
Verification of Causality in the Frame System based on the

Topological Functioning Modelling

Vladislavs Nazaruks and Jānis Osis
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, LV-1048, Riga, Latvia

Keywords: Verification, Knowledge Frames, Knowledge Base, Topological Functioning Model, Causal Dependencies.

Abstract: Causality is universal relations among phenomena (states, facts, elements, functions) in the system.

Verification of causality in the knowledge frame system based on principles of the topological functioning

modelling can help in discovering inconsistencies such as incompleteness, ambiguity or contradictions in

knowledge on system’s functioning. The method for such verification is presented in this paper. It is based

on topological and functioning properties of the topological functioning model including the definition of

continuous mapping between topological spaces. The method helps in discovering inconsistent combinations

of cause-and-effect relations or a lack of them. Functional characteristics of the system involved in these

relations are marked as doubtful. The results of verification require additional investigation by a software

developer. A use of the proposed method can lead to more thorough system analysis before development of

the solution.

1 INTRODUCTION

Causality is an important concept in conditional logic,

in artificial intelligence, e. g. for planning tasks

(Wobcke, 1994; Giunchiglia et al., 2004), and in the

framework of action systems (Giordano and Schwind,

2004). Causality is universal, there is no any system

that has no causal dependencies among its

constituents (Osis and Asnina, 2011; Nazaruka,

2017). Causality is represented as a set of causal

dependencies or causal implications.

The causal implication can exist between two

types of assertions (Giordano and Schwind, 2004):

(1) an action can cause a fact to become true, or (2) a

fact can cause another fact. In the first case, the causal

implication relates also to a state transition, so the

caused fact “belongs” to the “next state”. In the

second case, the causal implication does not touch

any state, the modifications occur in the same state.

Verification of causal dependencies can help in

discovering functional, behavioural and structural

inconsistencies in models of domains of different

types, e. g. business, mechanical, biological etc.

Models can be informal, semi-formal and formal. But

all of them can contain inconsistencies with the

modelled domain. Formal models allow discovering

these inconsistencies. For domain modelling we

suggest using advantages provided by the

Topological Functioning Model – formal, but “light-

weight” model that can be transformed to most-used

UML (Unified Modelling Language) diagrams

(Donins et al., 2011, 2012; Donins, 2012b).

Causal dependencies in the TFM are called cause-

and-effect relations or topological relations, since

they represent topology on a set of system’s

functional characteristics (Osis and Asnina, 2011).

Cause-and-effect relations transformed into elements

of the design model are control flows, data flows and

transitions among states (Osis and Asnina, 2008;

Donins et al., 2012; Asnina and Ovchinnikova, 2015).

Cause-and-effect relations and characteristics of

the validity of the TFM – the central model in the

topological functioning modelling – can be used for

verification of BPMN diagrams (Nazaruka et al.,

2016). The approach for validation of causality in

knowledge specified in the TFM using execution

model simulation has been discussed in

(Ovchinnikova and Nazaruka, 2016).

The construction of the TFM is based on

procedural and declarative knowledge. The more

suitable way for storing knowledge is a knowledge

base. The base that incorporate TFM principles

(Nazaruks and Osis, 2017) contains generable and

manually added knowledge. Verification of

knowledge includes generation and validation of the

topological space and the corresponding TFM that

Nazaruks, V. and Osis, J.
Verification of Causality in the Frame System based on the Topological Functioning Modelling.
DOI: 10.5220/0006817905130521
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 513-521
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

513

allow discovering incompleteness and contradictions

in the added knowledge.

The goal of the current research is to develop

method for verification of the topology in the

knowledge kept in the frame system (Section 3.2)

using validity characteristics of the TFM.

The paper organization is the following. Section 2

gives summary of related work. Section 3 presents the

necessary background of the TFM and the frame

system based on its constructs and characteristics.

Section 4 gives a description of the proposed method,

which is illustrated in Section 5. Section 6

summarizes the main results and concludes the paper.

2 RELATED WORK

The next step after creation of the knowledge base is

its verification and validation (Santos and Dinh,

2008). Verification is dedicated to find anomality in

gathered knowledge. Rule-based knowledge bases

can contain such anomality (or inconsistencies) as

redundancy, subsuming rules, contradictory rules,

inconsistent rules, incompleteness, missing rules,

recursive rules, and unused attributes and values

(Sarkar and Ramaswamy, 2000; Mach-Król and

Michalik, 2015).

Fuzzy inference rules that are developed by a

group of domain experts can contain all the

mentioned inconsistencies (Skorupski, 2015). The

author suggests an approach for their verification by

using the expert-group evaluation and then assessing

of the obtained results. The idea is that semantical

analysis should be done by the experts themselves,

the system only evaluates their decision and generates

more certain rules automatically. Then the generated

rules are compared with the rules provided by the

experts. The idea that is proposed in our research is

similar in some degree, i. e. when we compare the

generated knowledge with the knowledge obtained

from domain experts or documents.

Another way is a usage of Petri Nets, for example,

for verification of frame-rule hybrid expert systems

(Tadj and Laroussi, 2006). Here, Petri Nets are used

as a reference model created for analysis of the

markings graphs. The list of inconsistencies can be

extended with hypotactic rules, conflict rule chains,

dead ends and unreachable goals (Wu et al., 2005).

For discovering them, Coloured Petri Nets can be

applied (Wu et al., 2005). Verification can be based

also on principles of data integrity, e. g. the

consistency check can be done using SQL query

method (Liu and Jiang, 2010).

Another knowledge verification method is based

on using ontologies. For example, ontologies can be

used to verify computer-based knowledge sharing

between departments of a manufacturer enterprise

(Anjum et al., 2013) or for verification of planned and

real plans (Zhong et al., 2015).

Anjum et al. (2013) note that the necessary

functionality of the enterprise system is to deal with

several types of incompatibilities and heterogeneities

between sets of knowledge located in independently

developed computer-based knowledge management

systems. Authors’ idea is to match two domain

ontologies and in such a way to verify the knowledge.

As the authors mention, there are foundational and

domain ontologies. Foundational ontologies such as

WordNet are used as a common vocabulary for

knowledge bases, while domain ontology have

heterogeneous nature and must be semantically and

syntactically verified against one common

vocabulary. The proposed approach deals with

parent-child relationships in domain ontologies, but it

requires further elaboration for more complex

ontological structures. However, the presented idea of

semantical and syntactical verification as well as

searching for similarities and differences is close to

the idea presented in this paper.

Description logic can be used for keeping

knowledge of model variants and their dependencies

as well as for verifying inconsistencies in those

knowledge (Asadi et al., 2016).

For verification of very large complex knowledge

bases, a decomposition to the smaller information-

related based can be used (Sarkar and Ramaswamy,

2000). In this approach, first, the decomposed parts

are verified using the “directed hypergraph

approach”, and then dependencies among those parts

are analysed based on “ordered polytree structures”.

Summarizing, verification of knowledge is a

comparison of actual and gathered, prescribed, or

planned knowledge. Inconsistencies can be found in

the gathered knowledge and then they are verified by

known-to-be-sound ontologies, sets of rules or

experts opinions. Inconsistencies can be found in

actual knowledges and then they can be either

compared with some common sound base or

modelled and verified by model checking techniques.

In our method, we apply verification by models,

i. e. verifying topological and functioning properties

of the TFM.

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

514

3 BACKGROUND

3.1 The Topological Functioning Model
in Brief

The TFM is a formal model which describes the

functionality of a system. Its fundamentals are

published in (Osis, 1969; Osis and Asnina, 2011). The

TFM can be presented in a form of a topological space

(𝑋, Θ), where 𝑋 is a finite set of functional features

(characteristics) of the system, and Θ is a topology set

on 𝑋.

A functional feature is “a characteristic of the

system (in its general sense) that is designed [for] and

necessary to achieve some system’s goal” (Osis and

Asnina, 2011). It can be specified by a unique tuple

(1), where:

〈𝐴, 𝑹, 𝑶, 𝑷𝒓𝑪𝒐𝒏𝒅, 𝑷𝒐𝒔𝒕𝑪𝒐𝒏𝒅, 𝑷𝒓, 𝑬𝒙, 𝑆〉 (1)

 𝐴 is an action linked with object 𝑶,

 𝑹 is a result of the action 𝐴,

 𝑶 is an object (objects) that gets the result of

the action or an object (objects) that is used

in this action,

 𝑷𝒓𝑪𝒐𝒏𝒅 is a set of preconditions or atomic

business rules,

 𝑷𝒐𝒔𝒕𝑪𝒐𝒏𝒅 is a set of postconditions or

atomic business rules,

 𝑷𝒓 is a set of responsible entities (systems

or subsystems) that provide or suggest

action 𝐴 with a set of certain objects 𝑶,

 𝑬𝒙 is a set of responsible entities (systems

or subsystems) that enact a concrete action

𝐴 (Osis and Asnina, 2011; Nazaruka et al.,

2016).

 𝑆 is a label that indicates belonging of the

functional feature to the system for which

the TFM will be composed, namely, inner if

belongs and external if does not.

The topology Θ is presented by cause-and-effect

relations. A cause-and-effect relation is a causal

implication (causal dependency) between two

functional features. It is a binary relationship, where

a cause triggers an effect without any intermediate

functional feature (Osis, Asnina and Grave, 2008;

Asnina and Osis, 2011). There are several

specifications of cause-and-effect relations (Osis and

Slihte, 2010; Donins, 2012a; Asnina and

Ovchinnikova, 2015), but the common is that they are

focused on assessment of the completeness of

incoming and outgoing conditions, as well as on

logical correctness.

A cause-and-effect relation is a topological

relation 𝑇𝑖𝑑 (2) between a cause functional feature 𝑋𝑐

and an effect functional feature 𝑋𝑒, where at least one

condition of 𝐿𝑜𝑢𝑡 that is a set of 𝑋𝑐 postconditions is

equal to the at least one condition of 𝐿𝑖𝑛 that is 𝑋𝑒

preconditions (Donins, 2012a).

𝑇𝑖𝑑 = 〈𝑖𝑑, 𝑋𝑐 , 𝑋𝑒 , 𝐿𝑜𝑢𝑡 , 𝐿𝑖𝑛〉 (2)

The TFM is valid when it satisfies topological and

functioning properties (Osis and Asnina, 2011). The

topological properties are: connectedness,

neighbourhood, closure and continuous mapping.

The functioning properties are: cause-and-effect

relations, cycle structure, inputs and outputs.

Let us consider the basics of closure and

continuous mapping (Osis and Asnina, 2011), since

they are needed for understanding of the presented

verification.

The closure is an operation of separation of the

TFM of the system from its topological space. The

topological space contains functional characteristics

(set 𝒁 = 𝑵 ∪ 𝑴, where 𝑵 is a set of inner functional

features of the system, and 𝑴 is a set of external

functional features to the system) and causal

dependencies of the system itself and other systems

that interact with it. The aim of the closure is to get

boundaries of the system, or the set 𝑿 that contains

the union of all neighbourhoods of functional features

in the set 𝑵. As a result, those functional features that

have no direct interaction with the system’s

functional features are cut off as well as cause-and-

effect relations that have linked them with functional

features that have been included into the TFM.

Sometimes, this can lead to discovering

inconsistencies in causal dependencies, e.g.,

determination of unwanted independent sub-systems,

isolated vertices, and broken functional cycles.

The continuous mapping is a relation between

topological spaces that states that “direction of

topological model arcs must be kept as in a refined as

in a simplified model” (Osis and Asnina, 2011, p. 29).

The continuous mapping allows comparing

topological spaces for resemblance and differences.

3.2 The Scheme of the Frame System

The frame system suggested here is based on (but not

limited to) the elements necessary to generate the

TFM without definition of logical operations among

cause-and-effect relations. The system represents

domain ontology but does not specify scripts or

daemons for frame instance generation.

Verification of Causality in the Frame System based on the Topological Functioning Modelling

515

Figure 1: The schema of the frame system (Nazaruks, 2017).

The following frame classes are presented (Figure 1):

 Classes with manually added knowledge:

FunctionalFeature, and Property;

 Classes with partial generation of knowledge:

Object, and TopologicalCycle;

 Classes with complete generation of

knowledge: CauseAndEffectRelation, and

TopologicalOperation.

The frame instances purpose is the following

(Nazaruks and Osis, 2017):

 CauseAndEffectRelation — for knowledge on

cause-and-effect relations generated from

instances of FunctionalFeature considering that

the cause is predefined by using a precondition,

while the effect is specified by using a

postcondition;

 FunctionalFeature — for facts about the

functional features;

 Object — for objects that participate in the

execution of the functional feature;

 Property — for the domain object;

 TopologicalOperation — for knowledge about

the operations that will implement actions of

the functional features and are generated from

FunctionalFeature data;

 TopologicalCycle — for facts about

participation of functional features in cycles of

functionality.

At the present, frame instances are filled in with

data manually. These frames are core elements for

further transformation (or it is better to say,

generation) of analysis or design models depending

from the knowledge on the software domain.

4 METHOD OF VERIFICATION

The idea of retrieving the topology by analysis of pre-

and post- conditions has been proposed in

Topological UML. There it has been applied for

identification of logical relations among cause-and-

effect relations (Donins, 2012a). This approach also

requires human participation, since postcondition and

precondition sets may be not indicated, thus

semantics of logical conditions must be analysed

properly.

The proposed method consists of the following

steps:

 Step 1: verification of generated cause-and-

effect relations corresponding to the specified

pre- and postconditions in the specifications of

functional features in the topological space.

 Step 2: separation of the TFM from the

topological space.

 Step 3: verification of topological and

functioning properties of the TFM.

 Step 4: verification of inconsistencies between

the TFM and its original topological space.

Step 1.

Suppose we have a set of functional features 𝒁 =
{𝑍𝑖} and a set of cause-and-effect (or topological)

relations 𝑻 = {𝑇𝑖} among them, that were

automatically generated by analysing the pre- and

postconditions of the functional features. Let us

define a function 𝐶(𝑳) which returns a set of common

atomic parts of all the expressions in the set 𝑳 (here

we suppose that 𝐴 and ¬𝐴 are different atomic

values). For example:

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

516

 if 𝑳 = {𝐴 ∨ 𝐵 ∨ 𝐶; 𝐴 ∧ 𝐷; 𝐴 ∨ 𝐷} then 𝐶(𝑳) =
{𝐴},

 if 𝑳 = {𝐴 ∨ (𝐵 ∧ 𝐶); 𝐵 ∧ 𝐶 ∧ 𝐷} then 𝐶(𝑳) =
{𝐵; 𝐶},

 if 𝑳 = {𝐴; ¬𝐴 ∨ 𝐵} then 𝐶(𝑳) = ∅.

First, we expand each cause-and-effect relation

tuple 𝑇𝑖 with an element 𝐶, where 𝐶 = 𝐶({𝐿𝑖𝑛; 𝐿𝑜𝑢𝑡})

(3):

𝑇′𝑖𝑑 = 〈𝑖𝑑, 𝑍𝑐 , 𝑍𝑒 , 𝐿𝑜𝑢𝑡 , 𝐿𝑖𝑛 , 𝐶〉 (3)

Second, for each functional feature 𝑍𝑖 we define

used preconditions (4) and postconditions (5).

precondused(𝑍𝑖) = ⋃ 𝐶𝑇𝑖
′

𝑇𝑖
′∈𝑻:𝑍𝑖=𝑍𝑒

(4)

postcondused(𝑍𝑖) = ⋃ 𝐶𝑇𝑖
′

𝑇𝑖
′∈𝑻:𝑍𝑖=𝑍𝑐

(5)

Third, for each functional feature 𝑍𝑖 we calculate

the differences 𝐷precond between the sets of its

preconditions and used preconditions (6), and

𝐷postcond between the sets of its postconditions and

used postconditions (7).

𝐷precond(𝑍𝑖) = PrCond𝑍𝑖
∖ precondused(𝑍𝑖) (6)

𝐷postcond(𝑍𝑖) = PostCond𝑍𝑖
∖

∖ postcond𝑢𝑠𝑒𝑑(𝑍𝑖)

(7)

If for a specific functional feature 𝑍𝑖 the

difference 𝐷precond(𝑍𝑖) or 𝐷postcond(𝑍𝑖) is not an

empty set, then the corresponding functional feature

is to be marked as possibly inconsistent.

Step 2.
The topological space is verified whether it

contains inconsistencies such as isolated vertices, a

lack of inputs, a lack of outputs, a lack of functioning

cycles.

Step 3.
If the topological space is valid, then the closuring

operation is executed over the set 𝑁 of inner

functional features of the system.

Otherwise, the list of inconsistencies that must be

improved before the separation of the TFM is

presented to the modeler or developer.

After improvement, the verification starts from

Step 1.

Step 4.
The TFM is verified whether it contains

inconsistencies such as isolated vertices, a lack of

inputs, a lack of outputs, and a lack of functioning

cycles. If the TFM is valid, the verification is

successfully finished.

In case of incomplete knowledge of the domain

functionality, more than one graph can be obtained

after closuring. The graph can represent either a

subsystem (if it has at least one functioning cycle), or

a part of systems functionality (some process or a set

of processes). In this case it is very important to

indicate functional features that were cut off because

of closuring. Comparing two topological spaces, the

TFM and its original topological space, cut-off paths

(chains of cause-and-effect relations) can be found

and presented for the developer for a review.

Summarizing, the proposed method allows

verifying incompleteness of conditions, functional

characteristics of the system, and causal

dependencies. At the present, the method does not

support semantical verification of conditions and

their combinations.

5 ILLUSTRATIVE EXAMPLE

Description of the business domain is as follows. “A

criminal case is initiated by an investigator when a

criminal act is stated. The criminal act may be stated

when a criminal person has committed a criminal act

and it was discovered or a victim or witness has

submitted a claim about it. After the criminal case

was initiated, the investigator conducts investigative

actions. As the result of this, the indicted person is

found. After the investigation is completed, the

criminal case is sent to a prosecutor. If the criminal

act is misdemeanour, the prosecutor can draw up a

penal order. If the indicted person agrees with the

accusation presented and the penalty the prosecutor

offered, then the criminal case is terminated, and the

convicted person serves the punishment. Otherwise,

the prosecutor sent the case to the court. The criminal

case is terminated, when the court adjudicates in the

case.”

Having this knowledge about the system, a

modeler can fill in frame instances for functional

features and objects. The initial descriptions of

functional features that contain the identifier, action,

result and object, as well as providers and executors

are the following:

 1. Initiating [new] CriminalCase, {State

Police}, {Investigator};

Verification of Causality in the Frame System based on the Topological Functioning Modelling

517

 2. Commiting [new] CriminalAct, {},

{CriminalPerson}

 3. Discovering [new] CriminalAct, {State

Police}, {}

 4. Submitting [new] ClaimOnCriminalAct,

{State Police}, {victim, witness}

 5. Stating [new] CriminalAct, {}, {}

 6. Conducting investigativeActions

CriminalCase, {State Police}, {}

 7. Sending toProsecutor CriminalCase, {State

Police}, {Investigator}

 8. Drawing up penalOrder CriminalCase,

{Prosecution Office}, {Prosecutor}

 9. Terminating [] CriminalCase, {Prosecution

Office}, {Prosecutor}

 10. Serving [] Punishment, {Prisons

Administration}, {ConvictedPerson}

 11. Sending [to the] Court CriminalCase,

{Prosecution Office}, {Prosecutor}

 12. Adjudicating [] CriminalCase, {Court}, {}

The corresponding pre- and postconditions are

illustrated in Table 1. Then, the verification can be

started.

Step 1. Applying Step 1 of the verification

method described in Section 4 gives the following

results: the corresponding generated cause-and-effect

relations (Table 2), a topological space of the

functional features (Figure 2) and comparison of

generated and specified pre- and postconditions

(Table 3) that clearly show inconsistencies in

knowledge of functional features 6, 7, 8, 9, and 11.

Table 1: Values of slots preConditionSet and postConditionSet of frame instances of FunctionalFeatures.

identifier preConditionSet postConditionSet

1 a criminal act is stated a criminal case is initiated

2 — a criminal act is committed

3 a criminal act is committed a criminal act is discovered

4 a criminal act is committed a claim about a criminal act is submitted

5 (a criminal act is committed) AND ((a criminal act is discovered)

OR (a claim about a criminal act is submitted))

a criminal act is stated

6 a criminal case is initiated an indicted person is found

7 an investigation is completed a criminal case is sent to prosecutor

8 a criminal act is misdemeanour a penal order is drawn

9 an indicted person agrees with the accusation presented and the

penalty the prosecutor offered

a criminal case is terminated

10 a criminal case is terminated —

11 NOT(an indicted person agrees with the accusation presented and

the penalty the prosecutor offered)

(NOT (a criminal case is terminated)) AND (a criminal

case is sent to the court)

12 (NOT (a criminal case is terminated)) AND (a criminal case is sent

to the court)

a criminal case is terminated

Table 2: The generated frame instances of CauseAndEffectRelation.

id 𝑍𝑐 𝑍𝑒 𝐿𝑜𝑢𝑡 𝐿𝑖𝑛 𝐶𝒁𝒊

1-6 1 6 a criminal case is initiated a criminal case is initiated a criminal case is initiated

2-3 2 3 a criminal act is committed a criminal act is committed a criminal act is committed

2-4 2 4 a criminal act is committed a criminal act is committed a criminal act is committed

2-5 2 5 a criminal act is committed

And(a criminal act is committed, Or(a criminal act

is discovered, a claim about a criminal act is

submitted))

a criminal act is committed

3-5 3 5 a criminal act is discovered

And(a criminal act is committed, Or(a criminal act

is discovered, a claim about a criminal act is

submitted))

a criminal act is discovered

4-5 4 5
a claim about a criminal act is
submitted

And(a criminal act is committed, Or(a criminal act
is discovered, a claim about a criminal act is

submitted))

a claim about a criminal act is
submitted

5-1 5 1 a criminal act is stated a criminal act is stated a criminal act is stated

9-10 9 10 a criminal case is terminated a criminal case is terminated a criminal case is terminated

11-12 11 12

And(Not(a criminal case is

terminated), a criminal case is

sent to the court)

And(Not(a criminal case is terminated), a criminal
case is sent to the court)

Not(a criminal case is

terminated), a criminal case is

sent to the court

12-10 12 10 a criminal case is terminated a criminal case is terminated a criminal case is terminated

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

518

Table 3: Comparison of pre- and postconditions of functional features.

id precondused(𝑍𝑖) postcondused(𝑍𝑖) 𝐷precond(𝑍𝑖) 𝐷postcond(𝑍𝑖)

1 {a criminal act is stated} {a criminal case is initiated} ∅ ∅

2 ∅ {a criminal act is committed} ∅ ∅

3 {a criminal act is committed} {a criminal act is discovered} ∅ ∅

4 {a criminal act is committed}
{a claim about a criminal act is
submitted}

∅ ∅

5

{a criminal act is committed,

a criminal act is discovered,

a claim about a criminal act is
submitted}

{a criminal act is stated} ∅ ∅

6 {a criminal case is initiated} ∅ ∅ {an indicted person is found}

7 ∅ ∅
{an investigation is

completed}

a criminal case is sent to

prosecutor

8 ∅ ∅
{a criminal act is
misdemeanour}

a penal order is drawn

9 ∅ {a criminal case is terminated}

{an indicted person agrees

with the accusation presented

and the penalty the prosecutor
offered}

∅

10 {a criminal case is terminated} ∅ ∅ ∅

11 ∅

{Not(a criminal case is

terminated),

a criminal case is sent to the
court}

{Not(an indicted person

agrees with the accusation

presented and the penalty the
prosecutor offered)}

∅

12

{Not(a criminal case is

terminated),

a criminal case is sent to the
court}

{a criminal case is terminated} ∅ ∅

2

3

4

5 1 6

7

8

910

1112

AND

AND

OR

postCondition = [an indicted person is found]

preCondition = [an
investigation is completed]
postCondition = [a criminal case
is sent to prosecutor]

preCondition = [a criminal act is misdemeanour]
postCondition = [a penal order is drawn]

preCondition = [an indicted person agrees with the accusation
presented and the penalty the prosecutor offered]

preCondition = NOT [an indicted person agrees with the
accusation presented and the penalty the prosecutor offered]

OR

Figure 2: The generated topological space of the system functionality.

Step 2. The verification of the topological space

showed that it contains: a) isolated functional features

7 and 8, b) two isolated groups of functional features;

c) functional features 6, 9, and 11 with pre- and

postconditions that have no connections. So it is not

clear what happens if an indicted person is found

(functional feature 6), when an investigation is

considered as complete and what happens when a

criminal case is sent to a prosecutor (functional

feature 7), how, when and who determines that a

criminal case is misdemeanour and what actions

should be done when a penal order is drawn

(functional feature 8), as well as how “an indicted

person agrees with the accusation presented and the

penalty the prosecutor offered”, who and when

presents the accusation and when the penalty is

offered by the prosecutor (functional features 9

and 11).

The result of the execution of this step is the end

of the algorithm with presenting discovered

inconsistencies to the modeler or developer.

Verification of Causality in the Frame System based on the Topological Functioning Modelling

519

6 CONCLUSIONS

Construction of knowledge bases either using an

assistance of domain experts, or using automated

solutions foresees verification of the obtained

knowledge.

Inconsistencies can be in both declarative and

procedural knowledge. They are incompleteness,

redundancy, contradictions, recursion, etc.

Verification must use valid knowledge such as

common recognized ontologies, or transform the

existing knowledge to formal models for further

analysis. The proposed method allows verifying

incompleteness among conditions and functional

characteristics of the system based on the analysis of

causal dependencies, first, in a topological space,

second, in the formally separated topological

functioning model, and, third, between topological

spaces of the model and its original topological space.

The results of the verification show all possible

inconsistencies and require semantical analysis by a

domain expert.

At the present, the method does not support any

automatic semantical verification of conditions and

their combinations.

If pre- and postconditions are kept in some rules

representation format, then it would be possible to use

existing verification techniques for such analysis.

Analysis of inconsistencies in cause-and-effect

relations leads to discovering incompleteness in

system’s functional characteristics. This leads to

corrections not only in functional but also in

structural elements of the system.

The aim of the future research is to implement

semantical analysis of the inconsistencies in

knowledge in the frame system.

REFERENCES

Anjum, N., Harding, J., Young, R., Case, K., Usman, Z. and

Changoora, T., 2013. Verification of knowledge shared

across design and manufacture using a foundation

ontology, International Journal of Production

Research, 51(22), pp. 6534–6552. doi:

10.1080/00207543.2013.798051.

Asadi, M., Gröner, G., Mohabbati, B. and Gašević, D.,

2016. Goal-oriented modeling and verification of

feature-oriented product lines, Software & Systems

Modeling, 15(1), pp. 257–279. doi: 10.1007/s10270-

014-0402-8.

Asnina, E. and Osis, J., 2011. Topological Functioning

Model as a CIM-Business Model, in Model-Driven

Domain Analysis and Software Development. Hershey,

PA: IGI Global, pp. 40–64. doi: 10.4018/978-1-61692-

874-2.ch003.

Asnina, E. and Ovchinnikova, V., 2015. Specification of

Decision-making and Control Flow Branching in

Topological Functioning Models of Systems, in

International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), 2015.

Barcelona, Spain: SciTePress, pp. 364–373. doi:

10.5220/0005479903640373.

Donins, U., 2012a. Semantics of Logical Relations in

Topological Functioning Model, in Proceedings of the

7th International Conference on Evaluation of Novel

Approaches to Software Engineering, Wrocław,

Poland, 29-30 June, 2012. SciTePress, pp. 217–223.

Donins, U., 2012b. Topological Unified Modeling

Language: Development and Application. PhD Thesis.

Riga Technical University.

Donins, U., Osis, J., Asnina, E. and Jansone, A., 2012.

Formal analysis of objects state changes and transitions,

in ENASE 2012 - Proceedings of the 7th International

Conference on Evaluation of Novel Approaches to

Software Engineering. Lisbon: SciTePress, pp. 249–

256.

Donins, U., Osis, J., Slihte, A., Asnina, E. and Gulbis, B.,

2011. Towards the refinement of topological class

diagram as a platform independent model, in

Čaplinskas, A., Dzemyda, G., Lupeikienė, A., and

Vasilecas, O. (eds) Proceedings of the 3rd International

Workshop on Model-Driven Architecture and

Modeling-Driven Software Development, MDA and

MDSD 2011, in Conjunction with ENASE 2011.

Vilnius: Žara, pp. 79–88.

Giordano, L. and Schwind, C., 2004. Conditional logic of

actions and causation, Artificial Intelligence. Elsevier,

157(1–2), pp. 239–279. doi:

10.1016/j.artint.2004.04.009.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. and

Turner, H., 2004. Nonmonotonic causal theories,

Artificial Intelligence. Elsevier, 153(1–2), pp. 49–104.

doi: 10.1016/J.ARTINT.2002.12.001.

Liu, B. and Jiang, C., 2010. A knowledge base maintenance

system for fault diagnosis expert system, in The 2nd

International Conference on Information Science and

Engineering. IEEE, pp. 21–24. doi:

10.1109/ICISE.2010.5690231.

Mach-Król, M. and Michalik, K., 2015. Validation and

Verification of Temporal Knowledge as an Important

Aspect of Implementing a Temporal Knowledge Base

System Supporting Organizational Creativity, in 2015

Federated Conference on Computer Science and

Information Systems (FedCSIS). IEEE, pp. 1315–1320.

doi: 10.15439/2015F78.

Nazaruka, E., 2017. Meaning of Cause-and-effect Relations

of the Topological Functioning Model in the UML

Analysis Model, in Proceedings of the 12th

International Conference on Evaluation of Novel

Approaches to Software Engineering. SCITEPRESS -

Science and Technology Publications, pp. 336–345.

doi: 10.5220/0006384403360345.

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

520

Nazaruka, E., Ovchinnikova, V., Alksnis, G. and

Sukovskis, U., 2016. Verification of BPMN Model

Functional Completeness by using the Topological

Functioning Model, in Proceedings of the 11th

International Conference on Evaluation of Novel

Software Approaches to Software Engineering.

Portugal: SCITEPRESS - Science and and Technology

Publications, pp. 349–358. doi:

10.5220/0005930903490358.

Nazaruks, V., 2017. The Knowledge Frame System based

on Principles of Topological Functioning Model,

Applied Computer Systems, 21, pp. 28–37. doi:

10.1515/acss-2017-0004.

Nazaruks, V. and Osis, J., 2017. Joint Usage of Frames and

the Topological Functioning Model for Domain

Knowledge Presentation and Analysis, in Proceedings

of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering - Volume 1:

MDI4SE. Porto, Portugal: SCITEPRESS - Science and

Technology Publications, pp. 379–390. doi:

10.5220/0006388903790390.

Osis, J., 1969. Topological Model of System Functioning

(in Russian), Automatics and Computer Science, J. of

Academia of Siences, (6), pp. 44–50.

Osis, J. and Asnina, E., 2008. Enterprise Modeling for

Information System Development within MDA, in

Proceedings of the 41st Annual Hawaii International

Conference on System Sciences (HICSS 2008).

Waikoloa, USA: IEEE, pp. 490–490. doi:

10.1109/HICSS.2008.150.

Osis, J. and Asnina, E., 2011. Topological Modeling for

Model-Driven Domain Analysis and Software

Development : Functions and Architectures, in Model-

Driven Domain Analysis and Software Development:

Architectures and Functions. Hershey, PA: IGI Global,

pp. 15–39. doi: 10.4018/978-1-61692-874-2.ch002.

Osis, J., Asnina, E. and Grave, A., 2008. Computation

Independent Representation of the Problem Domain in

MDA, e-Informatica Software Engineering Journal,

2(1), pp. 29–46. Available at: http://www.e-

informatyka.pl/index.php/einformatica/volumes/volum

e-2008/issue-1/article-2/ (Accessed: 4 January 2018).

Osis, J. and Slihte, A., 2010. Transforming Textual Use

Cases to a Computation Independent Model, in Osis, J.

and Nikiforova, O. (eds) Model-Driven Architecture

and Modeling-Driven Software Development: ENASE

2010, 2ndMDA&MTDD Whs. SciTePress, pp. 33–42.

Ovchinnikova, V. and Nazaruka, E., 2016. The Validation

Possibility of Topological Functioning Model using the

Cameo Simulation Toolkit, in Proceedings of the 11th

International Conference on Evaluation of Novel

Software Approaches to Software Engineering.

SCITEPRESS - Science and and Technology

Publications, pp. 327–336. doi:

10.5220/0005926003270336.

Santos, E. and Dinh, H. T., 2008. On automatic knowledge

validation for Bayesian knowledge bases, Data &

Knowledge Engineering. North-Holland: Elsevier,

64(1), pp. 218–241. doi:

10.1016/J.DATAK.2007.07.004.

Sarkar, S. and Ramaswamy, M., 2000. Knowledge Base

Decomposition to Facilitate Verification’, Information

Systems Research, 11(3), pp. 260–283. doi:

10.1287/isre.11.3.260.12207.

Skorupski, J., 2015. Automatic verification of a knowledge

base by using a multi-criteria group evaluation with

application to security screening at an airport,

Knowledge-Based Systems, 85, pp. 170–180. doi:

10.1016/j.knosys.2015.05.004.

Tadj, C. and Laroussi, T., 2006. Dynamic Verification of an

Object-Rule Knowledge Base Using Colored Petri

Nets, Journal of systemics, Cybernetics and

Informatics. International Institute of Informatics and

Cybernetics, 4(3), pp. 23–31.

Wobcke, W., 1994. A conditional logic for planning and

plan recognition, in Proceedings of ANZIIS ’94 -

Australian New Zealnd Intelligent Information Systems

Conference. IEEE, pp. 382–386. doi:

10.1109/ANZIIS.1994.396993.

Wu, Q., Zhou, C., Wu, J. and Wang, C., 2005. Study on

Knowledge Base Verification Based on Petri Nets, in

2005 International Conference on Control and

Automation. IEEE, pp. 997–1001. doi:

10.1109/ICCA.2005.1528267.

Zhong, B. T., Ding, L. Y., Love, P. E. D. and Luo, H. B.,

2015. An ontological approach for technical plan

definition and verification in construction, Automation

in Construction, 55, pp. 47–57. doi:

10.1016/j.autcon.2015.02.002.

Verification of Causality in the Frame System based on the Topological Functioning Modelling

521

