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Abstract: Causality is universal relations among phenomena (states, facts, elements, functions) in the system. 

Verification of causality in the knowledge frame system based on principles of the topological functioning 

modelling can help in discovering inconsistencies such as incompleteness, ambiguity or contradictions in 

knowledge on system’s functioning. The method for such verification is presented in this paper. It is based 

on topological and functioning properties of the topological functioning model including the definition of 

continuous mapping between topological spaces. The method helps in discovering inconsistent combinations 

of cause-and-effect relations or a lack of them. Functional characteristics of the system involved in these 

relations are marked as doubtful. The results of verification require additional investigation by a software 

developer. A use of the proposed method can lead to more thorough system analysis before development of 

the solution. 

1 INTRODUCTION 

Causality is an important concept in conditional logic, 

in artificial intelligence, e. g. for planning tasks 

(Wobcke, 1994; Giunchiglia et al., 2004), and in the 

framework of action systems (Giordano and Schwind, 

2004). Causality is universal, there is no any system 

that has no causal dependencies among its 

constituents (Osis and Asnina, 2011; Nazaruka, 

2017). Causality is represented as a set of causal 

dependencies or causal implications. 

The causal implication can exist between two 

types of assertions (Giordano and Schwind, 2004): 

(1) an action can cause a fact to become true, or (2) a 

fact can cause another fact. In the first case, the causal 

implication relates also to a state transition, so the 

caused fact “belongs” to the “next state”. In the 

second case, the causal implication does not touch 

any state, the modifications occur in the same state.  

Verification of causal dependencies can help in 

discovering functional, behavioural and structural 

inconsistencies in models of domains of different 

types, e. g. business, mechanical, biological etc. 

Models can be informal, semi-formal and formal. But 

all of them can contain inconsistencies with the 

modelled domain. Formal models allow discovering 

these inconsistencies. For domain modelling we 

suggest using advantages provided by the 

Topological Functioning Model – formal, but “light-

weight” model that can be transformed to most-used 

UML (Unified Modelling Language) diagrams 

(Donins et al., 2011, 2012; Donins, 2012b).  

Causal dependencies in the TFM are called cause-

and-effect relations or topological relations, since 

they represent topology on a set of system’s 

functional characteristics (Osis and Asnina, 2011). 

Cause-and-effect relations transformed into elements 

of the design model are control flows, data flows and 

transitions among states (Osis and Asnina, 2008; 

Donins et al., 2012; Asnina and Ovchinnikova, 2015).  

Cause-and-effect relations and characteristics of 

the validity of the TFM – the central model in the 

topological functioning modelling – can be used for 

verification of BPMN diagrams (Nazaruka et al., 

2016). The approach for validation of causality in 

knowledge specified in the TFM using execution 

model simulation has been discussed in 

(Ovchinnikova and Nazaruka, 2016).  

The construction of the TFM is based on 

procedural and declarative knowledge. The more 

suitable way for storing knowledge is a knowledge 

base. The base that incorporate TFM principles 

(Nazaruks and Osis, 2017) contains generable and 

manually added knowledge. Verification of 

knowledge includes generation and validation of the 

topological space and the corresponding TFM that 
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allow discovering incompleteness and contradictions 

in the added knowledge.  

The goal of the current research is to develop 

method for verification of the topology in the 

knowledge kept in the frame system (Section 3.2) 

using validity characteristics of the TFM.  

The paper organization is the following. Section 2 

gives summary of related work. Section 3 presents the 

necessary background of the TFM and the frame 

system based on its constructs and characteristics. 

Section 4 gives a description of the proposed method, 

which is illustrated in Section 5. Section 6 

summarizes the main results and concludes the paper. 

2 RELATED WORK 

The next step after creation of the knowledge base is 

its verification and validation (Santos and Dinh, 

2008). Verification is dedicated to find anomality in 

gathered knowledge. Rule-based knowledge bases 

can contain such anomality (or inconsistencies) as 

redundancy, subsuming rules, contradictory rules, 

inconsistent rules, incompleteness, missing rules, 

recursive rules, and unused attributes and values 

(Sarkar and Ramaswamy, 2000; Mach-Król and 

Michalik, 2015). 

Fuzzy inference rules that are developed by a 

group of domain experts can contain all the 

mentioned inconsistencies (Skorupski, 2015). The 

author suggests an approach for their verification by 

using the expert-group evaluation and then assessing 

of the obtained results. The idea is that semantical 

analysis should be done by the experts themselves, 

the system only evaluates their decision and generates 

more certain rules automatically. Then the generated 

rules are compared with the rules provided by the 

experts. The idea that is proposed in our research is 

similar in some degree, i. e. when we compare the 

generated knowledge with the knowledge obtained 

from domain experts or documents.  

Another way is a usage of Petri Nets, for example, 

for verification of frame-rule hybrid expert systems 

(Tadj and Laroussi, 2006). Here, Petri Nets are used 

as a reference model created for analysis of the 

markings graphs. The list of inconsistencies can be 

extended with hypotactic rules, conflict rule chains, 

dead ends and unreachable goals (Wu et al., 2005). 

For discovering them, Coloured Petri Nets can be 

applied (Wu et al., 2005). Verification can be based 

also on principles of data integrity, e. g. the 

consistency check can be done using SQL query 

method (Liu and Jiang, 2010). 

Another knowledge verification method is based 

on using ontologies. For example, ontologies can be 

used to verify computer-based knowledge sharing 

between departments of a manufacturer enterprise 

(Anjum et al., 2013) or for verification of planned and 

real plans (Zhong et al., 2015).  

Anjum et al. (2013) note that the necessary 

functionality of the enterprise system is to deal with 

several types of incompatibilities and heterogeneities 

between sets of knowledge located in independently 

developed computer-based knowledge management 

systems. Authors’ idea is to match two domain 

ontologies and in such a way to verify the knowledge. 

As the authors mention, there are foundational and 

domain ontologies. Foundational ontologies such as 

WordNet are used as a common vocabulary for 

knowledge bases, while domain ontology have 

heterogeneous nature and must be semantically and 

syntactically verified against one common 

vocabulary. The proposed approach deals with 

parent-child relationships in domain ontologies, but it 

requires further elaboration for more complex 

ontological structures. However, the presented idea of 

semantical and syntactical verification as well as 

searching for similarities and differences is close to 

the idea presented in this paper.  

Description logic can be used for keeping 

knowledge of model variants and their dependencies 

as well as for verifying inconsistencies in those 

knowledge (Asadi et al., 2016).  

For verification of very large complex knowledge 

bases, a decomposition to the smaller information-

related based can be used (Sarkar and Ramaswamy, 

2000). In this approach, first, the decomposed parts 

are verified using the “directed hypergraph 

approach”, and then dependencies among those parts 

are analysed based on “ordered polytree structures”. 

Summarizing, verification of knowledge is a 

comparison of actual and gathered, prescribed, or 

planned knowledge. Inconsistencies can be found in 

the gathered knowledge and then they are verified by 

known-to-be-sound ontologies, sets of rules or 

experts opinions. Inconsistencies can be found in 

actual knowledges and then they can be either 

compared with some common sound base or 

modelled and verified by model checking techniques.  

In our method, we apply verification by models, 

i. e. verifying topological and functioning properties 

of the TFM. 
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3 BACKGROUND 

3.1 The Topological Functioning Model 
in Brief 

The TFM is a formal model which describes the 

functionality of a system. Its fundamentals are 

published in (Osis, 1969; Osis and Asnina, 2011). The 

TFM can be presented in a form of a topological space 

(𝑋, Θ), where 𝑋 is a finite set of functional features 

(characteristics) of the system, and Θ is a topology set 

on 𝑋.  

A functional feature is “a characteristic of the 

system (in its general sense) that is designed [for] and 

necessary to achieve some system’s goal” (Osis and 

Asnina, 2011). It can be specified by a unique tuple 

(1), where: 

 

〈𝐴, 𝑹, 𝑶, 𝑷𝒓𝑪𝒐𝒏𝒅, 𝑷𝒐𝒔𝒕𝑪𝒐𝒏𝒅, 𝑷𝒓, 𝑬𝒙, 𝑆〉 (1) 

 

 𝐴 is an action linked with object 𝑶, 

 𝑹 is a result of the action 𝐴, 

 𝑶 is an object (objects) that gets the result of 

the action or an object (objects) that is used 

in this action, 

 𝑷𝒓𝑪𝒐𝒏𝒅 is a set of preconditions or atomic 

business rules, 

 𝑷𝒐𝒔𝒕𝑪𝒐𝒏𝒅 is a set of postconditions or 

atomic business rules, 

 𝑷𝒓 is a set of responsible entities (systems 

or subsystems) that provide or suggest 

action 𝐴 with a set of certain objects 𝑶, 

 𝑬𝒙 is a set of responsible entities (systems 

or subsystems) that enact a concrete action 

𝐴 (Osis and Asnina, 2011; Nazaruka et al., 

2016). 

 𝑆 is a label that indicates belonging of the 

functional feature to the system for which 

the TFM will be composed, namely, inner if 

belongs and external if does not. 

The topology Θ is presented by cause-and-effect 

relations. A cause-and-effect relation is a causal 

implication (causal dependency) between two 

functional features. It is a binary relationship, where 

a cause triggers an effect without any intermediate 

functional feature (Osis, Asnina and Grave, 2008; 

Asnina and Osis, 2011). There are several 

specifications of cause-and-effect relations (Osis and 

Slihte, 2010; Donins, 2012a; Asnina and 

Ovchinnikova, 2015), but the common is that they are 

focused on assessment of the completeness of 

incoming and outgoing conditions, as well as on 

logical correctness.  

A cause-and-effect relation is a topological 

relation 𝑇𝑖𝑑  (2) between a cause functional feature 𝑋𝑐 

and an effect functional feature 𝑋𝑒, where at least one 

condition of 𝐿𝑜𝑢𝑡 that is a set of  𝑋𝑐 postconditions is 

equal to the at least one condition of  𝐿𝑖𝑛 that is 𝑋𝑒 

preconditions (Donins, 2012a).  

 

𝑇𝑖𝑑 = 〈𝑖𝑑, 𝑋𝑐 , 𝑋𝑒 , 𝐿𝑜𝑢𝑡 , 𝐿𝑖𝑛〉 (2) 

 

The TFM is valid when it satisfies topological and 

functioning properties (Osis and Asnina, 2011). The 

topological properties are: connectedness, 

neighbourhood, closure and continuous mapping. 

The functioning properties are: cause-and-effect 

relations, cycle structure, inputs and outputs.  

Let us consider the basics of closure and 

continuous mapping (Osis and Asnina, 2011), since 

they are needed for understanding of the presented 

verification.  

The closure is an operation of separation of the 

TFM of the system from its topological space. The 

topological space contains functional characteristics 

(set 𝒁 = 𝑵 ∪ 𝑴, where 𝑵 is a set of inner functional 

features of the system, and 𝑴 is a set of external 

functional features to the system) and causal 

dependencies of the system itself and other systems 

that interact with it. The aim of the closure is to get 

boundaries of the system, or the set 𝑿 that contains 

the union of all neighbourhoods of functional features 

in the set 𝑵. As a result, those functional features that 

have no direct interaction with the system’s 

functional features are cut off as well as cause-and-

effect relations that have linked them with functional 

features that have been included into the TFM. 

Sometimes, this can lead to discovering 

inconsistencies in causal dependencies, e.g., 

determination of unwanted independent sub-systems, 

isolated vertices, and broken functional cycles. 

The continuous mapping is a relation between 

topological spaces that states that “direction of 

topological model arcs must be kept as in a refined as 

in a simplified model” (Osis and Asnina, 2011, p. 29). 

The continuous mapping allows comparing 

topological spaces for resemblance and differences.  

3.2 The Scheme of the Frame System  

The frame system suggested here is based on (but not 

limited to) the elements necessary to generate the 

TFM without definition of logical operations among 

cause-and-effect relations. The system represents 

domain ontology but does not specify scripts or 

daemons for frame instance generation.  

 

Verification of Causality in the Frame System based on the Topological Functioning Modelling

515



 

Figure 1: The schema of the frame system (Nazaruks, 2017). 

The following frame classes are presented (Figure 1): 

 Classes with manually added knowledge: 

FunctionalFeature, and Property; 

 Classes with partial generation of knowledge: 

Object, and TopologicalCycle; 

 Classes with complete generation of 

knowledge: CauseAndEffectRelation, and 

TopologicalOperation.  

 

The frame instances purpose is the following 

(Nazaruks and Osis, 2017): 

 CauseAndEffectRelation — for knowledge on 

cause-and-effect relations generated from 

instances of FunctionalFeature considering that 

the cause is predefined by using a precondition, 

while the effect is specified by using a 

postcondition; 

 FunctionalFeature — for facts about the 

functional features; 

 Object — for objects that participate in the 

execution of the functional feature; 

 Property — for the domain object; 

 TopologicalOperation — for knowledge about 

the operations that will implement actions of 

the functional features and are generated from 

FunctionalFeature data; 

 TopologicalCycle — for facts about 

participation of functional features in cycles of 

functionality. 

 

At the present, frame instances are filled in with 

data manually. These frames are core elements for 

further transformation (or it is better to say, 

generation) of analysis or design models depending 

from the knowledge on the software domain. 

4 METHOD OF VERIFICATION 

The idea of retrieving the topology by analysis of pre- 

and post- conditions has been proposed in 

Topological UML. There it has been applied for 

identification of logical relations among cause-and-

effect relations (Donins, 2012a). This approach also 

requires human participation, since postcondition and 

precondition sets may be not indicated, thus 

semantics of logical conditions must be analysed 

properly. 

The proposed method consists of the following 

steps: 

 Step 1: verification of generated cause-and-

effect relations corresponding to the specified 

pre- and postconditions in the specifications of 

functional features in the topological space. 

 Step 2: separation of the TFM from the 

topological space. 

 Step 3: verification of topological and 

functioning properties of the TFM. 

 Step 4: verification of inconsistencies between 

the TFM and its original topological space. 

 

Step 1. 

Suppose we have a set of functional features 𝒁 =
{𝑍𝑖} and a set of cause-and-effect (or topological) 

relations 𝑻 = {𝑇𝑖} among them, that were 

automatically generated by analysing the pre- and 

postconditions of the functional features. Let us 

define a function 𝐶(𝑳) which returns a set of common 

atomic parts of all the expressions in the set 𝑳 (here 

we suppose that 𝐴 and ¬𝐴 are different atomic 

values). For example: 
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 if 𝑳 = {𝐴 ∨ 𝐵 ∨ 𝐶; 𝐴 ∧ 𝐷; 𝐴 ∨ 𝐷} then 𝐶(𝑳) =
{𝐴}, 

 if 𝑳 = {𝐴 ∨ (𝐵 ∧ 𝐶); 𝐵 ∧ 𝐶 ∧ 𝐷} then 𝐶(𝑳) =
{𝐵; 𝐶}, 

 if 𝑳 = {𝐴; ¬𝐴 ∨ 𝐵} then 𝐶(𝑳) = ∅. 

 

First, we expand each cause-and-effect relation 

tuple 𝑇𝑖  with an element 𝐶, where 𝐶 = 𝐶({𝐿𝑖𝑛; 𝐿𝑜𝑢𝑡}) 

(3): 

 

𝑇′𝑖𝑑 = 〈𝑖𝑑, 𝑍𝑐 , 𝑍𝑒 , 𝐿𝑜𝑢𝑡 , 𝐿𝑖𝑛 , 𝐶〉 (3) 

 

Second, for each functional feature 𝑍𝑖 we define 

used preconditions (4) and postconditions (5). 

 

precondused(𝑍𝑖) = ⋃ 𝐶𝑇𝑖
′

𝑇𝑖
′∈𝑻:𝑍𝑖=𝑍𝑒

 
(4) 

postcondused(𝑍𝑖) = ⋃ 𝐶𝑇𝑖
′

𝑇𝑖
′∈𝑻:𝑍𝑖=𝑍𝑐

 
(5) 

 

Third, for each functional feature 𝑍𝑖 we calculate 

the differences 𝐷precond between the sets of its 

preconditions and used preconditions (6), and 

𝐷postcond between the sets of its postconditions and 

used postconditions (7). 

 

𝐷precond(𝑍𝑖) = PrCond𝑍𝑖
∖ precondused(𝑍𝑖) (6) 

𝐷postcond(𝑍𝑖) = PostCond𝑍𝑖
∖

∖ postcond𝑢𝑠𝑒𝑑(𝑍𝑖) 

(7) 

 

If for a specific functional feature 𝑍𝑖 the 

difference 𝐷precond(𝑍𝑖) or 𝐷postcond(𝑍𝑖) is not an 

empty set, then the corresponding functional feature 

is to be marked as possibly inconsistent. 

 

Step 2. 
The topological space is verified whether it 

contains inconsistencies such as isolated vertices, a 

lack of inputs, a lack of outputs, a lack of functioning 

cycles. 

 

Step 3. 
If the topological space is valid, then the closuring 

operation is executed over the set 𝑁 of inner 

functional features of the system. 

Otherwise, the list of inconsistencies that must be 

improved before the separation of the TFM is 

presented to the modeler or developer. 

After improvement, the verification starts from 

Step 1. 

 

Step 4. 
The TFM is verified whether it contains 

inconsistencies such as isolated vertices, a lack of 

inputs, a lack of outputs, and a lack of functioning 

cycles. If the TFM is valid, the verification is 

successfully finished. 

In case of incomplete knowledge of the domain 

functionality, more than one graph can be obtained 

after closuring. The graph can represent either a 

subsystem (if it has at least one functioning cycle), or 

a part of systems functionality (some process or a set 

of processes). In this case it is very important to 

indicate functional features that were cut off because 

of closuring. Comparing two topological spaces, the 

TFM and its original topological space, cut-off paths 

(chains of cause-and-effect relations) can be found 

and presented for the developer for a review. 

Summarizing, the proposed method allows 

verifying incompleteness of conditions, functional 

characteristics of the system, and causal 

dependencies. At the present, the method does not 

support semantical verification of conditions and 

their combinations. 

5 ILLUSTRATIVE EXAMPLE 

Description of the business domain is as follows. “A 

criminal case is initiated by an investigator when a 

criminal act is stated. The criminal act may be stated 

when a criminal person has committed a criminal act 

and it was discovered or a victim or witness has 

submitted a claim about it. After the criminal case 

was initiated, the investigator conducts investigative 

actions. As the result of this, the indicted person is 

found. After the investigation is completed, the 

criminal case is sent to a prosecutor. If the criminal 

act is misdemeanour, the prosecutor can draw up a 

penal order. If the indicted person agrees with the 

accusation presented and the penalty the prosecutor 

offered, then the criminal case is terminated, and the 

convicted person serves the punishment. Otherwise, 

the prosecutor sent the case to the court. The criminal 

case is terminated, when the court adjudicates in the 

case.” 

Having this knowledge about the system, a 

modeler can fill in frame instances for functional 

features and objects. The initial descriptions of 

functional features that contain the identifier, action, 

result and object, as well as providers and executors 

are the following: 

 1. Initiating [new] CriminalCase, {State 

Police}, {Investigator}; 
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 2. Commiting [new] CriminalAct, {}, 

{CriminalPerson} 

 3. Discovering [new] CriminalAct, {State 

Police}, {} 

 4. Submitting [new] ClaimOnCriminalAct, 

{State Police}, {victim, witness} 

 5. Stating [new] CriminalAct, {}, {} 

 6. Conducting investigativeActions 

CriminalCase, {State Police}, {} 

 7. Sending toProsecutor CriminalCase, {State 

Police}, {Investigator} 

 8. Drawing up penalOrder CriminalCase, 

{Prosecution Office}, {Prosecutor} 

 9. Terminating [] CriminalCase, {Prosecution 

Office}, {Prosecutor} 

 10. Serving [] Punishment, {Prisons 

Administration}, {ConvictedPerson} 

 11. Sending [to the] Court CriminalCase, 

{Prosecution Office}, {Prosecutor} 

 12. Adjudicating [] CriminalCase, {Court}, {} 

The corresponding pre- and postconditions are 

illustrated in Table 1. Then, the verification can be 

started.  

Step 1. Applying Step 1 of the verification 

method described in Section 4 gives the following 

results: the corresponding generated cause-and-effect 

relations (Table 2), a topological space of the 

functional features (Figure 2) and comparison of 

generated and specified pre- and postconditions 

(Table 3) that clearly show inconsistencies in 

knowledge of functional features 6, 7, 8, 9, and 11. 

Table 1: Values of slots preConditionSet and postConditionSet of frame instances of FunctionalFeatures. 

identifier preConditionSet postConditionSet 

1 a criminal act is stated a criminal case is initiated 

2 — a criminal act is committed 

3 a criminal act is committed a criminal act is discovered 

4 a criminal act is committed a claim about a criminal act is submitted 

5 (a criminal act is committed) AND ((a criminal act is discovered) 

OR (a claim about a criminal act is submitted)) 

a criminal act is stated 

6 a criminal case is initiated an indicted person is found 

7 an investigation is completed a criminal case is sent to prosecutor 

8 a criminal act is misdemeanour a penal order is drawn 

9 an indicted person agrees with the accusation presented and the 

penalty the prosecutor offered 

a criminal case is terminated 

10 a criminal case is terminated — 

11 NOT(an indicted person agrees with the accusation presented and 

the penalty the prosecutor offered) 

(NOT (a criminal case is terminated)) AND (a criminal 

case is sent to the court) 

12 (NOT (a criminal case is terminated)) AND (a criminal case is sent 

to the court) 

a criminal case is terminated 

Table 2: The generated frame instances of CauseAndEffectRelation. 

id 𝑍𝑐 𝑍𝑒 𝐿𝑜𝑢𝑡 𝐿𝑖𝑛 𝐶𝒁𝒊
 

1-6 1 6 a criminal case is initiated a criminal case is initiated a criminal case is initiated 

2-3 2 3 a criminal act is committed a criminal act is committed a criminal act is committed 

2-4 2 4 a criminal act is committed a criminal act is committed a criminal act is committed 

2-5 2 5 a criminal act is committed 

And(a criminal act is committed, Or(a criminal act 

is discovered, a claim about a criminal act is 

submitted)) 

a criminal act is committed 

3-5 3 5 a criminal act is discovered 

And(a criminal act is committed, Or(a criminal act 

is discovered, a claim about a criminal act is 

submitted)) 

a criminal act is discovered 

4-5 4 5 
a claim about a criminal act is 
submitted 

And(a criminal act is committed, Or(a criminal act 
is discovered, a claim about a criminal act is 

submitted)) 

a claim about a criminal act is 
submitted 

5-1 5 1 a criminal act is stated a criminal act is stated a criminal act is stated 

9-10 9 10 a criminal case is terminated a criminal case is terminated a criminal case is terminated 

11-12 11 12 

And(Not(a criminal case is 

terminated), a criminal case is 

sent to the court) 

And(Not(a criminal case is terminated), a criminal 
case is sent to the court) 

Not(a criminal case is 

terminated), a criminal case is 

sent to the court 

12-10 12 10 a criminal case is terminated a criminal case is terminated a criminal case is terminated 
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Table 3: Comparison of pre- and postconditions of functional features. 

id precondused(𝑍𝑖) postcondused(𝑍𝑖) 𝐷precond(𝑍𝑖) 𝐷postcond(𝑍𝑖) 

1 {a criminal act is stated} {a criminal case is initiated} ∅ ∅ 

2 ∅ {a criminal act is committed} ∅ ∅ 

3 {a criminal act is committed} {a criminal act is discovered} ∅ ∅ 

4 {a criminal act is committed} 
{a claim about a criminal act is 
submitted} 

∅ ∅ 

5 

{a criminal act is committed, 

a criminal act is discovered, 

a claim about a criminal act is 
submitted} 

{a criminal act is stated} ∅ ∅ 

6 {a criminal case is initiated} ∅ ∅ {an indicted person is found} 

7 ∅ ∅ 
{an investigation is 

completed} 

a criminal case is sent to 

prosecutor 

8 ∅ ∅ 
{a criminal act is 
misdemeanour} 

a penal order is drawn 

9 ∅ {a criminal case is terminated} 

{an indicted person agrees 

with the accusation presented 

and the penalty the prosecutor 
offered} 

∅ 

10 {a criminal case is terminated} ∅ ∅ ∅ 

11 ∅ 

{Not(a criminal case is 

terminated),  

a criminal case is sent to the 
court} 

{Not(an indicted person 

agrees with the accusation 

presented and the penalty the 
prosecutor offered)} 

∅ 

12 

{Not(a criminal case is 

terminated),  

a criminal case is sent to the 
court} 

{a criminal case is terminated} ∅ ∅ 

2

3

4

5 1 6

7

8

910

1112

AND

AND

OR

postCondition = [an indicted person is found]

preCondition = [an 
investigation is completed]
postCondition = [a criminal case 
is sent to prosecutor]

preCondition = [a criminal act is misdemeanour]
postCondition = [a penal order is drawn]

preCondition = [an indicted person agrees with the accusation 
presented and the penalty the prosecutor offered]

preCondition = NOT [an indicted person agrees with the 
accusation presented and the penalty the prosecutor offered]

OR

 

Figure 2: The generated topological space of the system functionality. 

Step 2. The verification of the topological space 

showed that it contains: a) isolated functional features 

7 and 8, b) two isolated groups of functional features; 

c) functional features 6, 9, and 11 with pre- and 

postconditions that have no connections. So it is not 

clear what happens if an indicted person is found 

(functional feature 6), when an investigation is 

considered as complete and what happens when a 

criminal case is sent to a prosecutor (functional 

feature 7), how, when and who determines that a 

criminal case is misdemeanour and what actions 

should be done when a penal order is drawn 

(functional feature 8), as well as how “an indicted 

person agrees with the accusation presented and the 

penalty the prosecutor offered”, who and when 

presents the accusation and when the penalty is 

offered by the prosecutor (functional features 9 

and 11).  

The result of the execution of this step is the end 

of the algorithm with presenting discovered 

inconsistencies to the modeler or developer. 
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6 CONCLUSIONS 

Construction of knowledge bases either using an 

assistance of domain experts, or using automated 

solutions foresees verification of the obtained 

knowledge.  

Inconsistencies can be in both declarative and 

procedural knowledge. They are incompleteness, 

redundancy, contradictions, recursion, etc. 

Verification must use valid knowledge such as 

common recognized ontologies, or transform the 

existing knowledge to formal models for further 

analysis. The proposed method allows verifying 

incompleteness among conditions and functional 

characteristics of the system based on the analysis of 

causal dependencies, first, in a topological space, 

second, in the formally separated topological 

functioning model, and, third, between topological 

spaces of the model and its original topological space. 

The results of the verification show all possible 

inconsistencies and require semantical analysis by a 

domain expert.  

At the present, the method does not support any 

automatic semantical verification of conditions and 

their combinations. 

If pre- and postconditions are kept in some rules 

representation format, then it would be possible to use 

existing verification techniques for such analysis. 

Analysis of inconsistencies in cause-and-effect 

relations leads to discovering incompleteness in 

system’s functional characteristics. This leads to 

corrections not only in functional but also in 

structural elements of the system.  

The aim of the future research is to implement 

semantical analysis of the inconsistencies in 

knowledge in the frame system. 
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