
The Topological Functioning Model as a Reference Model for

Software Functional and Non-functional Requirements

Erika Nazaruka and Jānis Osis
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, LV-1048, Riga, Latvia

Keywords: Topological Functioning Model, Functional Requirements, Non-functional Requirements, Requirements

Modelling.

Abstract: Specification of non-functional requirements in models is a challenge due to extra-functional nature of the

requirements. The topological functioning model (TFM) can serve as a reference model for specifying

mappings from both functional and non-functional requirements to the functional characteristics and structure

of the modelled system. The main principle presented in this paper extends a way of specification of the TFM

functional characteristics and causal relationships and provides a specification of mapping types as tuples of

TFM functional features extended with requirements and characteristics of these relationships, namely,

completeness and overlapping for functional requirements, and scope and dynamic characteristics for non-

functional ones. This allows propagating the mappings from requirements to software implementing

constructs, that would be useful for further architectural decisions and development of test cases.

1 INTRODUCTION

Software is everywhere, but software development

projects fail very often (Charette 2005). Inadequate,

incomplete, constantly changing software

requirements remain one of the main risks in the

software development.

Software requirements specify the required

functionality of the planned product as well as quality

attributes, constraints and external interface

requirements (Wiegers and Beatty 2013). The last

three are called non-functional requirements (NFRs).

NFRs show how well the required functionality must

be implemented. The quality attributes or “-ilities”

constitute a large part of NFRs. NFRs sometimes are

called also extra-functional requirements. According

to Wiegers and Beatty (2013), external quality

attributes are availability, installability, integrity,

interoperability, performance, reliability, robustness,

safety, security, and usability.

The functional requirements (FRs) are

implemented as functional entities, while

implementation of NFRs may differ corresponding to

their nature (Liu et al. 2010) – they can contain

technical information that relates to functional

requirements, system architecture, design constraints,

as well as implementation constraints (Wiegers and

Beatty 2013).

A Topological Functioning Model (TFM)

elaborated at Riga Technical University, Latvia, in

1969 by Janis Osis (Osis and Asnina 2011c) specifies

a system from three viewpoints – functional,

behavioural and structural. This model can serve as a

root model for further analysis of the system and

software domains and as a reference model for

system/software requirements. Its main distinction

from other models is formalism based on the

algebraic topology and system theory. The formalism

does not worsen holistic representation of the system

in comparison with semi-formal modelling languages

used nowadays, such as UML (Unified Modelling

Language) or BPMN (Business Process Model and

Notation). The modelled facts and knowledge about

the system can be hold in different forms, e.g. as

tuples of elements or a knowledge base, thus allowing

controlled transformations from one view to another.

Besides that, it is possible to create a model of the

sub-system, e.g. a model of the supporting

information system or a software system, and to keep

consistency between models of the system and its

sub-systems in the mathematically formal way as well

as to verify completeness and consistency of the

gathered knowledge.

FRs can be mapped directly onto the TFM, thus

leading to discovering incompliances between

determined FRs and functional characteristics of the

domain. Similarly, all NFRs can be mapped into the

Nazaruka, E. and Osis, J.
The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements.
DOI: 10.5220/0006811204670477
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 467-477
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

467

TFM, indicating the scope and dynamical

characteristics of the requirements.

This paper summarizes the results of research

work on system/software requirements specification

and verification by means of the TFM. All cases are

explained using small examples.

The paper is organized as follows. Section 2

describes main features of the TFM and its

application in the field of functional requirements.

Section 3 summarizes the mentioned results on

referencing NFRs to this model. Section 4 gives the

illustrating example. Related work (Section 5) and

conclusions (Section 6) end the paper.

2 TFM AS A REFERENCE

MODEL FOR FUNCTIONAL

REQUIREMENTS

The TFM is a formal mathematical model that allows

modelling and analysing functionality of the system

(Osis and Asnina 2011c). It could be a business,

software, biological system, mechanical system, etc.

The TFM represents the modelled functionality as a

digraph (X, Θ), where X is a set of inner functional

characteristics (called functional features) of the

system, and Θ is a topology set on these

characteristics in a form of a set of cause-and-effect

relations. TFM models can be compared for

similarities using a continuous mapping mechanism

(Asnina and Osis 2010). Since 1990s the TFM is

being elaborated for the software development (Osis

et al. 2008a).

The TFM is characterized by the topological and

functioning properties (Osis and Asnina 2011b). The

topological properties are connectedness,

neighbourhood, closure and continuous mapping.

The functioning properties are cause-and-effect

relations, cycle structure, inputs and outputs. The

composition of the TFM is presented in (Osis and

Asnina 2011c).

Rules of composition and derivation of the TFM

from the textual system description within

TFM4MDA (TFM for Model Driven Architecture) is

provided by examples and described in detail in

several publications (Asnina 2006; Osis et al. 2007;

Osis et al. 2008b). The TFM can be manually created

in the TFM Editor or can also be generated

automatically from the business use case descriptions

in the IDM toolset (Šlihte and Osis 2014).

The main TFM construct is a functional feature

that represents system’s functional characteristic,

e.g., a business process, a task, an action, or an

activity (Osis and Asnina 2011b). It can be specified

by a unique tuple (1).

<A, R, O, PrCond, PostCond, Pr, Ex> (1)

Where (Osis and Asnina 2011c):

 A is object’s action,

 R is a set of results of the object’s action (it is

an optional element),

 O is an object that gets the result of the action

or a set of objects that are used in this action,

 PrCond is a set of preconditions or atomic

business rules,

 PostCond is a set of post-conditions or atomic

business rules,

 Pr is a set of providers of the feature, i.e.

entities (systems or sub-systems) which

provide or suggest an action with a set of

certain objects,

 Ex is a set of executors (direct performers) of

the functional feature, i.e. a set of entities

(systems or sub-systems) which enact a

concrete action.

The cause-and-effect relations between functional

features define the cause from which the triggering of

the effect occurs. The formal definition of the cause-

and-effect relations and their combinations are given

in (Asnina and Ovchinnikova 2015). It states that a

cause-and-effect relation is a binary relationship that

links a cause functional feature to an effect functional

feature. In fact, this relation indicates control flow

transition in the system. The cause-and-effect

relations (and their combinations) may be joined by

the logical operators, namely, conjunction (AND),

disjunction (OR), or exclusive disjunction (XOR). The

logic of the combination of cause-and-effect relations

denotes system behaviour and execution (e.g.,

decision making, parallel or sequential actions).

The TFM can be manually (but according to the

precise rules) transformed into most used UML

diagram types (Figure 1): class diagrams, activity

diagrams, use cases and their textual specifications

(Osis and Asnina 2011a) and Topological UML

(Donins et al. 2011) diagrams such as Topological

Class diagrams, Topological Use Case diagrams,

Activity diagrams, State Chart diagrams, Sequence

and Communication diagrams (Osis and Donins

2010).

Since the TFM specifies functioning of the

system, it can be used for verification of FRs. The

FRs can be mapped onto the TFM functional features

(Figure 1) as described in detail in (Osis and Asnina

2008b; Osis and Asnina 2008a; Asnina et al. 2011).

As a result, mappings give the opportunity to find

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

468

incomplete, additional, conflicting, unnecessary, as

well as redundant requirements to the system

functionality.

ReaderAccount ReaderCard

Reader Fine

BookCopyBookFundRequest

Library IS

Librarian

Register reader
Check out book

Return book

Close fine

Identify Reader

«uses»

«uses»

«uses»

11

20

16

19

15

18

13

14
12

9

7

8

6

1 2 3
4

5

10

17

SG1 “Register a reader”,
SG2 “Check out a book”,
SG3 “Return a book”,
SG4 “Pay a fine”,
SG5 “Impose a fine”,
SG6 “Close a fine”.

FR1: The system shall register a new reader;
FR2: The system shall check out a book copy;
FR3: The system shall handle return of a book copy;
FR4: The system shall account reader’s fines.

System goals Functional requirements

UML Class

Diagram

UML Use Case Diagram and

Specifications

Topological Functioning Model

M
appings

Mappings

M
ap

pi
ng

s

M
appingsG

en
er

at
e

G
enerate

Figure 1: Mappings from analysis artefacts to the TFM;

some artefacts can be generated from the TFM.

Types of FRs mappings onto the TFM can be one-

to-zero, one-to-one, one-to-many, many-to-many,

many-to-one, and zero-to-one:

 One-to-one is when one functional requirement

completely maps onto one functional feature;

this means that the functional requirement

completely specifies one functional

characteristic of the domain, for example,

authorization of a registered user.

 One-to-many, many-to-many and many-to-one

cases relate to situations when specifications of

functional requirements and functional

characteristics are too decomposed. One-to-

many and many-to-one are special cases of the

relation type “many-to-many”. These cases can

be caused by different levels of details between

functional requirements and TFM functional

features. Such cases indicate and help in

discovering decomposed, overlapping or

incomplete requirements.

 One-to-zero and zero-to-one. The former

occurs when one functional requirement

describes new (or undefined) functionality of

the system that can cause modification of the

system and its TFM. The latter occurs when the

requirements specification does not contain

any functional requirement corresponding to

the already defined functional characteristics.

This can indicate the functionality that either

will not be implemented in the “target” system

or it is new (and thus it requires changes in the

existing processes of the system), or missed

(i.e., either it is not mentioned in the

requirements specification, or it will be

changed but it is not explicitly expressed).

The mappings from FRs to the TFM are specified

in instances of the meta-class Correspondence (Osis

and Asnina 2011c).

3 TFM AS A REFERENCE

MODEL FOR

NON-FUNCTIONAL

REQUIREMENTS

3.1 Specification of Mappings

Specified as tuples, the mappings between

requirements and TFM functional features can be

reversed and specified as references from the TFM to

FRs. They can be added to the specification tuple (1)

of the functional feature as shown in (2).

<A, R, O, PrCond, PostCond, Pr, Ex, FRs> (2)

Where FRs is a set of references to functional

requirements specified separately from the TFM.

NFRs similarly to FRs can be mapped onto the

TFM functional feature or a set of features by

providing referencing in a way similar to the

specification of the corresponding FRs.

The possible types of NFRs mappings onto the

TFM are the same as in case of FRs, i.e. one-to-zero,

one-to-one, one-to-many, many-to-many, many-to-

one, and zero-to-one, but the meaning differs:

 One-to-one is when one non-functional

requirement is related to the concrete

functional feature and must be implemented in

the corresponding entities. For example, a

functional feature specifies retrieving of all

loans for some time period from the database

and a non-functional feature specifies that the

accomplishment of the request must not exceed

3 milliseconds.

 One-to-many is when one non-functional

requirement is related to all noted functional

features and must be implemented in all the

corresponding entities. For example, there are

several functional features that specify

The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements

469

retrieving data from the database and some

successive calculations, and a non-functional

feature that specifies that accomplishment of

the requests to the database must not exceed 3

milliseconds.

 Many-to-one is when more than one non-

functional requirements are related to one

noted functional feature and must be

implemented in the corresponding entities. It

could be considered as a special case of the

many-to-many relationship. For example, there

are two non-functional features that specify the

requirement to the language of the user

interface and the requirement to the provided

software interface. Both must be implemented

in the input functional feature that specifies

interaction with the users of software.

 One to zero. One non-functional requirement is

not related to any functional feature and is not

traceable in the model and in the code. This

indicates that this requirement is out of the

scope of the model and, hence, out of the scope

of the system planned. There could be two

causes, i.e., either the requirement is not

appropriate, or the model lacks the required

functionality. The latter may indicate

incomplete analysis of the required functions

that are new for the system where software will

run.

 Zero to one. A functional feature is not related

to any non-functional requirement. It is a

reason to recheck the non-functional

requirements.

The mappings between NFRs and the TFM

functional features can also be specified in the tuple

as element NRFs – a set of references from a

functional feature to NFRs (3).

<A, R, O, PrCond, PostCond, Pr, Ex, FRs, NFRs> (3)

Besides that, NFRs may be referenced only from

those functional features that have references to FRs,

since as FRs relate to functionality that will be

implemented as NRFs relate to the same one.

Quantitative characteristics of NFRs can also be

added to the specification of a functional feature in

the TFM. All that is needed is to extend an element of

set NFRs that will describe the needed characteristics

value or limit D (4).

 NFRs = {NFR1, …, NRFn},

 where NFRi = <REFNFRi, DNFRi, SCNFRi>

(4)

For example, if non-functional requirement NFR1

has a dynamic characteristics D that can be expressed

as a value or as a function (e.g. D=f(p), where p is a

parameter set of some function f). Thus, it could be

added to the tuple of the functional feature

specification in a form NFRs = {NFR1}, where

NFR1=<REFNFR1, DNFR1> and REFNFR1 is a reference

to the NFR1.

Scope of non-functional requirements may be a

process, a persistent data, or a whole system. This list

may be extended by values specific to the project. In

the element specification (4), this value can be

indicated as a value of variable SCNFRi that

corresponds to the enumeration {“process”,

“persistent data”, “whole system”}.

Indeed, this specification is not as compact as

instances of meta-class Correspondence (since most

of NFRs refers to the whole system), but it is still

formal and accurate.

However, to provide compactness, another

specification that would hold knowledge of meta-

class Correspondence may be introduced for both FRs

and NFRs. Let us assume that we have a functional

feature tuple FF (5) with additional element “id” that

denotes an identifier of a FF.

FF = <id, A, R, O, PrCond, PostCond, Pr, Ex> (5)

Then it is possible to specify mappings FR2FF (6)

from FRs to functional features FFs like in meta-class

Correspondence, where FR is a set of functional

requirements, FF is a set of functional features, and

isComplete and isOverlapping are Boolean variables

for indicating complete or overlapping mappings.

FR2FF = < FR, FF, isComplete, isOverlapping> (6)

In case of NFRs mappings can be specified as a

tuple (7), where NFR is a set of non-functional

requirements in the form indicated in (4), and FF is a

set of functional features.

NFR2FF = < NFR, FF> (7)

In general, the TFM and mappings from

requirements onto it can be described as in (8).

TFM2R = {FF, NFR, FR, FR2FF, NFR2FF} (8)

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

470

3.2 Propagating to Implementing
Constructs

Certainly, specification of mappings is useless

without its further use. Table 1 illustrates summary of

traceability of TFM elements to elements of software

architecture expressed in terms of modelling

constructs of Unified Modelling Language (Donins

2012).

Table 1: Tracing TFM elements into elements of software

architecture.

Elements in

TFM
Implementing constructs in UML

Action
Activities, operations, messages, events,

entry and exit effects

Object Classes, objects

Result
Classes, objects, states, associations

between certain classes

Precondition Guards in behavioural diagrams, states

Postcondition States

Providers Actors, subject, classes

Executors Actors, classes, objects

Subordination None

Cause-and-

effect relation

Topological relationships, structural

relationships, control flows, transitions

Functioning

cycle

Topological relationships, structural

relationships, control flows

TFM itself

Subsystems or subjects; use cases, actors

and relationships between them; objects,

messages and their sequences;

workflows; topological class diagrams,

topological use case diagram,

communication diagrams, and object

diagrams; state diagrams; component and

deployment diagrams

In general, requirements traceable to TFM

functional features and cause-and-effect relations are

traceable to the corresponding behavioural (e.g., an

activity, a control flow) and structural constructs

(e.g., a class) in UML diagrams that may be verified

at different modularization levels starting from units

and finishing by sub-systems or large modules. Thus,

NFRs (as well as FRs) can be designed and tested in

the corresponding structural and behavioural

constructs of UML diagrams such as classes, objects,

activities, processes, events, sub-systems,

components and so on and in the constructs of source

code such as persistent (serializable) classes, methods

and functions, processes, modules and assemblies,

components and subsystems, etc.

4 ILUSTRATIVE EXAMPLE

Let us consider the example of the TFM for a library

system. The TFM (Figure 2) specifies the main

functionality provided by the library, i.e. registering

persons as readers, and giving out and taking back the

books as well as imposing a fine in case of damages

of the book or the exceeded loan time. The

specification of functional features is given in Figure

3 and Figure 4. Let us assume that the task is to create

new software that should support librarians’ work.

Software functional requirements to the new system

are stated as follows:

 FR1: The system shall provide registration of a

new reader by creating a reader account and

issuing a reader card to the registered person.

 FR2: The system shall provide giving out a

book to the reader.

 FR3: The system shall provide the return of a

loaned book to the library.

 FR4: The system shall show information of the

reader’s registration to the librarian.

 FR5: The system shall provide generation of a

report on lost books for the indicated time

period.

 FR6: The system shall provide generation of a

report on damaged books for the indicated time

period.

Software non-functional requirements are the

following:

 NFR1: The user interface language must be

Latvian.

 NFR2: The search for a reader account must

not exceed 2 seconds.

 NFR3: The system must be available from 8 to

20 o’clock from Monday to Friday.

 NFR4: All activities of the software user must

be logged.

 NFR5: The system must create a backup for all

data.

 NFR6: The software must support

simultaneous work of 10 users.

References from TFM functional features to the

FRs and NFRs are shown in Figure 5.

Summarizing, in the example we have one-to-

many, zero-to-one, and one-to-zero relationships

among functional requirements and functional

features. The one-to-many relationships are FR1 to

functional features 2, 3, 4, 5, 6, 7, 8; FR2 to 3, 11, 12,

13, 14; FR3 to 3, 18, 19, 20, 21, 22, 23, 24, 25; FR4

to 3, 5. The zero-to-one relationships relate to

functional features 1, 9, 10, 15, 16, 17, 26, and 27.

The one-to-zero relates to FR5 and FR6. The latter

The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements

471

case indicates new functionality that must be

introduced into software to be built and is not

represented in the TFM of the current functioning of

the library. This means that the TFM must be

extended with several functional features that

represents the required functional characteristics and

revalidated. Then, FR5 and FR6 should be mapped to

the new functionality.

In their turn, NFRs relate to functional features

(related to FRs) with one-to-many and one-to-one

relationships. So, NFR1, NFR3, NFR4 and NFR6

relate to the whole system (as to processes, as to data),

NFR2 relates to functional feature 3, and NFR5 also

relates to the whole system, but only to the persistent

data.

Figure 2: The topological functioning model of the library operation (simplified).

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

472

Figure 3: The specification of TFM functional features, where S – subordination, I – inner of the system, E – external to the

system, Ex – the executor, R – the reader, L – the librarian, P – the person.

Figure 4: The specification of TFM functional feature preconditions and post-conditions.

The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements

473

Figure 5: The specification of mappings between TFM functional features and both functional (FRs) and non-functional

requirements (NFRs).

In other words, FR1 is a requirement of

implementation of the process of the registration of a

new reader, where a user interface must be in Latvian

(NFR1), time required for searching a reader account

must not exceed 2 seconds (functional feature 3,

NFR2), this process must be available from 8 to 20

o’clock from Monday to Friday (NFR3), all user

activities must be logged (NFR4), it must process at

least 10 simultaneous requests (NFR6), and backups

of data of persistent classes ReaderCard,

RequestForm, Registration, Person, and

ReaderAccount must be created (NFR5).

FR2 is a requirement of implementation of the

process of loaning books, where a user interface must

be in Latvian (NFR1), time required for searching a

reader account must not exceed 2 seconds (functional

feature 3, NFR2), this process must be available from

8 to 20 o’clock from Monday to Friday (NFR3), all

user activities must be logged (NFR4), this process

must support 10 simultaneous requests (NFR6), and

create a backup data of persistent classes

Registration, Person, RequestForBook, Book, and

BookLoan (NFR5).

FR3 is a requirement of implementation of the

process of returning loaned books, where a user

interface must be in Latvian (NFR1), time required

for searching a reader account must not exceed 2

seconds (functional feature 3, NFR2), this process

must be available from 8 to 20 o’clock from Monday

to Friday (NFR3), all user activities must be logged

(NFR4), this process must support 10 simultaneous

requests (NFR6), and create a backup data of

persistent classes Registration, Person, Book,

ReaderAccount, BookLoan and Fine (NFR5).

FR4 is a requirement of implementation of the

process of informing registration data, where a user

interface must be in Latvian (NFR1), time required

for searching a reader account must not exceed 2

seconds (functional feature 3, NFR2), this process

must be available from 8 to 20 o’clock from Monday

to Friday (NFR3), all user activities must be logged

(NFR4), this process must support 10 simultaneous

requests (NFR6), and create a backup data of

persistent classes Registration and Person (NFR5).

FR5 and FR6 speicify new functionality that must

be first added to the TFM, then the TFM must be

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

474

revalidated, and the necessary NFRs must be

referenced to the introduced functional features.

Concluding, TFM as a reference model allows

showing required functionality and its extra-

functional characteristics already at the stage of

problem/solution domain modeling and analysis.

5 RELATED WORK

Modelling and further analysis of NFRs in the context

of Requirements Engineering and early stages of

Model Driven Software Development (MDSD) is

quite actual at the present.

Liu et al. provide their own solution based on

analysis of FRs implementation in use case, class and

sequence diagrams (Liu et al. 2010). Analysis of

these diagrams allows authors to annotate

corresponding constructs in the diagrams and to use

them as root nodes for creation of a soft goal graph

with NFRs. Then the soft goal graph is refined to sub-

NFRs. Operationalizations for these sub-

requirements are identified in the corresponding

sequence and class diagrams. Potential conflicts and

synergy are identified during this process, too. At the

result, two models are created, namely, functional and

non-functional. These models are integrated using

JointPoint elements. However, as the authors

mention, the suggested approach is mainly suitable

for NFRs that are closely related to the functionality.

Besides that, a quantitative part of NFRs is not

modelled.

The same conception of soft goal graphs is applied

in (Xiang et al. 2015), (Ahmad et al. 2012) and

(Zubcoff et al. 2016), etc. The first authors introduce

their own ontology-based language for NFRs

specification. The reason is to model NFRs and

analyze possible conflicts among them as early as

possible at the development. The authors illustrate

that a use of ontology in NFRs modeling is one of

current trends in requirements modeling and analysis.

Similarly to our approach, specifications of NFRs and

FRs relate to each other. The difference is in a

referencing model, the authors use the soft goal

interdependency graph, while in our approach we

make a use of the TFM. Ahmad et al. (Ahmad et al.

2012; Ahmad et al. 2015) use the KAOS based

approach with domain specific language that extends

special requirements specification language Relax. In

their turn, the latter authors apply Pareto Efficiency to

optimize NFRs satisfaction and as a reference model

they use the i* (i-star) [soft goal] model.

Extended NFRs framework based on the soft goal

model (Goncalves and Krishna 2015) suggest an

approach, where weights are added on edges between

parent and child goals, thus allowing dynamic

analysis of the possible design alternatives for soft

goal satisfaction by agents.

Phalnikar and Jinwala provide a simple

framework for Service-Oriened Requirements

Engineering that uses the semi-formal approach of

graph transformation and transformation of WSDL

(Web Service Definition Language) specifications in

XML into GGX (Graph Grammar Language) format

(Phalnikar and Jinwala 2015). As a result, analysis of

critical pairs of requirements is conducted. This

approach apply the similar idea that NFRs must be

specified as addition to behavioural and structural

diagrams of the system model.

In MDSD, dealing with NFRs remains a challenge

(Ameller et al. 2015). In practice, NFRs can be

specified separately or in-place with the main model

as stereotyped classes. For example, the separate

specification can be done by creating a standalone

metamodel or an extention to the metamodel of the

main model, e.g., a “quality viewpoint” based on a

metamodel that defines such elements as constraints

in OCL (Object Constraint Language) and in natural

language, references to quality attributes and “entity

classes” as well as measurements and decision criteria

(González-Huerta et al. 2012). Another variant is a

use of the previously considered soft goal models

(Ameller et al. 2010) that are referenced to

architectural knowledge, thus allowing propagation

of NFRs to platform independent and platform

specific models.

6 CONCLUSIONS

Constantly changing software requirements are a

challenge for software developers, since they require

verification and analysis of possible conflicts,

contradictions and incompleteness among them and

existing design or implementation constructs.

Discovering, modelling and analysis of them at the

early stages of software development should improve

the quality of the development process and the final

product.

In this research we have discussed how functional

and non-fuctional requirements can be referenced to

the formal TFM. Since the TFM provides a formal

analitical means for functional requirements

verification, it can also be used in a similar way for

specification and further analysis of non-functional

requirements. Referencing from TFM functional

features to the related requirements allows tracing

them to implementing constructs in design models

The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements

475

and code. Referencing from requirements to related

TFM functional features allows discovering of

possible incompleteness and conflicts at the stages of

problem analysis and decision making on design and

architectural solutions.

The future research direction is implementation of

the provided approach and integration of it with the

domain knowledge base.

REFERENCES

Ahmad, M., Bruel, J.-M., Laleau, R., and Gnaho, C., 2012.

Using RELAX, SysML and KAOS for Ambient

Systems Requirements Modeling. Procedia Computer

Science, 10, pp.474–481.

Ahmad, M., Belloir, N. and Bruel, J.-M., 2015. Modeling

and verification of Functional and Non-Functional

Requirements of ambient Self-Adaptive Systems.

Journal of Systems and Software, 107, pp.50–70.

Ameller, D., Franch, X., Gomez, C., Araujo, J., Svensson,

R. B., Biffl, S., Cabot, J., Cortellessa, V., Daneva, M.,

Fernandez, D. M., Moreira, A., Muccini, H., Vallecillo,

A., Wimmer, M., Amaral, V., Bruneliere, H.,

Burgueno, L., Goulao, M., Schatz, B. and Teufl, S.,

2015. Handling non-functional requirements in Model-

Driven Development: An ongoing industrial survey. In

2015 IEEE 23rd International Requirements

Engineering Conference (RE). IEEE, pp. 208–213.

Ameller, D., Franch, X. and Cabot, J., 2010. Dealing with

Non-Functional Requirements in Model-Driven

Development. In 2010 18th IEEE International

Requirements Engineering Conference. IEEE, pp. 189–

198.

Asnina, E., Gulbis, B., Osis, J., Alksnis, G., Donins, U. and

Slihte, A., 2011. Backward requirements traceability

within the topology-based model driven software

development. In Proceedings of the 3rd International

Workshop on Model-Driven Architecture and

Modeling-Driven Software Development, MDA and

MDSD 2011, in Conjunction with ENASE 2011. pp. 36–

45.

Asnina, E., 2006. The Computation Independent

Viewpoint: a Formal Method of Topological

Functioning Model Constructing. Applied computer

systems, 26, pp.21–32.

Asnina, E. and Osis, J., 2010. Computation Independent

Models: Bridging Problem and Solution Domains. In

Proceedings of the 2nd International Workshop on

Model-Driven Architecture and Modeling Theory-

Driven Development. Lisbon: SciTePress - Science and

and Technology Publications, pp. 23–32.

Asnina, E. and Ovchinnikova, V., 2015. Specification of

decision-making and control flow branching in

Topological Functioning Models of systems. In ENASE

2015 - Proceedings of the 10th International

Conference on Evaluation of Novel Approaches to

Software Engineering.

Charette, R.N., 2005. Why Software Fails. IEEE Spectrum,

(September).

Donins, U., 2012. Topological Unified Modeling

Language: Development and Application. PhD Thesis.,

Riga Technical University.

Donins, U., Osis, J., Slihte, A., Asnina, E. and Gulbis, B.,

2011. Towards the refinement of topological class

diagram as a platform independent model. In A.

Čaplinskas et al., eds. Proceedings of the 3rd

International Workshop on Model-Driven Architecture

and Modeling-Driven Software Development, MDA

and MDSD 2011, in Conjunction with ENASE 2011.

Vilnius: Žara, pp. 79–88.

Goncalves, J. and Krishna, A., 2015. Dynamic Non-

functional Requirements Based Model-Driven Agent

Development. In 2015 24th Australasian Software

Engineering Conference. IEEE, pp. 128–137.

González-Huerta, J., Insfran, E., Abrahão, S. and

McGregor, J. D., 2012. Non-functional requirements in

model-driven software product line engineering. In

Proceedings of the Fourth International Workshop on

Nonfunctional System Properties in Domain Specific

Modeling Languages - NFPinDSML ’12. New York,

New York, USA: ACM Press, pp. 1–6.

Liu, Y., Ma, Z. and Shao, W., 2010. Integrating Non-

functional Requirement Modeling into Model Driven

Development Method. In 2010 Asia Pacific Software

Engineering Conference. Sydney, NSW: IEEE, pp. 98–

107.

Osis, J. and Asnina, E., 2008a. A Business Model to Make

Software Development Less Intuitive. In 2008

International Conference on Computational

Intelligence for Modelling Control and Automation.

IEEE, pp. 1240–1245.

Osis, J. and Asnina, E., 2008b. Enterprise Modeling for

Information System Development within MDA. In

Proceedings of the 41st Annual Hawaii International

Conference on System Sciences (HICSS 2008).

Waikoloa, USA: IEEE, pp. 490–490.

Osis, J. and Asnina, E., 2011a. Derivation of Use Cases

from the Topological Computation Independent

Business Model. In Model-Driven Domain Analysis

and Software Development. Hershey, PA: IGI Global,

pp. 65–89. Available at: http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-

1-61692-874-2.ch004 [Accessed October 9, 2016].

Osis, J. and Asnina, E., 2011b. Is Modeling a Treatment for

the Weakness of Software Engineering? In Model-

Driven Domain Analysis and Software Development.

Hershey, PA: IGI Global, pp. 1–14. Available at:

http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-

1-61692-874-2.ch001.

Osis, J. and Asnina, E., 2011c. Topological Modeling for

Model-Driven Domain Analysis and Software

Development : Functions and Architectures. In Model-

Driven Domain Analysis and Software Development:

Architectures and Functions. Hershey, PA: IGI Global,

pp. 15–39.

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

476

Osis, J., Asnina, E. and Grave, A., 2008a. Computation

Independent Representation of the Problem Domain in

MDA. e-Informatica Software Engineering Journal,

2(1), pp.29–46. Available at: http://www.e-

informatyka.pl/index.php/einformatica/volumes/volum

e-2008/issue-1/article-2/ [Accessed January 4, 2018].

Osis, J., Asnina, E. and Grave, A., 2008b. Formal Problem

Domain Modeling within MDA. In J. Filipe et al., eds.

Software and Data Technologies: Second International

Conference, ICSOFT/ENASE 2007, Barcelona, Spain,

July 22-25, 2007, Revised Selected Papers. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 387–398.

Osis, J., Asnina, E. and Grave, A., 2007. MDA oriented

computation independent modeling of the problem

domain. In Proceedings of the 2nd International

Conference on Evaluation of Novel Approaches to

Software Engineering - ENASE 2007. Barcelona:

INSTICC Press, pp. 66–71.

Osis, J. and Donins, U., 2010. Formalization of the UML

Class Diagrams. In Evaluation of Novel Approaches to

Software Engineering. New York: Springer, Berlin,

Heidelberg, pp. 180–192. Available at:

http://link.springer.com/10.1007/978-3-642-14819-

4_13 [Accessed January 4, 2018].

Phalnikar, R. and Jinwala, D., 2015. Analysis of Conflicting

User Requirements in Web Applications Using Graph

Transformation. ACM SIGSOFT Software Engineering

Notes, 40(2), pp.1–7.

Šlihte, A. and Osis, J., 2014. The Integrated Domain

Modeling: A Case Study. In Databases and

Information Systems: Proceedings of the 11th

International Baltic Conference (DBandIS 2014).

Tallinn: Tallinn University of Technology Press, pp.

465–470.

Wiegers, K. and Beatty, J., 2013. Software Requirements.

3rd ed., Redmond, Washington: Microsoft Press.

Xiang, H., Ma, Q., Feng, Y., Tan, Y., Hu, H., Fu, C. and

Zhang, T., 2015. Semantic modelling and automated

reasoning of non-functional requirement conflicts in the

context of softgoal interdependencies. IET Software,

9(6), pp.145–156.

Zubcoff, J. J., Garrigos, I., Casteleyn, S., Mazon, J. N. and

Aguilar, J. A., 2016. Evaluating the use of Pareto

Efficiency to Optimize Non-Functional Requirements

Satisfaction in i* Modeling. IEEE Latin America

Transactions, 14(1), pp.331–338.

The Topological Functioning Model as a Reference Model for Software Functional and Non-functional Requirements

477

