
Patterns in Textual Requirements Specification

David Šenkýř and Petr Kroha
Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00 Prague 6, Czech Republic

Keywords: Textual Requirements Specifications, Ambiguity, Inconsistency, Incompleteness, Glossary, Text Mining,
Grammatical Inspection.

Abstract: In this paper, we investigate methods of grammatical inspection to identify patterns in textual requirements
specification. Unfortunately, a text in natural language includes additionally many inaccuracies caused by
ambiguity, inconsistency, and incompleteness. Our contribution is that using our patterns, we are able to extract
the information from the text that is necessary to fix some of the problems mentioned above. We present our
implemented tool TEMOS that is able to detect some inaccuracies in a text and to generate fragments of the
UML class model from textual requirements specification. We use external on-line resources to complete the
textual information of requirements.

1 INTRODUCTION

Writing requirements specifications in natural lan-
guage is a common practice in big software houses.
The market research (Luisa et al., 2004) states that ne-
arly 80 % of all requirements specifications are writ-
ten in natural language. The advantage of using na-
tural language is that it can be interpreted both by the
customer and by the analyst.

This increases quality of requirements that plays
an important role in the whole development process,
because the mistakes in requirements have the most
expensive impacts (Landhäußer et al., 2014).

Formulation of requirements in natural language
is also necessary because of the contract with clients.
The contract is then the primary relevant source,
which can be assessed in the event of a legal case.

Disadvantages of textual requirements are am-
biguity, inconsistency, and incompleteness of the tex-
tual specification. Usually, writing requirements is
a cooperative work of several people who are often
distributed in various places. This is a source of in-
accuracies and misleading descriptions. Many words
may have more meanings (ambiguity), text can obtain
contradictions (inconsistency), and specifications of
some features can be omitted (incompleteness).

A computerized processing of requirements for-
mulated in natural language requires a collaboration
of engineers and experts coming from computational
linguistics. Nowadays, it is possible to choose from
a variety of natural language processing systems. In

our project, we used the system CoreNLP (Manning
et al., 2014) as a component.

The human IT analyst is typically a domain ex-
pert for software construction, but he or she is typi-
cally not focused on the business or organization kno-
wledge of the client. Therefore, his or her interpreta-
tion and understanding of textual requirements should
be confronted with the knowledge of semantics of the
text.

Computerized processing of natural language can
be supported by acquired semantic knowledge from
an appropriate corresponding ontology database. It
may be difficult to obtain the ontology related to the
client’s domain – for many sectors, such ontology is
not available. On the other hand, ontology databases
for common language are available, e.g., WordNET,
ConceptNet, DBPedia, Freebase, OpenCyc.

Our goal was to design and implement such a tool
that assists mapping parts of textual requirements spe-
cification to corresponding fragments of static UML
model with respect to possible ambiguity, inconsis-
tency, and incompleteness of the textual specification.

Our paper is structured as follows. In Section 2,
we discuss related works. We present the problems
of textual requirements specifications in Section 3.
Then we briefly explain the method of grammatical
inspection in Sections 4. In Section 5, we discuss
briefly the problems to be solved. Our contribution
is presented in Sections 5.1. Our implementation is
presented in Section 6, the case study is in Section 7.
In Section 8, we conclude.

Šenkýř, D. and Kroha, P.
Patterns in Textual Requirements Specification.
DOI: 10.5220/0006827301970204
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 197-204
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

197

2 RELATED WORK

There are many interesting papers proposing that re-
quirements engineering should be supported by tools
based on the linguistic approach.

In paper (Rolland and Proix, 1992), the authors
introduced a tool called OISCI. The mentioned tool
processes French natural language. The approach pre-
sented in the paper targets the creation of the characte-
rization of the parts of the sentence patterns that will
be thereafter matched. OISCI also uses a text gene-
ration technique from the conceptual specification to
natural language for the validation purposes.

In paper (Ambriola and Gervasi, 1997), a web-
based system called Circe is presented that primary
processes Italian natural language (but may be also
adapted for other languages). It consists of partial
tools. For our purposes, the most interesting tool is
the main one called Cico. Cico performs recogni-
tion of natural language sentences and prepares inputs
for other tools – graphical representation, metrication,
and analysis. The paper presents the idea that requi-
rements specification may be connected with a corre-
sponding glossary describing all the domain-specific
terms used in the requirements. The glossary also
handles synonyms of terms. Similarly to the previous
paper, Cico uses predefined patterns that are matched
against the sentences from requirements specification.

In papers (Kof, 2005) and (Kof, 2004), the NLP
approach is broken down into three groups. The first
one is related to lexical methods, the second one build
syntactical methods (part-of-speech tagging), and the
last one is represented by semantic methods, i.e., by
methods that interpret each sentence as a logical for-
mula or looking for predefined patterns.

Linguistic assistant for Domain Analysis (LIDA)
is a tool presented in the paper (Overmyer et al., 2001)
from 2001. According to previous tools, LIDA is con-
ceived as a supportive tool – it can recognize multi-
word phrases, retrieves base form of words (stemming
and lemmatization), presents frequency of words, etc.
– but it doesn’t contain algorithms for automatic re-
cognition of model elements. The decisions about
modeling are fully user-side, i.e., the user marks can-
didates for entities, attributes, and relations (inclusive
operations and roles).

In paper (Arellano et al., 2015), there is presented
tool TextReq based on The Natural Language Tool-
kit (NLTK). This toolkit is an open source platform
for natural language processing in Python. It is an al-
ternative to Stanford CoreNLP that is based on Java.
From the papers mentioned above, the concept pre-
sented in this paper is the closest one to our approach.

There are also papers about generating the dyna-

mic diagrams – e.g., Activity and Sequence Diagram
(Gulia and Choudhury, 2016). A nice survey of pa-
pers on this field is given in (Dawood and Sahraoui,
2017).

3 PROBLEMS OF TEXTUAL
REQUIREMENTS
SPECIFICATIONS

The process of textual requirements processing,
which is implemented in our tool TEMOS, is repre-
sented in Fig. 1. The schema also contains the
swim lanes that visualize which parts are computed
by our algorithms (TEMOS swim lanes), and which
part is provided by Standford Core NLP framework
(the middle swim lane). We recall that our tool accep-
ted any free text as the input.

In the first phase, the text is perceived as a plain se-
quence of characters. We have to identify some cases
that are not properly handled by Stanford Core NLP
system, e.g., ”his/her interpretation”.

3.1 Nature Language Processing using
Stanford CoreNLP

The text processing part of our tool is based on Stan-
ford CoreNLP (Manning et al., 2014) and on its an-
notators. Annotators are procedures solving the dif-
ferent parts of the linguistic processing and genera-
ting notations that describe the results. The tokeni-
zation annotator parses the input text and provides
lexical analysis. Tokens are used to build sentences
by annotator Words to Sentence Annotator. The an-
notator POS Tagger Annotator provides the part of
speech (POS) annotation (tagging) of every token –
such as noun, verb, adjective, etc. Interpunction and
other special characters are annotated with the same
character that their represent. The Morpha Annotator
generates base forms (lemmas) for every token.

From our point of view, the most interesting anno-
tator is called Dependency Parse Annotator. It analy-
zes the grammatical structure of a sentence and looks
for relationships between words (nominal subject(s)
of verb, dependency object(s) of verb, etc.). Fig. 2
presents the output of the dependencies annotation.
The dependency direction is indicated by an arrow.

Every sentence has one or more root words. These
are the words that have no input dependencies. In Fig.
2, there is one root word – bedroom. We can see that
the word bedroom is connected by a compound de-
pendency to the word hotel. It may indicate that a
hotel bedroom is a multi-word term, similarly like a

ICSOFT 2018 - 13th International Conference on Software Technologies

198

class Text Document Analysis

text
preprocessing

tokenization

sentence
segmentation

part of speech
tagging

lemmatization

dependencies
recognition

coreferencies
recognition

sentence
patterns

recognition

relations
recognition

classes and
attributes
recognition

TEMOS Stanford Core NLP
 TEMOS
(& on-line resources)

glossary
construction

questions
generating

raw text
document

Figure 1: The Text Document Analysis.

The rentable space is either a hotel bedroom or a meeting room .

DT JJ NN VBZ CC DT NN NN CC DT NN NN .
cc compoundcompoundamod

det detdet
cc:preconj conj:or
cop punct

nsubj

Page 1 of 1

03.02.2017file:///F:/DP,%20prof.%20Kroha/Diplomová%20práce/untitled.svg

Figure 2: The Result of Dependency Parse Annotator – Enhanced++ Dependencies.

meeting room. The last annotator from Stanford Co-
reNLP that we use is Coref Annotator. Its purpose is
to identify to which words pronouns refer – as shown
in Fig. 3.

David likes blue cars . He is also a fan of busses .

Mention Mention
coref

Figure 3: The Result of Coref Annotator.

4 GRAMMATICAL INSPECTION

The idea of mapping parts of the text document to
UML class diagram components is based on the an-
notations. We use grammatical inspection – prima-
rily based on the dependencies recognition and part
of speech tagging – to identify grammatical roles of
words in textual requirements, i.e., object, subject,
etc. Similarly, as a user can highlight individual

words in the text editor, he/she can also assign an-
notations to individual words or group of words using
the editor included in TEMOS.

TEMOS introduces these annotation types:

• Class Annotation – a basic annotation that can ex-
ist separately.

• Attribute Annotation – the annotation that is asso-
ciated with the owner of the class annotation type.

• Relation Annotation – the annotation that medi-
ates a link between two and more class anno-
tations. Therefore, relation annotation contains
collections of source class annotations and target
class annotations.

Patterns in Textual Requirements Specification

199

5 PROBLEMS TO BE SOLVED

Our approach opens a number of new problems that
we discuss in this section.

5.1 Problem of Suitable Patterns

According to (Kof, 2004), our approach of classes
and relations recognition belongs to semantic met-
hods. Similarly to paper (Rolland and Proix, 1992)
presented in Section 2, we adapt the pattern approach.

The pattern-based recognition is based on the idea
that the grammatical role of a word in a sentence cor-
responds with the role of the entity assigned to the
word that the entity plays in the model. The recogni-
tion process iterate through root words. With regard
to the part of speech tag of the current root word, it is
then matched against defined patterns to recognize a
class, an attribute, or a relation. We use the following
notation for the graphic representation of patterns:

• components with a gray background or fore-
ground symbolize unrecognized parts of the pat-
tern

• components with a coloured background or fore-
ground symbolize recognized parts of the pattern,

• the notation 0..* above the word connection link
means, like in the E-R schema, that a target word
with this connection does not have to exists or
such words may exist 1 or more at the same time,

• similarly, the notation 1..* allows more than 1 tar-
get word at the same time, but it also requires at
least 1 such word.

5.1.1 Class/Attribute Sub-Pattern

The most of the following patterns contain this
class/attribute sub-pattern. If there is a pattern indica-
ting that some word may match the class annotation
or attribute annotation, this sub-pattern will be used
to find the expanding words of the base word to find
the full expression.

NOUN ROOT

NN NN
compound (0..*)

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat%20(1).svg

Figure 4: The Class/Attribute Sub-Pattern.

On the ground floor, there is a living room.

IN DT NN ,NN EX VBZ DT NN NN .
expl compoundcompound

punct det
nmod:on

det
nsubj

punct
case

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat%20(4).svg

Figure 5: The Class/Attribute Sub-Pattern Example Mat-
ching.

5.1.2 Class-Specialization Pattern

The class–specialization pattern is defined by these
rules:

1. The root token must be a noun. This root token
will be the class annotation (C1).

2. There must exist a verb (V) as a child of depen-
dency of type copula (briefly cop). This verb must
be ”to be” verb.

3. There must exist a noun as a child of dependency
of type nominal subject (briefly nsubj). This noun
will be the class annotation (C2).

4. If there exist any nouns as children of dependency
of type conjunct (briefly conj), they will be the
class annotations (C3Cn).

5. The relation annotation is created with the verb V
as a source token and C1 as a source class annota-
tion and C3Cn as target class annotations.

Let’s take a look at Fig. 2 again. The word bedroom
as a root token meets this pattern. Therefore, hotel
bedroom and meeting room are the specialization of
space.

The matching of this pattern (Fig. 6) against Fig.
2 is illustrated in Fig. 7.

NOUN NOUN "BE" VERB NOUN ROOT NOUN NOUN

NN NN VB NN NN NN NN
compound (0..*)compound (0..*)compound (0..*)

conj:or (0..*)
cop

nsubj

Figure 6: The Class Specialization Pattern.

5.1.3 Attribute Pattern #1

The goal of the attribute patterns is to identify attribu-
tes of classes and relations from textual requirements.
If the root token is identified as a verb, then there are
the following possibilities:

1. The root token must be ”to have” verb, or ”to
identify” verb, or ”to contain” verb.

2. There must exist a noun as a child of dependency
of type nominal subject (briefly nsubj). This noun
will be the class annotation (C1).

3. There must exist a noun as a child of dependency
of type dependency object (briefly dobj). This
noun will be the attribute annotation (A1).

4. If there exist any more nouns as children of de-
pendency of type dependency object, they will be
also marked by the attribute annotations (A2An).

The matching of ”to have” version of this pattern
(Fig. 8) is illustrated in Fig. 9.

ICSOFT 2018 - 13th International Conference on Software Technologies

200

The rentable space is either a hotel bedroom or a meeting room.

DT JJ NN VBZ CC DT NN NN CC DT NN NN .
cc compoundcompoundamond

det detdet
cc:preconj conj:or
cop punct

nsubj

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat%20(6).svg

Figure 7: The Class Specialization Pattern Matching Example.

NOUN NOUN ROOT ("HAVE" VERB) NOUN NOUN

NN NN VB NN NN
compound (0..*)compound (0..*) nsubj

dobj (0..*)

Figure 8: The Attribute Pattern #1.

5.1.4 Attribute Pattern #2

The following type of attribute pattern is identified if
there is a noun that is not associated with any annota-
tion and that meets the following conditions:

1. The token must be a noun. This noun will be the
attribute annotation (A1).

2. There must exist a noun as a child of dependency
of type nominal modifier of (briefly nmod:of).
This noun will have the class annotation (C1).

3. If there exist any nouns as children of dependency
of type conjunction by and (briefly conj:and),
they will also have the attribute annotations
(A2An).

The matching of this pattern (Fig. 11) is illustrated in
Fig. 10.

5.1.5 General Relation Pattern

If no one of the above patterns can be matched, then
the general relation pattern is applied. Its structure
(nominal subject(s)—verb—dependency object(s)) is
shown in Fig. 12.

5.1.6 Adverbial Clause Modifier Pattern

The previous pattern can be extended in the way of
adverbial clause modifier. For example, in the sen-
tence ”Each bank has its own central computer to
maintain its own accounts and process transactions
against them.”, the general relation pattern extracts
information saying that the bank has the central com-
puter, and the adverbial clause modifier pattern also
identifies the purpose of this computer – maintaining
accounts and processing transactions.

5.2 Problem of Glossary

The significant part of the textual requirements speci-
fication analysis is building a glossary of terms. Every
class candidate is automatically introduced as a term
of the glossary. Using the on-line ontology database

ConceptNet1, we present synonyms between terms
and existing classes. The on-line English dictionary
Wordnik2 is used to provide a default definition of the
glossary term.

5.3 Problems of Ambiguity,
Inconsistency, and Incompleteness

The problem of ambiguity is related to our glossary -
see above. Primary, searching for synonyms can iden-
tify the same entity that is presented under different
labels in the text. Secondary, providing a default defi-
nition of every glossary term and asking for the user’s
approval can lead to a better specification of ambigu-
ous entities via iterations.

The problem of inconsistency means that requi-
rements specification can obtain some contradictions.
Usually, it is not possible to reveal it by using only
tools of text processing. In our previous work (Kroha
et al., 2009), we used ontology modeling and descrip-
tion logic. However, this topic is very complex, and it
is out of the scope of this paper.

The problem of incompleteness means that docu-
ments contain no proper or not complete description
of entities. Similarly, an introduced entity which is
not further used indicates missing information. At the
very moment, our implemented tool uses two features
to check incompleteness. We use transitivity of Eng-
lish verbs for checking incompleteness of the textual
requirements and properties of the generated model
entities to check the incompleteness of the model.

Transitivity of English verbs – relations are chec-
ked in the way of correct usage of the verb. Eng-
lish verbs can take 0, 1, or 2 objects, depending on
the verb. Verbs without objects are called intransi-
tive, and the other ones are called transitive. Using
the dependencies recognition, we check if the verb
has any objects. If no object is found, we check the
verb against the list of intransitive verbs. On the con-
trary, the standalone sentence ”Administrator needs
to maintain.” contains transitive verb need, and the
information is missing about what needs to be main-
tained. Therefore, this sentence is suspicious and TE-
MOS generates warning for the user.

1http://www.conceptnet.io
2https://www.wordnik.com

Patterns in Textual Requirements Specification

201

The rentable space always has a specified rent cost and area (measured in square meters).

DT JJ NN RB VBZ DT VBN NN NN CC NN (VBN IN JJ NNS)

.
cccompoundadvmod amondamond

punct
dep

conj:and casensubj amonddet
det punct

dobj
dobj

punct

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat.svg

Figure 9: The Attribute Pattern #1 Matching Example.

We would like to record a serial number and a display size of each television.

PRP MD VB TO VB DT JJ NN CC DT NN NN IN DT NN .
mark ccaux compoundamod det

xcompnsubj det det case
dobjnsubj:xsubj conj:and

nmod:of
dobj

punct

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat.svg

Figure 10: The Attribute Pattern #2 Matching Example.

NOUN ROOT NOUN NOUN NOUN NOUN

NN NN NN NN NN NN
compound (0..*) compound (0..*) compound (0..*)

nmod:of

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat.svg

Figure 11: The Attribute Pattern #2.

NOUN NOUN VERB NOUN NOUN

NN NN VB NN NN
nsubj (1..*)compound (0..*) compound (0..*)

dobj (1..*)

Page 1 of 1

17.12.2017file:///C:/Users/David/Downloads/brat%20(1).svg

Figure 12: The General Relation Pattern.

Checking the model – we try to avoid the incom-
pleteness by checking if a class has at least one at-
tribute, and if it is in at least one relation to another
class. We generate a warning, if it is not the case.
This check is part of the model validation offered by
TEMOS.

We use the detected problems as a source for ge-
nerating warnings and questions for the user (Kroha,
2000). The user’s answer will change the textual
requirements specification, and the process makes a
new iteration.

6 IMPLEMENTATION

Based on our approach, we designed and implemen-
ted a prototype of a software tool TEMOS. It is an
acronym formed from Textual Modelling System. We
would like to introduce a full-featured tool, therefore,
in addition to the possibility of highlight parts of the
textual requirements and their mapping to the UML
fragments by the user, TEMOS will provide automa-
tic text processing and automatic fragments mapping.
Due to domain-specific requirements, TEMOS hand-
les terms in an editable glossary. Based on the pro-
cessed text, TEMOS generates the found models in
various formats that can be used in the next step of
processing (checking the model validity, generation
of code fragments).

TEMOS was designed and implemented as client-
side multithreading application. As a component, it

includes Stanford CoreNLP framework, and therefore
the primary functionality is available without having
the Internet connection. If an Internet connection is
available, TEMOS can use the on-line resources men-
tioned below. The disadvantage of using free on-line
resources may be their limitation on the number of re-
quests. TEMOS-architecture is based on the Model-
View-Controller (MVC) pattern that corresponds to
the client-side JavaFX applications architecture.

7 A CASE STUDY

Building models based on the textual requirement
specification is a creative activity. Textual require-
ments are written by experienced analysts in coopera-
tion with stakeholders using a specific simple structu-
red language in form of well-formed sentences. Dif-
ferent analysts can create different models from the
same requirements based on their experience. There-
fore, testing the quality of generated models by our
TEMOS tools and testing models, in general, is not an
easy task and may be – from a certain point of view
– subjective. In any case, it is out of the scope of this
short paper.

We prepared an example with the following struc-
ture. First, there are original requirements with high-
lighted parts that were recognized by patterns menti-
oned in square brackets. These are followed by the
generated model by TEMOS in the form of the UML
class diagram. This diagram was acquired using En-
terprise Architect after importing the model generated
by TEMOS in the XMI format. The example is also
supplemented with a brief comment on the quality of
the generated model.

The mentioned patterns are indexed by this table.

ICSOFT 2018 - 13th International Conference on Software Technologies

202

1 general relation pattern
2 class/attribute sub-pattern
3 attribute pattern #1
4 attribute pattern #2
5 class-specialization pattern

7.1 Hotel Booking System

This example was created by us, and it mostly con-
tains straightforward definitions (the structure of the
sentence is in the format: subject–verb–object(s))
which are, of course, the best for automated proces-
sing.

7.1.1 Original Requirements

1. We would like to create a hotel booking system.
[/0]

2. Our business group owns many hotels. [1, 2]

3. Every hotel offers some rentable spaces. [1]

4. The rentable space always has a specified rent
cost and area (measured in square meters). [2,
3]

5. The rentable space is either a hotel bedroom or a
conference room. [2, 5]

6. The hotel bedroom has a unique room number
and a number of beds. [3]

7. The hotel bedroom may contain a television. [1,
2]

8. We would like to record a serial number and a
display size of each television. [2, 4]

9. Every hotel employs at least one receptionist. [1]

10. A receptionist takes care of reservations from
customers. [1]

11. Every booking has a customer and a selected ren-
table space. [1]

12. The customer is identified by name, surname,
and address. [3]

13. The reservation contains a start date and an end
date. [2, 3]

14. The booking also has a unique identifier. [3]

15. Every conference room has a name and a maxi-
mum capacity. [2, 3]

16. The meeting room can contain a projection
screen. [2, 3]

7.1.2 The Generated Model

The generated model is in Fig. 13. The appearance
of this class diagram corresponds to the status after
accepting class unification tips (booking=reservation
and conference room=meeting room).

7.1.3 Discussion

This example shows the recognition of all three ty-
pes of annotations (the class annotation, the relation
annotation, and the attribute annotation), and it also
shows the case of specialization between the class
space and subclasses hotel bedroom and conference
room.

This result is already very close to the real proces-
sing by the analyst. A human analyst would probably
not designate the name as a separate class – TEMOS
did not consider the name to be an attribute because
it is a shared information between two classes. The
second attribute of the class hotel bedroom should be
labeled as number of beds with respect to the 6th sen-
tence – unfortunately, the current version of Stanford
CoreNLP does not generate the necessary link here.

8 CONCLUSIONS

We designed and implemented the tool TEMOS that
is able to handle the requirements for the software sy-
stem written in plain text. Based on the tests from the
Section 7, TEMOS can be used for generating drafts
of UML class models. These models can be further
modified or may be exported for further processing
(XMI and ECORE formats) or may be visualized di-
rectly (DOT format).

Except of the suitable patterns, our contribution is
also in using on-line resources to support resolving
ambiguity and incompleteness.

Due to the high computational complexity (prima-
rily due to Stanford CoreNLP analysis), the client-
server architecture might be interesting. This archi-
tecture could also be used to collect data for the im-
provement of the analysis process.

Our further research is oriented on relation bet-
ween syntactic ambiguity, i.e., the kind of ambiguity
that can be resolved by means of computational lin-
guistics (e.g., co-occurring of words, discussing con-
tents of the glossary, etc.) with semantic ambiguity,
i.e., the other kind of ambiguity that can be resolved
only by means of roles of entities in the corresponding
domain and problem models.

Patterns in Textual Requirements Specification

203

class Class Diagram of Hotel Booking System

business group

conference room

- m axim um capaci ty
- projection screen

customer

- surnam e
- address

hotel

hotel bedroom

- room num ber
- bed

name

receptionist

reservation

- start date
- end date
- identifie r

space

- rent cost
- area

telev ision

- seria l num ber
- display size

em ploy

have

take care of

have

have

offerown

identi fy

conta in

Figure 13: The Generated Class Diagram of Hotel Booking System.

REFERENCES

Ambriola, V. and Gervasi, V. (1997). Processing natural
language requirements. In Proceedings of the 12th In-
ternational Conference on Automated Software Engi-
neering (Formerly: KBSE), ASE ’97, pages 36–, Wa-
shington, DC, USA. IEEE Computer Society.

Arellano, A., Zontek-Carney, E., and Austin, M. (2015).
Frameworks for natural language processing of textual
requirements. 8:230–240.

Dawood, O. and Sahraoui, A. (2017). From requirements
engineering to uml using natural language processing
survey study. European Journal of Engineering Rese-
arch and Science, 2:44–50.

Gulia, S. and Choudhury, T. (2016). An efficient automa-
ted design to generate uml diagram from natural lan-
guage specifications. In 2016 6th International Confe-
rence: Cloud System and Big Data Engineering (Con-
fluence), pages 641–648.

Kof, L. (2004). An application of natural language proces-
sing to domain modelling: Two case studies. Inter-
national Journal on Computer Systems Science Engi-
neering, 20:37–52.

Kof, L. (2005). Natural language processing: Mature
enough for requirements documents analysis? In
Natural Language Processing and Information Sys-
tems, pages 91–102, Berlin, Heidelberg. Springer Ber-
lin Heidelberg.

Kroha, P. (2000). Preprocessing of requirements specifica-
tion. In Database and Expert Systems Applications,

pages 675–684, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Kroha, P., Janetzko, R., and Labra, J. E. (2009). Ontologies
in checking for inconsistency of requirements specifi-
cation. Third International Conference on Advances
in Semantic Processing, pages 32–37.

Landhäußer, M., Körner, S. J., and Tichy, W. F. (2014).
From requirements to uml models and back: How au-
tomatic processing of text can support requirements
engineering. Software Quality Journal, 22(1):121–
149.

Luisa, M., Mariangela, F., and Pierluigi, N. I. (2004). Mar-
ket research for requirements analysis using linguistic
tools. Requirements Engineering, 9(1):40–56.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Be-
thard, S. J., and McClosky, D. (2014). The Stanford
CoreNLP natural language processing toolkit. In As-
sociation for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

Overmyer, S. P., Lavoie, B., and Rambow, O. (2001). Con-
ceptual modeling through linguistic analysis using
lida. In Proceedings of the 23rd International Confe-
rence on Software Engineering, ICSE ’01, pages 401–
410, Washington, DC, USA. IEEE Computer Society.

Rolland, C. and Proix, C. (1992). A natural language appro-
ach for requirements engineering. In Advanced Infor-
mation Systems Engineering, pages 257–277, Berlin,
Heidelberg. Springer Berlin Heidelberg.

ICSOFT 2018 - 13th International Conference on Software Technologies

204

