis-
tributed systems with a predefined set of dedicated
nodes that should not be available to everyone. It can,
for example, be used for connecting a set of company-
owned smartphones or for setting up a social network
of friends to chat or share data.

3.2.2 Swirlwave Middleware

Swirlwave is designed as a middleware that facilitates
communication between applications on mobile de-
vices. It is located between the application and oper-
ating system (including transport layer services, such
as TCP/IP). The devices are connected to the Internet,
and traffic is routed through the Tor overlay network.

All peers can be clients and servers at the same
time; they can expose several services for peers to
consume, and they can be clients to services published

by other peers. To contact a server, the client appli-
cation need not know the address of the server peer.
Neither does it need to know how to connect to the
underlying communication service Tor.

Figure 2: Proxying from client to server.

Applications built on top of Swirlwave communi-
cate over TCP and register as plug-ins with Swirlwave
along with their capabilities, such as properties of the
application. Swirlwave is designed so that existing
applications and libraries easily can make use of it.
This is achieved by creating two proxies, a client- and
a server-side proxy.

Figure 2 shows two peers, one acting as client, the
other as server. Any client application using TCP con-
nections can connect to the locally running Swirlwave
proxy, and the middleware will automatically route
the traffic to the correct peer. The client proxy listens
to connections from local clients on a range of ports.
When a client application connects, the port number
is used to find the correct peer and requested service.
The Swirlwave client proxy connects to the locally
running onion proxy through the SOCKS4a protocol
(Lee, 2012), which sends the traffic through the Tor
network.

On the other end, a Swirlwave server proxy re-
ceives data from the onion proxy and directs the traf-
fic via ordinary TCP to the correct service running
locally on the receiving peer.

3.3 Tor and Tor Onion Services

The main objective of Tor7 is anonymity, not connec-
tivity. It is designed to conceal online traffic from
surveillance and monitoring by relaying through sev-
eral nested proxies, compared to the layers of an
onion. Per February 2018 the network consisted of
over 6000 volunteer relays8.

Tor is a public overlay network where encrypted
traffic is routed through at least three onion routers be-
fore reaching its destination. On each end of the net-

7https://www.torproject.org
8https://metrics.torproject.org
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work, there are onion proxies. The client-side onion
proxy has access to a directory of onion routers, and
when choosing the preferred onion routers, a circuit
is built. Each onion router in a circuit knows only its
predecessor and successor.

At the destination end of the circuit, an onion
proxy receives the traffic and sends it to the destina-
tion server, which is just an ordinary server reachable
from the Internet. The server is not aware of the use
of Tor. The Tor network protects the privacy of the
client by hiding the client identity from the server.

If a server wants to hide its location, the Tor Onion
Service protocol can be used. In this protocol, an
onion proxy on the server side will register an onion
service in the Tor network. It then gets a special type
of address, called an onion address, which is valid in-
side the Tor network. Clients can reach the server via
Tor by using the onion address. The protocol thus
makes it possible for a client to reach a server without
letting the client know the server’s real location.

As a side effect of hiding the server’s location, the
server becomes available without a public IP-address.
We also note that the onion proxy that registers the
onion service, initiates a connection from the server
side to the Tor overlay network. This means that the
server can be behind a NAT, since NAT only pre-
vents connections from the Internet to the server, not
in the opposite direction (Comer, 2014). An unin-
tended consequence of the protocol is therefore that
onion services can be used to reach servers behind
NAT. This is useful for Swirlwave, and the reason for
building the Swirlwave communication on Tor.

The use of the Tor Onion Service protocol makes
it possible to reach smartphones outside local area
networks. However, Tor does not include any means
to announce new addresses to clients, so clients are
not able to connect anymore when a smartphone
changes location. Also, there is no protocol trans-
parency, so a client connecting to the smartphone
server app must understand the protocol used by Tor.
The Swirlwave system is designed to solve these
problems transparently as a middleware.

4 SWIRLWAVE

Swirlwave builds on the Tor Onion Service protocol,
not because of the anonymity provided by the pro-
tocol, but because of the onion addresses assigned to
participating devices. Thus, Swirlwave uses onion ad-
dresses to reach devices that are lacking publicly vis-
ible IP addresses. However, since the Tor Onion Ser-
vice protocol is not designed for mobile devices, but
rather devices that never change location, Swirlwave

adds functionality for locating devices and keeping
peers up to date with correct addresses. As anonymity
is not required in Swirlwave, as opposed to in Tor, au-
thentication of peers is also added to Swirlwave.

4.1 Contacts

Keeping track of peer addresses is a central feature of
Swirlwave. This is achieved without external direc-
tory services or single points of failure. Each peer in
Swirlwave keeps its own, locally stored, contact list
of the known peers. New contacts are added out-of-
band, for example through near-field communication
(NFC) when friends meet face-to-face.

An entry in the contact list contains data that is
needed to communicate with that specific peer. It
also contains information about services offered by
the peer. An entry includes the peer ID, onion address,
services offered by the peer, phone number (used as
an alternative address in an SMS fallback protocol)
and its public-key. See Table 1 for the complete con-
tact list information.

To conduct meaningful communication, client and
server must use the same protocol. Swirlwave allows
applications to use whichever protocol that is suitable.
This flexibility is possible by representing protocols
as universally unique identifiers (UUID) (Leach et al.,
2005). More generally, they are identifiers of con-
tracts or agreements that server and client must com-
ply to in order to properly communicate. Swirlwave
does not care about the details of this contract, but
simply uses the identifier to match clients and servers.

For example, to send a message to a friend, a
user selects the friend from the Swirlwave contact list.
Based on protocol UUIDs registered for this friend,
Swirlwave presents a list of available communication
types. If the user has an application that can be used as
client, Swirlwave detects it by matching the identifiers
of the locally installed applications with the identifier
of the friend’s messaging service.

4.2 Authentication and Confidentiality

Each peer is equipped with its own key-pair
for public-key encryption (Goodrich and Tamassia,
2014). This is used for authentication purposes. It
is also used for ensuring confidentiality, integrity, and
non-repudiation of data when communicating over
other channels. Tor Onion Service communication
is end-to-end encrypted, which provides communica-
tion confidentiality.

The Tor protocol is designed for anonymity. Con-
sequently, the onion proxy on the server side will not
know the origin of incoming connections. In our ap-
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Table 1: Information in a contact list record.

Field name Description
Name A human-readable name of the friend
Peer ID An ID that is unique across all installations
Address The friend‘s onion-address
Address Version Each time a peer changes its address, it will increment the address version number.
Secondary Address The phone number used when sending SMS-messages to the peer
Public-key The public-key from the friend’s asymmetric keys
Online Status If the last attempt to reach the friend was unsuccessful, this status is set to offline, otherwise online
Last Contact Time The last time contact was made with the peer
Known Friends A list of peer IDs for mutual friends
Capabilities A list of capabilities supported by this friend. Such as available services and protocol UUIDs
Awaiting Answer A flag indicating if an answer from the SMS fallback protocol is pending

proach, this anonymity hinders the identification of
incoming requests from friends.

Swirlwave solves this by providing an authenti-
cation mechanism for validating the identity of in-
coming connections. This functionality is part of the
Swirlwave client and server proxies and is based on
public-key cryptography.

To establish a new connection, the client-side
proxy sends a system message encrypted with the
client’s private key. To validate the identity of the
sender, the server-side proxy decrypts the message
with the client’s public key. The connection request
is refused if the claimed identity of the client cannot
be authenticated.

4.3 Establishing Connections

To establish a connection, a request is sent from a
Swirlwave client proxy through the onion proxy. The
message header contains (among others) the friend’s
onion-address. If the onion proxy returns a positive
response code (0x5A) telling that it successfully con-
nected to the remote onion service, the client proxy
also receives a four-byte number. This number is later
returned to the server as part of the connection mes-
sage. If the server proxy accepts the connection (after
evaluating the connection message from the client) it
responds with a success code (0x10). The client proxy
then starts reading and writing bytes between the in-
coming socket from the application-layer client and
the outbound onion proxy socket. Figure 3 illustrates
this communication.

In the connection message, everything except the
client ID is encrypted with the client’s private-key.
The server proxy looks up the peer ID in the contact
list and rejects the connection if the peer is unknown.
If the ID is found in the contact list, the registered
public-key is used to decrypt the message. If the mes-
sage is successfully decrypted, and the returned num-
ber equals the one that was sent to the client, the client
is authenticated and the connection is accepted.

Figure 3: Establishing connection.

The connection message also specifies if the
connection is for transmitting system messages or
application-layer data. For an application-layer con-
nection, the server proxy will use the identifier in the
destination field, to match a local service endpoint,
and set up a connection from the client to the ser-
vice. For a system message, the content of the mes-
sage field will be dispatched to an internal module in
the Swirlwave middleware that handles system mes-
sages. See Table 2 for a complete list of information
included in the connection message.

If the onion proxy fails to connect to the remote
onion service, the client proxy marks the peer as be-
ing offline. It then starts the process of obtaining an
updated address to the peer, either by asking a mu-
tual friend, or using an SMS fallback protocol that
contacts the peer directly. The client proxy will not
try to establish new connections to the friend until an
updated address is obtained. The friend will then be
marked as online again.

4.4 Address Changes

When a smartphone moves from one network to an-
other, for instance from Wi-Fi to cellular data, its ac-
cess point is not the same as before. The IP address
will most likely be different, and the route to the de-
vice will most certainly be different.
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Table 2: Connection message information.

Field name Description
Sender ID The peer ID of the client
Random Number A random number initially generated and sent by the server proxy
Message Type Whether this is a system message or an application-layer connection
Destination An identifier of a capability representing a service that the client wishes to consume.

This will only be set for application-layer connections.
System Message A system message that will be dispatched to a module that handles system messages.

This will only be set for system message types.

Address changes must be announced to friends.
A device that has been offline, or has changed its lo-
cation, will contact its friends as soon as it is online
again. The new address is passed with a version num-
ber. This version number is increased every time a
peer changes its address, and is used to determine the
newest address when comparing registered addresses
across peers.

If the peer has been offline for a while, it is not un-
likely that some of its friends have changed addresses.
The peer will not have received the updated address,
and will not be able to reach them. It must then ei-
ther contact a mutual friend to obtain a peer‘s new ad-
dress, or contact the peer directly using an SMS fall-
back protocol.

As an example, assume peer B, in Figure 4, has
changed address. It sends a system message (marked
1) with the new address to its three friends. Peer A
successfully receives the address and updates its con-
tact list, while the two other peers cannot be reached.
When C and D later tries to contact B, they discover
that it cannot be reached, and they will request an up-
dated address. Peer A is a mutual friend of D and B,
and D can therefore ask A for B’s address (marked
2a). Peer C, on the other hand, does not have any
other friends to ask. Instead, it uses an alternative
channel to ask B directly for its address (marked 2b).
As phone numbers represent stable addresses where
peers can always be reached, Swirlwave uses SMS as
the alternative channel.

Figure 4: Peer B changes address.

Swirlwave uses onion-addresses that make it pos-
sible to connect to peers, even if their IP addresses are
unreachable from the Internet. Nevertheless, routing
is dependent on IP addresses under the hood, just as
everything else on the Internet. It is possible to reuse
an onion-address so that it resolves to a new access

point. However, there is no support in the Tor control
protocol for letting the client refresh the route to an
onion service.

The Swirlwave solution is to monitor network
changes on the device and register a new onion ser-
vice when the smartphone connects to a new net-
work. If a network and access point address is rec-
ognized from earlier, the onion service and onion-
address from last time is reused.

If a connection is broken while being used by an
application, Swirlwave does not try to reconnect au-
tomatically. In the current implementation of Swirl-
wave, it is the responsibility of the application to re-
connect and resume transfers. To support continuous
communication when devices change network, the
Swirlwave proxies can be improved so that the con-
nection is kept open between application-layer and
Swirlwave proxy-layer. This will allow peers to con-
tinue communication when the new address is avail-
able.

4.5 SMS Fallback Protocol

The SMS fallback protocol is used to request new
addresses from unresponsive peers. When the client
proxy of peer C discovers that it cannot connect to a
friend, B, and there are no other friends to ask for the
address, it will send a data SMS to B. In contrast to
an ordinary text SMS, a data SMS will not be visi-
ble to the user. Instead it will be received directly by
Swirlwave.

The fallback protocol starts by C sending B an
SMS, including C’s address and a secret one-time
code. This is encrypted with C’s private key. The one-
time code has several purposes; it enables duplicate
message detection, and it is a combined message-ID
and anti-forgery token sent back to C.

On the receiving side, B looks up C’s phone num-
ber in the contact list, to confirm that the SMS is from
a friend. B decrypts the message and updates the con-
tact list with C’s address. If Swirlwave is running and
connected, C is answered immediately over the Inter-
net with B’s current address. Otherwise C will receive
the answer as soon as Swirlwave connects again.
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In the response, B sends its new address together
with the one-time code originally send by C. The
message is encrypted with B’s private key. When re-
ceived, C updates the contact list with B’s new ad-
dress.

5 EXPERIMENTS

We have conducted several experiments using the
Swirlwave middleware. Testing included both func-
tionality of the system and the ability to support lo-
cation transparent communication, and performance
measurements, for startup time, connection establish-
ment time, throughput, transmission time and latency.
This section describes our results.

5.1 Peer-to-Peer Communication

We have tested peer-to-peer communication using
Swirlwave for establishing connections to the net-
work, connecting to peers and transferring data. In
these experiments, we have in particular tested how
the system handles network changes and the ability to
stay connected despite location changes.

In one of the experiments, we use two smart-
phones, directly connected using Swirlwave. A web-
cam app was installed on one phone, and the Swirl-
wave connection enabled the user of the other phone
to receive live streaming from the web-cam in the
phone’s browser. Because of Swirlwave, this is pos-
sible while both phones are connected to 4G. We also
demonstrated that the phones can change network be-
tween 4G and Wi-Fi during streaming. In that case,
the phones will update each other’s addresses and the
streaming from the web-cam to the browser contin-
ues.

The address used by the browser, is a port on
localhost. Thus, from the browser’s point of view,
the web-cam seems to be on the same phone. How-
ever, Swirlwave keeps the current address to the peer
and routes the traffic to the correct smartphone. This
means the browser can continue to use the localhost-
address and can be kept unaware of network changes.
This demonstrates location transparency and that we
can stream from anywhere, without being connected
to Wi-Fi.

5.2 Performance

When evaluating the performance of Swirlwave, we
compared with two alternative configurations; one
where Tor is used without Swirlwave, and another us-
ing a plain Internet connection.

We used two smartphones during the experiments;
a Huawei P9 Lite, used as client and connected to cel-
lular data (4G), and a Samsung Galaxy Note 4, used
as server and connected to Wi-Fi. Experiments that
collected measurements that are compared, were car-
ried out within a short time-frame.

Orbot, which is the official version of the Tor
onion routing service on Android, was used as to test
communication with Tor without Swirlwave. Orbot
enables smartphones to be reached outside local area
networks, but has no mechanism for changing ad-
dresses when a smartphone changes location.

To enable direct Internet connection between
smartphones, an Internet subscription with a static,
public IP address was used in the experiments. For
this environment, a wireless router was manually con-
figured to forward from a specific port to one of the
smartphones. This means that the server smartphone
could be contacted directly from the Internet. The
limitation of this approach, compared to Swirlwave,
is that the server smartphone cannot be reached if
it leaves the manually configured Wi-Fi. Also, the
smartphone cannot have the role as server when con-
nected to cellular data.

5.2.1 Starting Onion Proxy

This experiment measures how long it takes from the
onion proxy is started to the onion service is regis-
tered and ready for use. The difference between start-
ing a new onion service and reusing an existing one is
compared.

Table 3: Onion proxy start-up times.

Median 90th

Percentile
Num.
Trials

New onion
service

18.080s 43.941s 10

Reused onion
service

8.401s 8.855s 10

The implementation of Swirlwave reuses an al-
ready registered onion service when reconnecting to
a previously seen network location. As seen in Table
3, there is a clear difference in onion proxy start-up
times between registering a new onion service and
reconnecting to one that is already registered (and
the registration process is avoided). Registering a
new onion service took about twice as long. Also,
the start-up time varied much more when registering
new onion services than for reusing. When compar-
ing the 90th percentiles, the start-up time for register-
ing a new onion service was approximately five times
slower than reusing.
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5.2.2 Establishing Connections

We here measure how long it takes to establish a con-
nection between client and server in the three different
cases:

• Connecting via Swirlwave. This includes the time
it takes to authenticate the client.

• Both client and server use Orbot.

• Connecting directly over the Internet.

Table 4: Times for establishing connection.

Median 95th

Percentile
Num.
Trials

Connecting via
Swirlwave

1.829s 3.557s 100

Onion service
w/Orbot

1.384s 2.931s 100

Directly over
Internet

1.827s 3.597s 100

According to our experiments, the time it took
to establish connections is nearly identical for con-
necting via Swirlwave and directly via Internet. This
is a bit surprising, since the connections in case of
Swirlwave must be made through the Tor overlay net-
work. Additionally, the Swirlwave connection times
include authenticating the client. Connecting via Tor
using Orbot, which does not include any authentica-
tion, is faster than connecting directly via a plain In-
ternet connection. This may suggest that the differ-
ence between connecting via Tor and via the Internet
roughly equals the time Swirlwave uses to authenti-
cate the client.

5.2.3 Throughput

Throughput is the rate of successful data delivery over
a communication channel (Forouzan, 2013). Given
that a connection is established and the client authen-
ticated, we measure how long it takes from the client
starts reading the first byte until 12.5MB has been
read. The rate is subsequently calculated.

Table 5: Throughput.

Median 95th

Percentile
Num.
Trials

Swirlwave 2.510Mbps 1.380Mbps 74
Onion service
w/Orbot

1.950Mbps 0.910Mbps 100

Directly over
Internet

18.58Mbps 11.95Mbps 100

The throughput was lower when routing via Tor
than directly over the Internet. This was true for both

Swirlwave and Orbot. The throughput for Swirlwave
was in this case higher than Orbot. Transmitting di-
rectly over the Internet without Tor was 7.4 times
faster than Swirlwave, and 9.5 times faster than Or-
bot.

5.2.4 Transmission Time

Transmission time is the time it takes from the first
bit till the last bit of a message is sent from a node.
Transmission time is depending on message size and
bandwidth (Forouzan, 2013), as shown in (1).

Transmission time = MessageSize / Bandwidth (1)

To estimate transmission time for our system, the me-
dian throughput is used in place of the bandwidth, and
the message size is set to 8 bits.

Table 6: Transmission times.

Transmission Time 1 Byte (8 bits)
Swirlwave 3.200×10−6s (3.200µs)
Onion Service
w/Orbot

4.103×10−6s (4.103µs)

Directly over
Internet

4.306×10−7s (0.4306µs)

The results show that transmission time for all
three alternatives are very low, with the Internet-
connection having the lowest result, followed by
Swirlwave and Orbot.

5.2.5 Latency

Network latency specifies how long it takes for a bit
of data to travel across the network from one node to
another (Forouzan, 2013). Latency depends on sev-
eral components, as shown in (2).

Latency = Propagation Time + Transmission Time +
Queuing Time + Processing Time (2)

We first measure round-trip time (RTT), which is the
time it takes from the client sends a byte until it re-
ceives a response byte from the server. This has the
advantage that start and end times can be measured at
the same smartphone. RTT is described in (3)

RTT = 2 × Latency + Processing Delay (3)

The extra processing delay represents the time from
the byte is read by the server until it sends a response
byte to the client.

We estimate latency based on the RTT measures,
using the simplified calculation in (4).

Latency = RTT / 2 (4)

Latencies were almost similar for Swirlwave and Or-
bot, at about three tenths of a second, while latency
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Table 7: Round-Trip Times.

Median 95th

Percentile
Num.
Trials

Swirlwave 0.637s 0.816s 100
Onion service
w/Orbot

0.639s 1.554s 100

Directly over
Internet

0.106s 1.039s 100

Table 8: Latency.

RTT median Latency
Swirlwave 0.637s 0.3185s
Onion service
w/Orbot

0.639s 0.3195s

Directly over
Internet

0.106s 0.053s

when transmitting directly over the Internet were ap-
proximately six times less.

From Table 6 we have that transmission time is
very low, and thus negligible when considering la-
tency. Latency in Table 8 therefore depend on prop-
agation time, and the time used for processing and
queuing in the nodes.

6 DISCUSSIONS

To establish connections from the Internet to hosts be-
hind NAT, a technique, known as NAT Traversal (Hu,
2005), is needed for circumventing the problems as-
sociated with address translations and private IP ad-
dresses.

Before choosing Tor as a basis for Swirlwave, we
considered other approaches to NAT traversal, includ-
ing Virtual Private Network (VPN) (Comer, 2014),
UDP hole punching (Hu, 2005) and SSH9. These al-
ternatives had several drawbacks that made them un-
suitable for Swirlwave. Setting up VPN servers re-
quires public IPs and an amount of manual work for
configuration and management. Also, for clients to
act as servents, they need reserved IP addresses or
some other mechanism for locating peers. UDP hole
punching only supports UDP communication, and
needs a server middlebox to establish peer-to-peer
communications, while SSH requires a server with a
public IP address.

Another choice we made, was using SMS as fall-
back protocol. Gossiping, hand-offs, and other tech-
niques (Tanenbaum and Steen, 2014) were consid-
ered, but they were all regarded more complicated,
less secure, less reliable, and they require the involve-
ment of more than two participants. We consider the

9https://www.ssh.com/ssh

SMS fallback protocol to have several advantages.
SMS is available on all smartphones, the phone num-
ber is a stable address, it works when only two peers
exist, and the protocol does not require extra hard-
ware, servers or software.

The functionality and performance of Swirlwave
has been tested in several experiments. We find that
Swirlwave handles peer-to-peer communication be-
tween smartphones well. Phones can act as both
client and servers, and Swirlwave enables continued
communication also when phones move between net-
works.

From the experiments, the most prominent down-
side with Swirlwave communication is the lower
throughput caused by the use of Tor. The extra round
trips and processing involved in authenticating the
client does not seem to affect the performance much.
Neither does the processing done by the Swirlwave
proxies. The experiments also show that establishing
a connection between peers takes time. It will there-
fore be beneficial to keep connections open, instead
of closing when a session is finished.

The use of IP here, refers to IPv4 (Postel et al.,
1981), which is by far the most widespread IP version
as of today. However, with the use of the more re-
cent IPv6 (Deering, 1998), each device will be given
an address that is public, and NAT will no longer be
needed. An addition to this protocol, called mobile
IPv6, is designed to let devices keep their address
even when changing networks (Perkins et al., 2011).
In this scenario, Swirlwave would not need Tor for
connectivity, but would rather build on IPv6. How-
ever, the adoption of IPv6 is still low in most coun-
tries. Per February 2018, it is estimated to about
12.8% in the U.K., 16.8% in Norway and 40.4% in
the U.S.10 Also, even with a full adoption of IPv6,
NAT may still be used for security reasons, since it
shields devices from direct access from the Internet.
We therefore believe that Swirlwave (or similar types
of middleware) will continue to be useful in the fu-
ture.

7 CONCLUSION

The goal of this work has been to design and imple-
ment an alternative to the traditional, cloud-centric
approach to smartphone communication. We have de-
scribed a novel approach to mobile friend-to-friend
communication in wide area networks, that allows di-
rect communication between devices that lack public

10https://www.akamai.com/uk/en/about/our-
thinking/state-of-the-internet-report/state-of-the-internet-
ipv6-adoption-visualization.jsp
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IP addresses, and often disconnect or change network
locations. This functionality is implemented as a mid-
dleware, called Swirlwave, on which applications can
be built.

The system is friend-to-friend based, and only de-
vices that are explicitly registered as friends can com-
municate directly as peers. This makes it possible to
define smaller overlay networks of trusted devices.

Swirlwave is based on the Tor Onion Service pro-
tocol, which provides onion addresses for participat-
ing devices. Swirlwave extends the Tor service by
providing authentication of connection requests and
location transparency by handling network changes
and updates of addresses.

Testing shows that Swirlwave handles peer-to-
peer communication between smartphones well. It
provides an interface that makes it easy for vari-
ous applications to access the communication ser-
vice. Swirlwave also supports incorporation of new
devices, which makes it easy to expand a network.
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