Context-aware and Attribute-based Access Control Applying Proactive
Computing to IoT System

Noé Picard!, Jean-Noél Colin' and Denis Zampunieris

2

1 PReCISE Research Center, University of Namur, Belgium
2FSTC, University of Luxembourg, Luxembourg

Keywords:

Abstract:

Internet of Things, Access Control, ABAC, Event Analysis, Proactive Computing.

ABAC allows for high flexibility in access control over a system through the definition of policies based on

attribute values. In the context of an IoT-based system, these data can be supplied through its sensors connected
to the real world, allowing for context-awareness. However, the ABAC model alone does not include proposals
for implementing security policies based on verified and/or meaningful values rather than on raw data flowing
from the sensors. Nor does it allow to implement immediate action on the system when some security flaw is
detected, while this possibility technically exists if the system is equipped with actuators next to its sensors.
We show how to circumvent these limitations by adding a proactive engine to the ABAC components, that
runs rule-based scenarios devoted to sensor data pre-processing, to higher-level information storage in the PIP,
and to real-time, automatic reaction on the system through its actuators when required.

1 INTRODUCTION

Access control is an important part of today sys-
tems. Whether it is about physical access control or
software access control, it has become an essential
and critical element for most businesses. Over the
years, multiple models have emerged, like the rela-
tively recent model called Attribute-based access con-
trol (ABAC). The concept is not especially innova-
tive, but with the rise of Internet of Things (IoT) sys-
tems, the ABAC model could turn out to be very in-
teresting. In fact, IoT sensors allow for monitoring
and collecting data about the environment on which
access control might apply. Moreover, IoT actuators
provide a way for the system to interact with the phys-
ical world. With all the data that such a system can
provide, the ABAC policies could only be enhanced
(Rath and Colin, 2017).

However, some concerns arise when one tries to
apply those two concepts together. To make the
data coming from the sensors available to the ABAC
model architecture, a gap between two components
has to be filled, as we will demonstrate in Section 3,
and no straightforward solution could be found. Ide-
ally, the envisioned system would also interact with
the surrounding environment. Still, how to make this
interaction easier without implementing a completely
new system? These are the issues that we want to ad-

Picard, N., Colin, J. and Zampunieris, D.

Context-aware and Attribute-based Access Control Applying Proactive Computing to loT System.

DOI: 10.5220/0006815803330339

dress with the help of proactive computing. We intro-
duce a way to use the proactive computing paradigm,
through a proactive engine, to enhance the ABAC
model with an IoT system.

The rest of this paper is structured as follows. In
Section 2, the access control part is explained along
the ABAC model. Section 3 describes the conse-
quences of applying access control to an IoT sys-
tem. Section 4 explains how the proactive comput-
ing makes this application easier. The resulting ar-
chitecture, which derives from the ABAC model, is
described in Section 5. To illustrate how the proactive
engine would work in a such case, the Section 6 pro-
vides a direct use case example. Section 7 describes
how it can be extended to real working systems. Fi-
nally, Section 8 completes this paper with our conclu-
sions.

2 ATTRIBUTE-BASED ACCESS
CONTROL

Access control is used to define what a subject can
do or which resources it can access. Several models
for access control have been proposed in the literature
like, e.g., discretionary access control, mandatory ac-
cess control or role-based access control. In this pa-

333

In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (loTBDS 2018), pages 333-339

ISBN: 978-989-758-296-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SPBDIoT 2018 - Special Session on Recent Advances on Security, Privacy, Big Data and Internet of Things

per, we are concerned with the Attribute-Based Ac-
cess Control (ABAC) model. For an introduction to
ABAC, see for example (Hu et al., 2014).

The main goal of ABAC is to provide high flexi-
bility in access control. For instance, it considers that
access control does not always only concern the iden-
tity and related roles of the subject trying to access a
resource. Indeed, additional information could influ-
ence the access decision like the current state of the
subject, its actions or the environment. These data
are referenced as attributes in the ABAC terminology
and attributes are the building blocks of access con-
trol policies. Within those policies, attributes can be
combined in complex expressions.

2.1 ABAC Model Architecture

The underlying architecture to the ABAC model is
generally composed of three main components. The
Policy Enforcement Point (PEP) protects the services,
data, etc. on which access control is required. When
a subject wants to access a resource, the PEP inter-
cepts this request and translates it in an authorization
request understandable by the Policy Decision Point
(PDP).

The PDP is at the core of the architecture as is the
component that takes the final decision (Deny/Permit)
regarding a request. This node often relies on two
sub-components. One is the Policy Repository Point
(PRP) which is responsible for making policies avail-
able to the PDP. The other one is the Policy Admin-
istration Point (PAP) that acts as the interface for sys-
tem administrators that allows them to create, edit or
delete policies.

Finally, the Policy Information Point (PIP) allows
the PDP to retrieve the current attribute values that are
needed for the computation of the policies. The rest
of this paper is mainly concerned by discussions and
proposals around the PIP.

2.2 XACML Standard

XACML (OASIS Standard, 2013) stands for eXten-
sible Access Control Markup Language. It has been
created as a standard by defining a language and a
protocol to convey information about access control.
It is mainly based on ABAC, but it can also be spe-
cialized for other access control models like RBAC.
The XACML language gives the possibility to define
policies using XML notations. The standard proposes
a computation model to evaluate policies against ac-
cess requests which is based on the ABAC architec-
ture described in Section 2.1.

334

3 APPLYING ACCESS CONTROL
TO IoT

One of the strengths of ABAC is the possibility to use
a set of multiple and diverse attributes in the policies.
It is even more interesting if this set can be supplied
with data from an [oT system, because it can provide
lots of information through its sensors connected to
the real world.

3.1 Main Benefits from this
Combination

As a simple example, one could think of a room
equipped with connected sensors that monitor tem-
perature, humidity, presence, and so on in the room.
If we store the data received by those devices in a
database available through the PIP, then we could
write XACML policies that allow or not the access to
the room (supposing that there are also connected ac-
tuators that (un)lock the room doors, see Section 3.2
and 4) that rely on the current contextual information
in the room.

A second additional benefit is the possibility to
control how the database behind the PIP is supplied
with flows of data. In XACML, there is no recom-
mended way to implement this database, so it allows
us to imagine a solution that processes the data com-
ing from the sensors before to store information in
the PIP. This way, by avoiding to use raw values from
the sensors that may not be relevant and/or by aggre-
gating several values into upper-level data, we could
enhance the coherence and the pertinence of the at-
tributes available to the set of policies.

3.2 Limits in Its Implementation

While ABAC offers great extensibility and flexibility
compared to other access control models, developers
will face some of its limits when it comes to imple-
ment it in a real-world system.

For instance, knowing how to fill the attribute val-
ues backing up the PIP might be as simple as inserting
information in a database, but who is responsible to
collect and store the data? It is not really a limit of the
ABAC model that we underline here, as it takes into
account the diversity of the attributes sources behind
the PIP by using it as an interface between the sources
and the PDP. But the concern is that if we heavily
base the access policies on environmental attributes,
it might be cumbersome to implement systems that
fill the sources of the PIP.

Also, assuming one is using ABAC with an IoT
system, it surely desires to interact with the environ-

Context-aware and Attribute-based Access Control Applying Proactive Computing to IoT System

ment through the sensors and the actuators. But there
is no way to be able to interact synchronously with
the environment just by using ABAC. One might say
that there is the mechanism of obligations, defined in
XACML as operations that should be performed by
the PEP when they are returned alongside the autho-
rization decision. But this only allows the PEP to have
an effect on the environment when a subject tries to
access a resource, not when something has changed
within the environment.

4 PROACTIVE COMPUTING AT
HELP

Before talking about how to address the limits laid
down in Section 3.2, using proactive computing, let
us first introduce it. In an article, Tennenhouse estab-
lished theoretically the basics of proactive computing
(Tennenhouse, 2000). He described it in regards with
his vision of the future of computing, namely the tran-
sition from “human-centered to human-supervised (or
even unsupervised) computing”. In other words,
human-centered computing can be referenced as in-
teractive computing, where a system being used by a
user is locked to wait for user actions. However, with
proactive computing, the human is no longer placed
in the loop, but above it.

4.1 Proactive Engine

At the University of Luxembourg, Zampunieris D.
and his team had developed a proactive engine that
follows the premises of proactive computing as de-
scribed by Tennenhouse: “working on behalf of, or
pro, the user, and acting on their own initiative”.
Without entering too much in the detail of the imple-
mentation, there are some key concepts to understand.

The engine is a Rule-running system (RRS), it ex-
ecutes rules at a certain frequency. With the concepts
of Rule, one can create a Scenario which is a dynamic
set of rules obeying some path.

Furthermore, a Rule is the basic element in the en-
gine and it can be subdivided in five stages. (1) The
first one is called Data acquisition. It is during this
stage that all the data, necessary to the proper exe-
cution of the following stages, is gathered. (2) The
activation guards stage acts like a trigger for the third
and fourth stages. It can be any type of boolean ex-
pression. (3) The purpose of the third stage, Condi-
tions, is to offer the possibility to perform more in-
depth tests on the context. (4) To effectively do some-
thing, there is the Actions phase, which provides a lot
of freedom as well as power, given that the system is

implemented in the Java programming language. (5)
Finally, the Rule Generation step concludes the exe-
cution of a rule and allows the creation of other rules,
or to clone itself to stay in the system.

To store the rules to be executed at each iteration
(or at a further one if it is impossible to execute all
of them in one iteration), the engine relies on a FIFO
queue. For more information about the other aspects
of the engine, see (Zampunieris, 2006).

4.2 Make the Combination Easier

In the Section 3.2, we laid down some limits of the
ABAC model, especially when it is applied to an IoT
system. These can be easily taken away using a proac-
tive engine in an effective way. In fact, a proactive en-
gine could fill the gap between an ABAC architecture
and an [oT system.

On the one hand, there is the concern about the
way to make attribute values, coming from sensors
data, available to the PDP. Of course, it is the purpose
of the PIP to make those available, but as stated be-
fore, it is just an interface between some data sources
and the PDP. The idea is to use some rules (ideally
multiple scenarios) to supply a particular source hold-
ing sensors data. But it would not just be raw data,
as it is possible to implement scenarios that some-
how (see Section 6 for an example) analyze, compute,
combine, etc. this data. Therefore, we can assure a
certain coherence and completeness in what we store
as attributes.

Before going further, note that the scenarios must
not be mistaken with Artificial Intelligence (Al),
those are predefined, nevertheless they can be multi-
ple and complex. Their sequencing is decided over a
period of time based on the events that have occurred.

Then, on the other hand, proactive computing
helps a lot when it is necessary to react on the actua-
tors of the IoT system. Like before, specific scenarios
could stay tuned for new events that require action(s)
and react as quickly as possible.

S ENHANCED ABAC MODEL
ARCHITECTURE

To better understand how a proactive engine can han-
dle his two main tasks (assigned in Section 4.2), this
section explains the logical architecture that we came
up with. In the Figure 1, there are 3 important parts:
the access control part, the proactive engine and the
10T system.

335

SPBDIoT 2018 - Special Session on Recent Advances on Security, Privacy, Big Data and Internet of Things

Attributes

Requests

A\ 4

PDP

Policies
< NN H
Decisions

e Y

Proactive
Engine

< 4

: :

MQTT

loT
Sensors |

Actuators

XACML context

Figure 1: Enhanced ABAC model architecture.

5.1 Comply with the Standard

The access control part is delimited by the XACML
context frame. It follows the architecture described
in 2.1, the PDP receive the authorization requests and
deliver the decisions. To do so, it retrieves the poli-
cies applicable to the current request and evaluates
them. If the policies contains references to attributes
not available in the direct context — which will be al-
most always the case because we want to rely exclu-
sively on environmental attributes, the PDP asks the
PIP for the corresponding values.

Note that the PEP component is intentionally not
represented on the Figure 1, because usually there will
be several of them and it can be in many forms and at
different places across a system.

5.2 Enhanced Proactive Engine

The proactive engine described in Section 4.1 lacks
of one important feature: the communication with the
IoT system. Therefore, we chose to implement along-
side the engine a MQTT broker. MQTT (Message
Queuing Telemetry Transport) is a protocol based on
the Publish-subscribe pattern, where senders do not
know who they are sending messages to, but instead,
publish messages on topics. Similarly, the receivers
express their interest for a certain topic without know-
ing anything about the senders. For detailed informa-
tion about the MQTT protocol, see (OASIS Standard
Incorporating Approved Errata 01, 2015). In this way,
arule inside the engine can subscribe to a certain topic
and thereby listen for new messages. This specific
type of rule has a buffer where the messages can pile
up to be processed afterwards.

336

Moreover, the proactive engine is connected to a
database, implicitly represented by the PIP on the Fig.
1. This allows any rule to insert or retrieve data from
it. The schema of the database is left to the devel-
opers, as it depends on the type of the information
contained in the MQTT messages, and therefore the
type of the sensors used.

5.3 Collect Data and Act on the
Environment

The final important part is the IoT system (composed
of sensors and actuators). As hinted in Section 5.2,
the sensors can send their data (using specific topics)
to the MQTT broker embedded in the proactive en-
gine. The other way around, for actuators to receive
commands, the rules can also send messages through
the broker.

6 USE CASE EXAMPLE

To illustrate how our architecture works, this section
includes a straightforward example. Consider a sim-
ple server room equipped with temperature sensors
and a system to cool the place that we can utilize as
an actuator. The scenario — from the proactive engine
point of view — represented at the Figure 2 will moni-
tor the temperature and take actions.

The sensors send their data to the topics
sensors/temperature/X, where X is the identifica-
tion number of the sensor. A rule in the proactive
engine, named SENSORS_TEMPERATURE_MONITORING
for example, could subscribe to the topic filter
sensors/temperature/+, meaning that this rule

Context-aware and Attribute-based Access Control Applying Proactive Computing to IoT System

SENSORS_TEMPERATURE_MONITORIx;/l::>

- [== 2]
messages.slze

[> 2]

A4
TEMPERATURE_MAD|

| TEMPERATURE_COMPARE |€——

\ 4 \ 4

> TEMPERATURE_PIP |

A 4
|ACTUATOR,ADJUST,AIR,COOLING|

TEMPERATUREABNORMALVALUESALE:;]::>

Figure 2: Use case example - Scenario structure.

will receive data from all temperature sensors. This
rule will always analyse the latest twenty messages re-
ceived, by clearing its messages buffer in the actions
step if necessary. If the messages buffer is empty, the
rule is not activated. If it has been, it creates other
rules according to the number of messages. Note that
this rule has a specific type or class inside the engine,
we could call it a MQTT rule. This type of rule is au-
tomatically cloned in the queue in order to always lis-
ten for new MQTT messages. The following pseudo
code describes its logic:

data acquisition: /

activation guards:
messages.size() > 0

conditions: /

actions:
if (messages.size() > N_TEMPERATURES_TAKEN
)
messages.sublList (0, (messages.size() -
1) - N_TEMPERATURES_TAKEN).clear()

tempsToAnalyze = messages

rules generation:
if (getActivated())

size = tempsToAnalyze.size()
if (size = 1)
createRule(new TEMPERATURE_PIP(
tempsToAnalyze.get(0)))
else if (size = 2)
createRule(new TEMPERATURE_COMPARE (
tempsToAnalyze))
else
createRule(new TEMPERATURE_MAD (
tempstoanalyze))

From the SENSORS_TEMPERATURE_MONITORING
rule, there is one of the three following rules created.
If only one message was received, the created one is
the TEMPERATURE_PIP rule. Its purpose is to store in
the PIP the temperature value passed as a param-
eter. To do so, it verifies if it is necessary to store
the value, i.e. if the difference between the current
stored value in the PIP and the value to store is greater
than a particular constant (MINIMUM_DELTA). If not,
the rule is not activated and nothing is stored. More-
over, if the difference is greater than another constant
(MAXIMUM_DELTA) and that the last temperature up-
date in the PIP was close enough, the value is consid-
ered as abnormal and a counter is incremented. This
rule is an example of how the proactive engine can
solve the first limit presented in Section 3.2. In the
final step, the rule ACTUATOR_ADJUST_AIR_COOLING
is created to take actions on the environment through
the cooling system by triggering some actuators.

data acquisition:

previousTemp = getPip().getTemperature()

lastTempUpdate = getPip().
getLastTemperatureUpdate()

activation guards: /

conditions:
Math.abs(currentTemp - previousTemp) >
MINIMUM_DELTA

actions:
if ((lastTempUpdate + INTERVAL) >
currentTime() && Math.abs(currentTemp
- previousTemp) > MAXIMUM_DELTA)
getEngineDB() .
incrementAbnormalTemperature
ValuesCounter()

getPip().updateTemperature(temperature)

rules generation:
createRule(new ACTUATOR_ADJUST_AIR_COOLING
(temperature))

The rule ACTUATOR_ADJUST_AIR_COOLING ad-
justs the air-cooling system according to the
temperature value passed as parameter. Here, one
can observe that this rule solves the second problem

337

SPBDIoT 2018 - Special Session on Recent Advances on Security, Privacy, Big Data and Internet of Things

developed in Section 3.2 by acting on the environ-
ment.

data acquisition: /
activation guards: /
conditions: /

actions:
if (temperature < LIMIT_MIN) {
setAirCoolingLevel(AirCoolingLevel.LOW)
} else if (temperature > LIMIT_MAX) {
setAirCoolingLevel(AirCoolingLevel.HIGH)
} else {
if ((temperature - LIMIT_MIN) <= 2) {
setAirCoolinglLevel(AirCoolingLevel.LOW
)
} else if (Math.abs(temperature -
LIMIT_MAX) <= 2) {
setAirCoolinglLevel(AirCoolingLevel.
HIGH)
} else {
// Between LIMIT_MIN and LIMIT_MAX
setAirCoolinglLevel(AirCoolingLevel.
MODERATE)
}
}

rules generation: /

The rule TEMPERATURE_COMPARE is created by the
rule SENSORS_TEMPERATURE_MONITORING when the
messages buffer has a size of 2. It compares two tem-
peratures values passed as arguments. If the differ-
ence between the two is not too high, the mean is
store. But it can also increment the abnormal value
counter if this difference is in fact too high.

When there are strictly more than 2 messages in
the buffer, it is the rule TEMPERATURE_MAD that is cre-
ated. This one uses a statistics measure called Me-
dian Absolute Deviation (MAD) to detect any abnor-
mal value. If one is actually detected, as before, a
counter is incremented.

These two last rules create the TEMPERATURE_PIP
when it is necessary to store a temper-
ature value in the PIP. Finally, the rule
TEMPERATURE_ABNORMAL _VALUES_ALERT is al-
ways present in the engine queue, because it watches
over the abnormal value counter and generates an
alert if this counter exceeds some threshold.

7 INNOVATIVE, PROACTIVE,
ABAC-BASED SECURITY

The example in Section 6 might seem simplistic, but
it was essential to introduce and illustrate the main

338

idea of this paper. However, it does not represent all
the extent of the model that we developed. In fact, ex-
tending it to a real working system is achievable and
has been already performed in a controlled testbed.

At the University of Luxembourg, a simulator rep-
resenting the IoT system of a “modular data center”
had been conceived to test a proactive engine with
multiple scenarios. It was mainly simulating the sen-
sors and the actuators of the system, to provide a kind
of sandbox in order to experiment with the proactive
engine. The results were conclusive, and prove that
the engine could work on larger system, due to its
ability to run several scenarios in parallel, in order to
handle multiple sensors and actuators.

More globally, the advantages of our enhanced
ABAC-based security model become clearer: First,
as seen in Section 6, the proactive engine can take
the role of filling automatically the PIP with sensors
data. The access policies can be more abstract, that is
to say the data stored as an attribute could have been
pre-processed, thus it is not necessary to be burdened
with low-level data in those policies. Secondly, the
actuators can be triggered spontaneously by the sce-
narios, all it requires is implementing rules that inter-
act with any of the actuators. Moreover, the coher-
ence of attributes can also be insured if the scenarios
are well-defined. Finally, another key aspect is the
separation of concerns that allows the division in sce-
narios. With this concept it is possible to focus on one
type of data or actuators at a time, which also allows
a better maintainability and extendability.

8 CONCLUSIONS

Attribute-based access control applied to IoT system
can theoretically make a powerful combination. To
make it concrete, two limits were encountered: how to
effectively link the sensors data with attribute values
in the PIP and how to automatically and immediately
act on the environment when it is needed. In order
to overcome these, the proactive computing paradigm
reflected in a proactive engine turned out to be an
ideal choice.

With the concept of proactive scenario, we
showed how to provide data coming from the sensors
as a source of attributes for the ABAC model. More-
over, in these scenarios, the data can be pre-processed
and not just be raw values that a sensor provides,
hence allowing higher level data as attributes. Equally
important is the ability to take actions on the environ-
ment by sending commands from the proactive engine
to the IoT actuators.

This way of doing can be applicable to large sys-

Context-aware and Attribute-based Access Control Applying Proactive Computing to IoT System

tems with numerous sensors and actuators, as the en-
gine can run multiple and complex scenarios in paral-
lel, without performance issues. We believe that this
new application of proactive computing opens some
promising road towards taking full advantage of the
ABAC model and the Internet of Things at the same
time.

REFERENCES

Hu, C. T., Ferraiolo, D. F., Kuhn, D. R., Schnitzer, A., San-
dlin, K., Miller, R., and Scarfone, K. (2014). Guide
to Attribute Based Access Control (ABAC) Definition
and Considerations. Special Publication (NIST SP) -
800-162.

OASIS Standard (2013). eXtensible Access Con-
trol Markup Language (XACML) Version 3.0.
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.html.

OASIS Standard Incorporating Approved Errata 01
(2015). MQTT Version 3.1.1 Plus Errata OI.
http://docs.oasis-open.org/mgtt/mqtt/v3.
1.1/mgtt-v3.1.1.html.

Rath, T. M. A. and Colin, J. N. (2017). Adaptive Risk-
aware Access Control Model for Internet of Things. In
Proceedings of the International Workshop on Secure
Internet of Things, in conjunction with Esorics2017,
Oslo.

Tennenhouse, D. (2000). Proactive Computing. Communi-
cations of the ACM, 43(5):43-50.

Zampunieris, D. (2006). Implementation of a Proactive
Learning Management System. In Proceedings of "E-
Learn - World Conference on E-Learning in Corpo-
rate, Government, Healthcare & Higher Education",
pages 3145-3151.

339

