
An Approach of Text to Model Transformation of Software Models

Olena V. Chebanyuk
National Aviation University, Software Engineering Departement, Kyiv, Ukraine

Keywords: Model-driven Development, Text to Model Transformation, XMI, UML Diagram.

Abstract: The text to model transformation is an important step to process UML diagrams that are designed in

software modeling environments. Modeling environments, such as IBM Rational products, Eclipse Papyrus,

Microsoft Visual Studio and others, store UML diagrams in XMI compatible format. For performing UML

diagram processing operations it is necessary to restore their structure.

This article outlines an approach that allows obtaining an analytical representation of an UML diagram

saving information about its structure. In order to solve this task the solutions of the next research problems

are proposed: (i) how to extract information about UML diagram elements from theirs XMI representation

in different modeling environments (Microsoft Visual Studio and Eclipse Papyrus); (ii) how to decompose

software models into chains of linked elements; (iii) how to restore a software model structure from these

chains.

1 INTRODUCTION

Software models that are represented as UML

diagrams are central development artifacts in Model-

Driven Development approach. Analysis of their

structure is a preliminary step for effective

performing of all software model processing

operations. Such operations are software models’

refinement, merging, transformation, tracing and

comparison.

Different software development teams design

software models in different modeling environments

as Microsoft Visual Studio, IBM Rational products,

Eclipse Papyrus modeling tools, and others.

Most of software modeling environments store

UML diagrams in an XMI compatible format. XMI

is an OMG standard for exchanging information

between UML diagrams (XML, 2015). Information

about UML diagram is stored in XMI file as a

hierarchical tree. Such structure is recommended in

Abstract Syntax Tree OMG Standard for storing

hierarchies of structures (ASTM™, 2011). But for

further software model processing operations,

analyzing of an XMI file is not a convenient

procedure. A representation of software model in

analytical form allows performing all operations of

software models processing involving analytical

tools, and becoming a foundation for development

of new tools and plug-ins for software models’

processing (IBM, 2015). Designing of an approach

of text to model transformation is a continuation of

research started in paper (Chebanyuk and Mironov,

2017). Previously an algorithm and a prototype

implementation, which are capable of extracting

information about software models elements that

were stored in different modeling environments,

were proposed. The result of the software models’

processing is a set of directly linked software

models’ elements.

Such a representation is convenient for static

software models processing, such as estimating a

class diagram in accordance to SOLID design

principles as it is proposed at the paper (Chebanyuk

and Povalyaev, 2017). An analytical background for

class diagram estimation according to SOLID design

principles is proposed in the paper (Chebanyuk and

Markov, 2016).

Contribution of this Paper:

The proposed approach offers improvement

functionality of text to model transformation

operation. Also it allows processing both static and

behavioral Software Models (SMs). To restore

structure of a static SM it is necessary to define

relationships between directly linked elements

(Chebanyuk and Mironov, 2017). The additional

step of restoring structure of behavioral SM is

considering sequence of actions in it.

432
Chebanyuk, O.
An Approach of Text to Model Transformation of Software Models.
DOI: 10.5220/0006804504320439
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 432-439
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The paper is structured as follows. The second

section describes the related works. The third section

presents proposed approach. Finally, the section

conclusion summarizes results of the research and

suggests the future works.

2 RELATED WORKS

Consider the papers that discuss the processing of

SM XMI representation.

Authors of the paper (Yuan at el, 2003) propose

to use DOM specification and consider XML file as

no ordered DOM tree. Structures of XML files are

compared by means of collaboration of some

operations (mostly Insert() and Delete()) for

processing different tree parts. To speed up the

comparison process the hashing operations are used.

If hash meanings are different, than more precise

operations for comparison XML files fragments are

used. The authors propose the detailed analysis of

described algorithms effectiveness. But the results of

two XML files comparison depend upon accurate

processing of hash values.

One of the priorities of development Model-

Driven Software Engineering (MDSE) is a code

generation approach. That’s why more attention is

paid to development of software model processing

techniques and tools processing class diagrams. One

of the examples of such tools is ICER Tool

(Robinson, A., and Bates, C., 2015). This tool uses

an XMI representation of class diagram. A class

diagram is designed in IBM Rational Rose. The

ICER tool performs the next steps:

― looking iteratively through all the class

diagram classes;

― checking OCL constrains matching to

design patterns,

― identifying to which design pattern a class

diagram matches.

Also the limitation of ICER tool is that names of

the classes on class diagram should match to the

names of the classes in the OCL constrains file.

The authors of paper (Ran Wei et al, 2016) have

presented an approach that enables partial loading of

XMI-based models. Their proposed approach realize

the scenarios where read-only access to SM is

sufficient and where the parts of the model (typically

a small subset of the entire model) that are of

interest are loaded. To load the information about

software model built in parser is used. The parser

allows recognizing software model elements and

links between them. The principle of working parser

is the next: The parser maintains a stack of model

elements to keep track of its current position in the

XMI document. This is needed in order to determine

what object to create next. When the XMI file is

read, the callback method startElement() is

triggered, and it is decided which objects of partial

diagram should be created. All created objects are

pushed into the object stack. Then the parser

processes the top of the stack together with the

element and decides that an instance of objects

should be created and instances to them are added.

The created instance is also pushed into the object

stack. Once all XML elements have been processed,

a tree structure has been constructed in memory. But

functionality of the parser is limited

Analyzing the review of the related works it is

summarized that designing of the transformation

approach that defines constituents of SM without

limitations of names (as OCL constrains), providing

complex SM processing (given by abstract and

concrete syntax trees), and allowing designing

flexible comparison rules and performing many

other tasks for SM processing is an actual and

important task.

3 THE PROPOSED APPROACH

A general schema of the approach is represented on

the Figure 1.

The text to model transformation operation is

performed by the following steps:

1. An XMI representation of a SM is parsed.

Recognized SM elements and links between them

are stored in the memory (Figure 1, Link 1).

2. Then chains from linked SM elements are

formed. Every chain stores information about a part

of an algorithm or a business process, represented in

a behavioral SM (Figure 1, Link 2).

In order to perform the transformation from text

to model the next Research Problems (RPs) should

be solved:

RP1: to investigate regularities of the SM

elements stored in an XMI file.

RP2: to propose an algorithm for defining linked

SM elements in the XMI file for different types of

UML diagrams.

RP3: to design an analytical foundation for SM

representation and forming of linked chains.

RP4: to introduce a concept of behavioral SM

decomposition into chains of linked elements with

further restoring of its structure.

 RP 4.1: to introduce a concept of composing

chains of linked elements for behavioral SM;

An Approach of Text to Model Transformation of Software Models

433

UML
diagram
XMI file

…
.

…
.….

Element 1

Element 2

Element m

Element n

Element 1

Element 3

Element n-1

Element n

…
.

Element 1

Element 2

Element 1

Element 3

Element m

…
.

Element m

Element m

Element m+1

Element n

…
.
1 2

Figure 1: Approach for restoring a software model structure from an XMI file.

 RP 4.2: to explain an idea how to restore

structure of behavioral SM from these chains.

Solutions of RPs:

The solutions of RP1 and RP2 are proposed in the

paper (Chebanyuk and Mironov, 2017).

Solution of RP3: It is proposed to use graph

representation to describe SM analytically.

Analytical foundations of SMs representation for

forming linked chains is represented in the Table 1.

Table 1: Analytical denotations for restoring software model structure.

Concept Explanation and analytical representation of concept

Software model
According to the UML 2.5 standard SM is an UML diagram. Denote it as SM and SM of

some type as
typeSM where type=use case, type=class, etc.

Software model

representation

The graph representation is chosen.

),(typetypetype LOSM (1)

where
typeO – a set of SM objects that are used in

typeSM notation.
.
Objects are the

elements of SM notations that can be expressed as graph vertexes.

 typeL – a set of software model links that are used in
typeSM notation. Links are

elements of SM notation that can be expressed as graph edges.

Common definitions for behavioral SM representation are presented in the paper

(Chebanyuk, 2015)

Elementary sub-

graph

It is a part of a graph, consisting of two linked vertexes.

Denote an elementary sub-graph as:

),,(21 oloe (2)

where Ooo 21, are software model objects linked by link Ll .

Set of elementary

sub-graphs
All elementary sub-graphs of SM. Denote this set as A.

Linked Elementary

Sub-Graphs (LESG)

Consider two elementary sub-graphs),,(2111 oloe and),,(3222 oloe

If two elementary sub-graphs are interconnected through an object Oo 2 these two sub-

graphs are considered linked. Consider a pair of elementary sub-graphs 1e and 2e

Determine 1e as the first linked elementary sub-graph, 2e respectively as the seconds.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

434

Concept Explanation and analytical representation of concept

Starting border

elementary sub-

graph

Elementary sub-graph that has no first linked elementary sub-graph. Consider

),,(2111 oloe . Usually Oo 1 is an object from which streams of UML diagram are

stated. These objects are actors or objects that have no incoming links.

A set of starting

border elementary

sub-graphs

A set that contains all starting border elementary sub-graphs of software model.

Denote this set as START.

||},,...,,{ ,2,1, STARTkeeeSTART kstartstartstart

(3)

Switching

elementary sub-

graphs

Consider two linked elementary sub-graphs.),,(2111 oloe and),,(3212 oloe . They are

started from the Oo 1 . An elementary graph located on SM before

),,(, 100021 oloeeande is determined as a switching elementary sub-graph.

A set of switching

border elementary

sub-graphs

A set that contains all switching elementary sub-graphs of a SM. Denote this set as

SWITCH.

||},,...,,{ ,2,1, SWITCHpeeeSWITCH pswitchswitchswitch

(4)

Finishing border

elementary sub-

graphs

An elementary sub-graph that has no the second linked elementary sub-graph. Consider

),,(2111 oloe . Usually Oo 2 is an object to which streams of UML diagram are

ended. Other words these objects have no outcoming links.

A set of finishing

border elementary

sub-graphs

A set that contains all finishing border elementary sub-graphs of a SM.

Denote this set as FINISH.

||},,...,,{ ,2,1, FINISHteeeFINISH tfinishfinishfinish

(5)

A set MIDDLE
All elementary sub-graphs that are not included to sets START, SWITCH, and FINISH are

included to the MIDDLE

Software model

sub-path

A part of software model, consisting from chain of linked elementary sub-graphs. Denote

a sub-path of a SM as chain. Using (2) chain is denoted by the following:

1 1 2 2 2 3 1 1

1 2

((, ,), (, ,),..., (, ,)), | |

(, ,...,)

n n n

n

chain o l o o l o o l o n chain

chain e e e

 (6)

where n is a number of elementary sub-graphs in sub-path.

There are several variants of forming chains

 beginning from a border elementary sub-graph and ending on a switching

elementary sub-graph;

 beginning from a next elementary sub-graph to switching one (the second

elementary sub-graph in pair of linked elementary sub-graph) and ending on other

switching elementary sub-graph;

 beginning from a next elementary sub-graph to switching one (the second

elementary sub-graph in pair of linked elementary sub-graph) and ending on the

finishing border elementary sub-graph;

 beginning from a starting border elementary sub-graph and ending on finishing

border elementary sub-graph.

Set of software

model sub-paths

All SM chains that contain all its objects and links.

||},,...,,{ 21, PATHnchainchainchainPATH n (7)

An Approach of Text to Model Transformation of Software Models

435

Solution of RP4: to solve RP4 is it is necessary

to design a process of behavioral SM decomposition

into chains of linked elements with further restoring

of its structure.

Rules of Processing a Set A of SM:

The formal rules for analyzing the SM

elementary sub-graphs allow classifying them to

START, SWITCH, FINISH, and MIDDLE sets.

The rules are:

− a rule for including of an elementary sub-

graph to a set START;

− a rule for including of an elementary sub-

graph to a set SWITCH;

− a rule for including of an elementary sub-

graph to a set FINISH;

− a rule for including an elementary sub-graph

in to a set MIDDLE.

A Rule for Including an Elementary Sub-

graph in the Set START:

Consider a reference elementary sub-graph

(, ,)ref subj l obj .

A Condition for Proving that RefϵSTART: If

there is no possibility to design a LESG with any

1 1 2
, (, ,)A el l el with the common

element 2
el namely:

1 1 2
(,) ((, ,), (, ,))LESG a ref el l el subj l obj

than the ref is included to the set START. Formally

this rule is expressed by the next predicate:

2

1 1 2

(, ,) () ,

(, ,),

P subj A A el subj false

el l el A

(8)

The expression (8) should be true for all A .

Formally, the representation of the condition proving

that ref ϵ START:

(,)if P subj A false then ref is added

to the set START

Rule for Including an Elementary Sub-graph in

the Set SWITCH:

Consider an elementary sub-graph ref. If there is

a possibility to design more than one LESG with any

1 1 2
, (, ,)A el l el with the common

element obj, namely:

1 1 2
(,) ((, ,), (, ,))LESG ref a subj l obj el l el

than ref is included to the set SWITCH. It is formally

expressed by the next predicate:

1,

1 1 2

(, ,)

(| 2) ,

(, ,),

i i

P obj A

A el obj i true

el l el A

 (9)

The next step is to form the set SWITCH from all

ϵA for which (, ,)P obj A true . It is expressed

by the next predicate:

{ | (, ,) }W A P obj A true
The next step is to define a number of elements

in the set W.

| | 1if W thenref isadded toSWITCH

Rule for Including an Elementary Sub-graph

in the Set FINISH:

A condition for proving that refϵFINISH: If there is

no possibility to design a LESG with any

1 1 2
, (, ,)A el l el

 with the common

element
2

el , namely:

1 1 2
(,) ((, ,), (, ,))LESG ref a subj l obj el l el

than the ref is included to the set FINISH. It is

formally expressed by the next predicate:

1

1 1 2

(, ,) () ,

(, ,),

P obj A A el obj false

el l el A

 (10)

The expression (10) should be true for all

A .

Formally representation of the Condition for

proving that ref ϵ FINISH:

(, ,)if P obj A false then ref

is added to the set FINISH

Rule for Including an Elementary Sub-graph

in Set MIDDLE:
All elementary sub-graphs of a SM that do not

satisfy the rules represented above are added to the

set MIDDLE

The process of forming the set CHAIN by

analyzing software model is described below:

1. An XMI representation of an UML diagram

is read. The set A which contains all SM

objects and links is formed.

2. The set START from the set A is formed

performing the following operations:

2.1 The counter k increments from 1 to |A|.

The start value of the counter is k=1.

2.2 Assume that
k

start ref .

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

436

2.3 Choose ϵA. Consider =ref and verify

whether ref corresponds to the set START

according to the rule proposed above (8).

If yes, add ref to the set START and delete

ref from the set A.

2.4 Increment the counter k. If k<|A| go to the

point 2.2 otherwise go to the point 3.

3. The set SWITCH is formed performing the

similar actions described in the point 2.

4. The set FINISH is formed performing the

similar actions described in the point 2.

5. All ϵA that are left in the set A are copied

to the set MIDDLE.

6. Prove that the set START . Otherwise

the SM was recognized with an error and its

further processing is impossible.

7. To set the counter of the linked chain i=1.

8. Assign
1

ref start . Then remove the

1
start from the set START and add it to the

ichain

9. Consider sequentially all elementary sub-

graphs from the set SWITCH with the aim to

design LESG. If it is possible then

9.1. the founded switch SWITCH is added

to ichain and removed from SWITCH;

9.2. the forming of ichain is finished;

9.3. the counter i is incremented by one;

9.4. If START then go to the point 8;

9.5. else if SWITCH assign the

ref=switch1 and delete the switch1 from

the SWITCH and add it to ichain and go

to the point 10

9.6. if SWITCH the processing of the

SM is finished.

10. Consider sequentially all elementary sub-

graphs from the set FINISH with the aim to

design the LESG. If it is possible then:

10.1. finish FINISH is added to ichain

and removed from FINISH;

10.2. Forming of ichain is finished;

10.3. Counter i is incremented by one;

10.4. if START then go to the point 8

10.5. if SWITCH assign ref=switch1

and delete from the SWITCH and add it to

ichain and go to the point 10

11. Consider sequentially all elementary sub-

graphs from the set MIDDLE with the aim to

design LESG If It is possible then:

11.1. MIDDLE is added to the ichain

and removed from the set MIDDLE;

11.2. if SWITCH go to the point 9

11.3. if FINISH go to the point 10

11.4. if MIDDLE go to the point 11

11.5. if MIDDLE then forming of

analytical representation of the SM is

finished.

 Sequence diagram of forming linked chains

from XMI representation of UML diagram is

represented in the figure 2 (on the next page).

12. The next step is to compose a set PATH . To

define continuation of path for ichain it is

necessary to compare the last elementary sub-

graph with the first elementary sub-graph for

all other chain CHAIN

4 CONCLUSIONS

This paper proposes the text to model transformation

approach. The input data are taken from a SM stored

in an XMI format. As a result of transformation, a

set of linked chains from elementary sub-graphs is

obtained. These chains are combined into paths that

repeat the SM structure. Many techniques,

approaches, and software tools can obtain

information about SMs. Advantage of the proposed

approach is the possibility to process both behavioral

and static SMs obtaining information about their

structure in details.

Model transformation tools allow obtaining new

software models from existing ones. For example

Medini QVT is a convenient tool for round trip

engineering (Greiner at al, 2016), but there are

limited possibilities to compose transformation rules

using elements that are not linked directly In this

case it is difficult to compose transformation rules

to perform “many-to-many” and “many-to-one”

transformations.

The executable UML tools as MOKA and IBM

Rational Software Architect (RSA) simulation

toolkit allow simulating of SMs execution.

An Approach of Text to Model Transformation of Software Models

437

Ref block

loop

loop

2. Search LESG

1. select

MIDDLE

else

[LESG is formed]
3. Copy to chain(i)

alt

loop
6. Search LESG

FINISH

[j=1,j<|SWITCH|]

4 has elements

[j=1,j<|FINISH|]

START reference SWITCH

9. select

5. i++

10. i++

chain(i)

[Yes?]

[Yes?]

Copy to reference to chain
assign reference=start(1)

 Copy to reference to chain and assign reference=start(1)
ref

8 has elements
alt

[LESG is formed]

[set SWITCH is not empty]

loop
11. Search LESG

else

[LESG is formed]
12. Copy to chain(i)

if SWITCH is
not empty
assign ref=switch1

[j=1,j<|MIDDLE|]

alt

if SWITCH is not empty assign ref=switch1 and goto “loop switch” block
ref

loop switch

else

Figure 2. Sequence diagram of process linked chains form XMI representation of software mode.

During the simulation, all steps of the business

process execution are performed sequentially.

Involving proposed approach it is possible to

simulate parallel processes. (Bedini at. al., 2017).

Proposed approach allows obtaining analytical

representation of the SM, repeating all details of its

structure. The linked chains of elementary sub-

graphs are combined into paths. The analysis of

these paths allows easily getting access to every

SM elementary sub-graph or group of them. Such a

scheme of a SM storing provides a possibility to

improve any other technique or software tools for

SMs processing.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

438

5 FURTHER WORK

The continuation of the research represented in this

paper is to design comparison techniques to

compare linked chains of elementary sub-graphs.

It is planned to extend the analytical foundation

proposed the Table 1 and design software tools to

consider semantic aspects of SMs comparison. The

next step is to design a model versioning technique

for reflecting the refinement history.

REFERENCES

ASTM™, 2011 Architecture-Driven Modernization™

(ADM™): Abstract Syntax Tree Metamodel™

(ASTM™) http://www.omg.org/spec/ASTM/1.0.

Bedini F., Maschotta R., Wichmann A., Jäger S. and

Zimmermann A. (2017). A Model-Driven fUML

Execution Engine for C++.In Proceedings of the 5th

International Conference on Model-Driven

Engineering and Software Development - Volume 1:

MODELSWARD, ISBN 978-989-758-210-3, pages

443-450. DOI: 10.5220/0006206904430450.

Chebanyuk E. An approach to behavioral software

models analytical representation. International

journal Informational models and analysis.

 – 2015, №1 P 61-79.

http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf.

Chebanyuk E. and Markov K. An Approach to Class

Diagrams Verification According to SOLID Design

Principles. In Proceedings of the 4th International

Conference on Model-Driven Engineering and

Software Development - Volume 1:

MODELSWARD (2016), ISBN 978-989-758-168-7,

pages 435-441. DOI: 10.5220/0005830104350441

access mode.

Chebanyuk E and Mironov Yu. An approach of

obtaining initial information for software models

analysis. “International journal. Informational

content and processing.”, Vol. 4, number 2 – 2017,

in press.

Chebanyuk E and Povalyaev D. An approach for

architectural solutions estimation “International

journal Informational theories and knowledge”, Vol

11, number 2– 2017, in press.

IBM, 2015 Rational Software Architect. Quick Start

Tutorial. https://www.fi.upm.es/catedra-

ibmrational/sites/www.fi.upm.es.catedra-

ibmrational/files/RSA_Tutorial.pdf.

Greiner S., Buchmann T. and Westfechtel B.

(2016). Bidirectional Transformations with QVT-R:

A Case Study in Round-trip Engineering UML Class

Models and Java Source Code.In Proceedings of the

4th International Conference on Model-Driven

Engineering and Software Development - Volume 1:

MODELSWARD, ISBN 978-989-758-168-7, pages

15-27. DOI: 10.5220/0005644700150027.

http://www.scitepress.org/PublicationsDetail.aspx?ID=ef

ZXth7Zbbg=&t=1.

ICER, 2015, Robinson, A., and Bates, C. Western

Michigan University project.

https://www.cs.wmich.edu/~OODA/patterns/AbsFactory

.html.

OCL, 2014 Object Constraint Language Version 2.4

OMG standard

http://www.omg.org/spec/OCL/2.4/PDF.

Papyrus, (2012) Papyrus, 2012. www.papyrusuml.org.

Unified Modeling Language (UML), 2012.

Ran Wei , Dimitrios S. Kolovos , Antonio Garcia-

Dominguez (2016) Towards Partial Loading of XMI

Models.. _c 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235.

http://publications.aston.ac.uk/30611/1/Partial_loading_

of_XMI_models.pdf.

XMI, 2015 XML Metadata Interchange

http:// www.omg.org/spec/XMI/2.5.1/

Yuan Wang, David J. DeWitt, Jin-Yi Cai. X-Diff: An

Effective Change Detection Algorithm for XML

Documents. In: Proceedings 19th International

Conference on Data Engineering, Bangalore, India,

India 5-8 March, 2003 Page(s):519 - 530

http://pages.cs.wisc.edu/~yuanwang/papers/xdiff.pdf

DOI 10.1109/ICDE.2003.126081.

An Approach of Text to Model Transformation of Software Models

439

