
A Flexible Data Migration Strategy for Power Savings
in Distributed Storage Systems

Koji Hasebe, Sho Takai and Kazuhiko Kato
Department of Computer Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8573, Japan

Keywords: Power Savings, Distributed Storage Systems, Data Migration.

Abstract: We present a power-saving technique for datacenter-scale distributed storage systems. In particular, we fo-
cus on storage in environments where a large number of data are continuously uploaded, as typified by the
platforms of social networking services. In achieving this objective, the main idea is to use virtual nodes and
migrate them dynamically so as to skew the workload toward a small number of disks without overloading
them. We improve this previously introduced idea by making the data migration strategy flexible in the present
study. As a result, our proposed technique can maintain a high-load aggregation rate during the continuous
addition of disks, which was difficult to handle in our previous study. The performance of our technique is
evaluated in simulations. The results show that our technique improves the technique in the previous study
and effectively skews the workload during a constant massive influx of data.

1 INTRODUCTION

Data sharing services, as typified by social networ-
king services, are rapidly developing. In the datacen-
ters of such services, a large number of data are con-
tinuously uploaded from users around the world; e.g.,
every minute, users share 300,000 tweets on Twitter
(Telegraph, 2013), 680,000 pieces of content on Fa-
cebook (statistics, 2013a), and 100 hours of video on
YouTube (statistics, 2013b). (Cf. also (Tatar et al.,
2014).) High-performance, highly scalable, and low-
cost (i.e., energy-saving) storage technologies are re-
quired to realize such data-intensive services.

There have been a number of attempts at redu-
cing the power consumption of storage systems. A
commonly observed feature of many of the develo-
ped techniques is the skewing of the workload to-
ward a small number of disks, thereby allowing ot-
her disks to be in low-power mode. To realize this
idea, a technique was proposed to migrate the stored
data dynamically in such a way that all data are gathe-
red onto as few disks as possible without overloading
them (Hasebe et al., 2010). More specifically, for dy-
namic migration, data stored at virtual nodes are ma-
naged using a distributed hash table (DHT). In that
setting, data migration was managed by rules for the
gathering or spreading of virtual nodes according to
the daily variation of the workload so that the number
of active physical nodes was reduced to a minimum.

However, most previous studies either explicitly
or implicitly assumed that the set of stored data is
fixed, whereas this assumption is not valid for many
real datacenter-scale platforms of data sharing servi-
ces. In the study (Hasebe et al., 2010), for example,
the rules for migration uniquely defined how each vir-
tual node moves to a physical node on a fixed number
of disks.

To tackle the above issue, we propose in this paper
a power-saving technique for distributed storage sys-
tems based on the technique introduced by (Hasebe
et al., 2010). The basic idea is to improve the data mi-
gration strategy so that the destination of the virtual
node can be chosen from multiple options according
to the current state of the system. As a result, when a
new disk is added, data may be moved to the disk as
necessary.

The performance of our proposed technique is me-
asured by simulation in terms of the average load and
the number of active physical nodes by comparing
with the performance of the previous technique. In the
simulations, we observed that our improved technique
makes possible to aggregate the load at the intended
value. Also, our technique effectively skews the wor-
kload even in environments where a vast amount data
are continuously uploaded.

The remainder of the paper is organized as fol-
lows. Section 2 presents related work. Section 3 des-
cribes the underlying system. Section 4 presents our

352
Hasebe, K., Takai, S. and Kato, K.
A Flexible Data Migration Strategy for Power Savings in Distributed Storage Systems.
DOI: 10.5220/0006809803520357
In Proceedings of the 7th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2018), pages 352-357
ISBN: 978-989-758-292-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



data migration strategy for power reduction. Section
5 presents the simulation results. Finally, Section 6
concludes the paper and presents future work.

2 RELATED WORK

There have been a number of suggestions for reducing
the power used by storage systems. These suggesti-
ons have a similar basis as mentioned in the previous
section, but can be classified into two categories ac-
cording to their approach.

The first category uses data replication (i.e., re-
dundancy). DIV (Pinheiro et al., 2006), for exam-
ple, separates original and redundant data onto dif-
ferent disks, thereby allowing read/write requests to
be concentrated on the disks with the original data.
Hibernator (Zhu et al., 2005) and PARAID (Weddle
et al., 2007) collect or spread data to adapt to chan-
ges in operational loads. Harnik et al. (Harnik et al.,
2009) applied the idea of DIV to a large distribu-
ted storage system. Verma et al. (Verma et al.,
2010) developed sample-replicate-consolidate map-
ping (SRCMap), which gathers accesses to the repli-
cas on active disks, while Vrbsky et al. (Vrbsky et al.,
2010) proposed a replication approach called the sli-
ding window replica strategy (SWIN).

The second category dynamically migrates sto-
red data. Massive Array of Idle Disks (Colarelli and
Grunwald, 2002) provides specific disks that are used
as a cache to store frequently accessed data, thereby
reducing the number of accesses of other disks. PDC
(Pinheiro and Bianchini, 2004) periodically reallo-
cates data in the storage array according to the la-
test access frequencies. Kaushik et al. (Kaushik
and Bhandarkar., 2010) proposed the idea of dividing
disks in Hadoop distributed file systems into hot and
cold zones.

The techniques used in our previous studies (Ha-
sebe et al., 2010; Hasebe et al., 2015; Hasebe et al.,
2016) are classified into the second category. The
techniques introduced in (Hasebe et al., 2010; Hasebe
et al., 2016) are based on the DHT and skew the wor-
kload by migrating virtual nodes. The present work
improves the technique proposed in (Hasebe et al.,
2010). In particular, our main motivation is to ex-
plore power savings in an environment where a vast
number of data are continuously uploaded.

3 UNDERLYING SYSTEM

Our proposed technique is targeted at datacenter-scale
storage systems. In particular, it is aimed at systems

v0

γ

v1 v2
vα−1

vα
vα+1

(A) Virtual Node Layer (managed by DHT)

(B) Physical Node Layer

mapping virtual nodes to physical disks

Dorg

...
...

Dext

...
...

. . .

v(β−1)·α

v(β−1)·α+1

v(β−1)·α+α−1

. . .

. . .

. . .

v1
vα+1

v2α+1

viα+1

v(i+1)α+1

v(i+2)α+1

v1 vα+1

viα+1 v(i+1)α+1

p1 p2 p′1 p′2

Figure 1: Underlying system.

that store data with relatively high access frequency.
We assume that the system workload fluctuates over
the cycle of a day, with the difference in workload
between peak time and off-peak times is a factor of
approximately 4 to 6. The basic idea of our technique
is to use virtual nodes and to realize operations that
store/retrieve data using the lookup mechanism of a
DHT. (Here we will explain the use of Chord (Stoica
et al., 2001) as an example of a DHT.) In addition,
according to the load of the system, virtual nodes are
migrated dynamically among physical disks.

As preliminaries, we first introduce notations and
functions to describe the configuration of our target
system. Let P = {p1, . . . , pn} and V = {v1, . . . ,vm} be
the sets of physical nodes (i.e., disks) and virtual no-
des, respectively. As will be explained later, physical
nodes are divided into two groups called the origi-
nal space (denoted Porg) and extended space (deno-
ted Pext ). The placement of each virtual node is des-
cribed by the function placeV : V → P. Intuitively,
placeV (v) = p means that virtual node v is located at
physical node p. We also use the function placeP :
P→ 2V to denote the set of virtual nodes V ′ ⊆V that
are on a physical node p; i.e., placeP(p) = V ′. For-
mally, the function can be defined using placeV ; i.e.,
placeP(p)= {v∈V | placeV (v)= p}. For readability,
we use the notation v ∈ p to denote v ∈ placeP(p).

In the system, the DHT has a key space consisting
of α · β · γ keys as shown in Fig. 1 (A). The virtual
nodes are arranged in this key space at equal intervals
with width γ. Here, α, β, and γ shall be large enough
for operation.

In the initial state, β virtual nodes
v1,vα+1, . . . ,v(β−1)·α+1 are placed at specified
positions of the key space. Furthermore, they are
stored in order from the leftmost physical node in
the disk array of Porg as shown in Fig. 1 (B). Data
are written to one of the existing virtual nodes when

A Flexible Data Migration Strategy for Power Savings in Distributed Storage Systems

353



uploaded by the client; i.e., the load of the write
request from the client is distributed by β virtual
nodes. It is here assumed that the virtual node has an
upper limit of the total volume of stored data. When
virtual node vi (for i = 0, . . . ,α ·β− 1) becomes full,
vi+1 is newly inserted at a predetermined position
in the key space and stored at the empty physical
node on the leftmost of Porg. Additionally, when the
leftmost disk pi in Porg becomes full, a new empty
physical disk pi+1 is added.

When the system workload increases, each physi-
cal node independently checks its own workload, and
if the workload exceeds the capacity, one of the vir-
tual nodes is moved to a lowly loaded active physi-
cal node in Pext . If there is no such physical node,
one of the nodes in Pext in low-power mode is activa-
ted. In contrast, when the system workload decreases,
virtual nodes in Pext are gradually moved back to the
original positions. Finally, if a physical node has no
active virtual node, it enters a low-power mode and
thus reduces its power consumption. In our system,
travel paths of the virtual nodes are recorded for 1
day. We denote the set of physical nodes in which
a virtual node is placed during a day by the function
mig : V → 2P. Intuitively, if a virtual node v originally
placed at p∈ Porg is also placed in p2, p3 ∈ Pext by mi-
grations over the course of the day, mig(v)= {p2, p3}.

We finally remark on the migration cost of our
technique. To reduce the migration cost, instead of
moving all data stored at a virtual node in each mi-
gration, remaining old data in Pext are reused when
the system workload increases again. This allows mi-
gration by copying the difference from the previous
day. In the next section, we use the function placeOld :
V → P to indicate the allocation of a virtual node on
the previous day. More precisely, placeOld(v) = p if
virtual node v was placed on p by migration on the
previous day.

4 DATA MIGRATION STRATEGY

The power reduction technique of (Hasebe et al.,
2010) relies on two types of migration strategies for
optimizing power consumption. These cope with the
daily variation of the system workload, but the one is
used when the workload is increasing and the other
when the workload is decreasing.

In the original strategies, the destination of the vir-
tual node from Porg to Pext was rigorously fixed. It was
therefore difficult to apply the technique to an envi-
ronment where data are added sequentially. In this
paper, we improve these strategies so that it can ac-
commodate such environments.

4.1 Migration for Extension

When the system workload is increasing during the
nominal period of a day, each active physical node
(say, pi) both in Porg and Pext checks its own workload
at regular intervals. If the workload exceeds the capa-
city (i.e., the maximum workload that can maintain
a preferable response performance), then the virtual
node v ∈ placeP(pi) to be moved is determined in the
following way.
Case 1. There is a physical node p ∈ Pext with

placeOld(v) = p.

Case 1-1: p is active, and v is moved to p.
Case 1-2: There is no such active p, and v is mo-

ved to p with activation.

Case 2. There is a physical node p ∈ Pext satisfying
all the following conditions.

• C1: No two virtual nodes stored at a certain
physical node move to the same physical node
(i.e., ∀v,v′ ∈ p(mig(v)∩mig(v′) = /0).

• C2: p does not exceed its volume and workload
capacity even if v is moved to p.

Case 2-1: p is active, and v is moved to p.
Case 2-2: There is no such active p, and v is mo-

ved to p with activation.

Case 3: There is no physical node in Pext satisfying
both of the above two conditions, and a new disk
(say, p′) is added to Pext and v is moved to p′.
Here we describe the improvement. The major

difference from the previous research is that the pro-
posed method flexibly determines the destination of
the virtual node according to the situation in the pro-
posed method. As a result, even if a disk is newly
added, an appropriate destination can be found. Me-
anwhile, in the previous research, because the desti-
nation of the virtual node is uniquely determined in
advance, it is not easy to add the disk.

In addition, our proposed technique is devised so
as to maintain the advantage of the previous techni-
que of efficiently aggregating the workload. For ex-
ample, the reason for prioritizing the physical node in
the active state as the migration destination of the vir-
tual node is to avoid increasing the number of physi-
cal nodes in an active state. Condition C1 in Case 2 is
introduced for a similar reason. That is to say, accor-
ding to this condition, when the physical node selects
its own destination of the virtual node, it is possible
to generate more candidates for the destination.

We here present a simple example to clarify the
process. (See also Fig. 2 for a graphical presentation.)

In the example, p1, p2, and p3 are in Porg and the
virtual nodes placed at these nodes are represented by

SMARTGREENS 2018 - 7th International Conference on Smart Cities and Green ICT Systems

354



Figure 2: Example of migrations.

integers. We assume that only v1 has been moved and,
in Pext , p′1 is active while p′2 and p′3 are in low-power
mode. In this setting, we consider the situation that
the workloads of nodes p1, p2, and p3 exceed the cor-
responding capacities. (In Fig. 2, the migrations of
circled virtual nodes can reuse the old data remaining
in Pext while the migrations of the virtual nodes enclo-
sed in squares involve newly written data in Pext .)

Migration 1 is the migration of v4 and v7 from
p2, p3 to p′2, p′3, respectively. v4 is selected for p2 be-
cause p′1 is active and has reusable data, while v7 is
selected for p3 and newly written in p′1 because there
are no reusable data in Pext . Migration 2 is the case
that p1 moves another virtual node. p′2 is selected at
this time because it is in low-power mode yet stores
reusable data (i.e., the data of v2). Migration 3 is con-
ducted because the workload of p1 exceeds the ca-
pacity again. In this case, because p1 has no other
reusable data in Pext , it is necessary to migrate all data
of a virtual node. Moreover, because p′1 and p′2 have
received v1 and v2, respectively, p′3 is selected as the
destination.

4.2 Migration for Reduction

When the system workload is decreasing following
the day’s peak workload, reducing power consump-
tion requires gathering the widely dispersed virtual
nodes into their original positions. To realize this me-
chanism, physical disks have been divided into groups
and an optimization algorithm introduced to find mi-
grations of the virtual node that result in the fewest
active disks for each group (Hasebe et al., 2010). This
optimization algorithm can be directly applied as it is
to our technique explained so far. In our case, Pext
is divided into groups of approximately 10 physical
nodes and the algorithm is executed for each group
at regular intervals. In our setting, however, because
the destinations of the virtual nodes are widely ex-
panded irregularly, it is necessary to execute the algo-
rithm more frequently than in the previous study.

5 EVALUATION BY
SIMULATIONS

We developed a simulator that mimics a storage sy-
stem targeted in this study. By using this simulator, in
order to show that the proposed technique improves
the technique of the study (Hasebe et al., 2010), we
first compare the average load (i.e., the ratio of wor-
kload to capacity) of the changes in the active physi-
cal nodes and in the number of active physical nodes
in an environment where the workload varies. Next,
we evaluate the change of the avarage load under the
circumstance where data are continuously uploaded.

5.1 Parameters and Settings

In the evaluation of this section, we considered the
following environment which was similar to the set-
ting considered in (Hasebe et al., 2010). The data
were stored in 10,000 virtual nodes. During the
course of a day (that is modeled by discrete time pro-
gress in 10 minutes), the workload of all virtual no-
des was initially at its lowest, and increased until the
middle of the day then decresed until the end, where
the gap was sixfold. In addition, due to the popularity
of stored data, we considered two groups of virtual
nodes with different workloads: group G1 of 2,000
nodes are the busier ones, while group G2 of 8,000
were the normal nodes. In each group, the workloads
of all virtual nodes were the same. The ratio of wor-
kloads of a node G1 to a node in G2 was denoted by α,
and we considered the cases that α = 1.2, 1.5, and 2.
In each case, we set the initial workload of the system
to be 60% of its capacity.

In the first simulation (presented in Section 5.2),
as the environment to evaluate the proposed techni-
que, we assumed that each of Porg and Pext consisted
of 100 physical nodes, and initially all virtual nodes
were equally stored only in Porg (thus Pext was empty).
On the other hand, as the environment to evaluate the
previous study, we assumed that the system consisted
of six blocks each of which consisted of 100 physical
nodes, and initiall all the virtual nodes were stored
only in one block.

5.2 Comparison with Previous Study

Fig. 3 indicates the comparison of the change in the
number of active nodes, while Fig. 4 indicates the
comparison of the change in the average load of active
physical nodes. These figures show that our proposed
technique improves the efficiency of usage of the phy-
sical nodes. In the case of using proposed technique
and the technique in the previous study (described by

A Flexible Data Migration Strategy for Power Savings in Distributed Storage Systems

355



Figure 3: Number of active physical nodes.

Figure 4: Average load of active physical nodes.

“fixed destination”), the average values of the daily
load was approximately 100% and 76%, respectively
when α is set as 1.2.

Also, the change in the maximum load on the
active physical nodes in the case using proposed
technique is shown in Fig.5. For each case of the va-
lues of α, the maximum load is about 100%.

The result of these simulations show that our pro-
posed technique makes possible to aggregate the load
at the intended value at any time during the course of
a day.

5.3 Flexibility toward Sequential
Addition of Data

In this simulation, we considered an environment si-
milar to the simulation in Section 5.2. In addition we
assumed that five new physical nodes each of which
stored 100 virtual nodes were added to Porg a day and
measured until Porg reached 200 physical nodes.

Figs. 6 and 7 indicate the daily change in the
average load of the active physical nodes. The results
show that the aggregation rate of load decreases with
each day. However, the average load over 21 days is
still about 82% and our proposed technique effecti-

Figure 5: Maximum load of active physical nodes.

Figure 6: Average load of active physical nodes.

Figure 7: Daily change in the average load.

vely skews the workload even in continuous addition
of data.

6 CONCLUSIONS AND FUTURE
WORK

We presented a power-saving technique for
datacenter-scale distributed storage systems. Our
main motivation was to explore power savings in

SMARTGREENS 2018 - 7th International Conference on Smart Cities and Green ICT Systems

356



an environment where a vast number of data are
continuously uploaded. The basis of our proposed
technique was to improve a technique introduced by
(Hasebe et al., 2010), which uses virtual nodes and
migrates them dynamically. Our improvement was a
modification of the data migration strategy so that the
destination of the virtual nodes can be chosen from
multiple options according to the current state of the
system. Finally, the performance of our systems was
evaluated in simulations. The results showed that
our technique improves the technique in the previous
study and effectively skews the workload during a
constant massive influx of data.

In future work, we will develop a prototype im-
plementation and evaluate its performance on real sy-
stems.

REFERENCES

Colarelli, D. and Grunwald, D. (2002). Massive arrays of
idle disks for storage archives. In ACM/IEEE Confe-
rence on Supercomputing, pages 1–11.

Harnik, D., Naor, D., and Segall., I. (2009). Low power
mode in cloud storage systems. In IEEE Internati-
onal Symposium on Parallel and Distributed Proces-
sing, pages 23–29.

Hasebe, K., Niwa, T., Sugiki, A., and Kato., K. (2010).
Power-saving in large-scale storage systems with data
migration. In IEEE International Conference on
Cloud Computing Technology and Science (Cloud-
Com’10), pages 266–273.

Hasebe, K., Okoshi, J., and Kato., K. (2015). Power-
saving in storage systems for cloud data sharing servi-
ces with data access prediction. IEICE Transactions,
E98-D(10):1744–1754.

Hasebe, K., Sawada, T., and Kato., K. (2016). A game
theoretic approach to power reduction in distributed
storage systems. Journal of Information Processing,
24(1):173–181.

Kaushik, R. T. and Bhandarkar., M. (2010). Greenhdfs: to-
wards an energy-conserving, storage-efficient, hybrid
hadoop compute cluster. In 2010 international confe-
rence on Power aware computing and systems (Hot-
Power’10), pages 1–9.

Pinheiro, E. and Bianchini, R. (2004). Energy conservation
techniques for disk array-based servers. In Internatio-
nal Conference on Supercomputing, pages 68–78.

Pinheiro, E., Bianchini, R., and Dubnicki, C. (2006). Ex-
ploiting redundancy to conserve energy in storage sys-
tems. In ACM SIGMETRICS Conference on Measure-
ment and modeling of computer systems, pages 15–26.

statistics, F. (2013a). https://newsroom.fb.com/News.
statistics, Y. (2013b). http://www.youtube.com/yt/press/

statistics.
Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Ba-

lakrishnan, H. (2001). Chord: a scalable peer-to-peer

lookup service for internet applications. In ACM SIG-
COMM, pages 149–160.

Tatar, A., de Amorim, M. D., Fdida, S., and Antoniadis, P.
(2014). A survey on predicting the popularity of web
content,. Journal of Internet Services and Applicati-
ons, 5(8).

Telegraph (2013). http://www.telegraph.co.uk/technology/
twitter/9945505/Twitter-in-numbers.html.

Verma, A., Koller, R., Useche, L., and Rangaswami, R.
(2010). Srcmap: energy proportional storage using
dynamic consolidation. In 8th USENIX Conference on
File and Storage Technologies (FAST’10), pages 154–
168.

Vrbsky, S. V., Lei, M., Smith, K., and Byrd, J. (2010). Data
replication and power consumption in data grids. In
2010 IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom’10),
pages 288–295.

Weddle, C., Oldham, M., Qian, J., Wang, A., Reiher, P.,
and Kuenning, G. (2007). Paraid: a gear-shifting
power-aware raid. In USENIX Conference on File and
Storage Technologies (FAST’07), pages 245–260.

Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., and Wil-
kes, J. (2005). Hibernator: helping disk arrays sleep
through the winter. In ACM symposium on Operating
systems principles, pages 177–190.

A Flexible Data Migration Strategy for Power Savings in Distributed Storage Systems

357


