
Elementary Math to Close the Digital Skills Gap

Pia Niemelä1 and Antti Valmari2
1Tampere University of Technology, PO Box 527, FI-33101, Tampere, Finland

2University of Jyväskylä, Jyväskylä, Finland

Keywords: K-12 Computer Science Education, Computing in Math Syllabus, Digital Skills Gap, Professional Develop-
ment of Software Professionals, Effectiveness of Education, Continuous vs. Discrete Math.

Abstract: All-encompassing digitalization and the digital skills gap pressure the current school system to change. Accor-
dingly, to ’digi-jump’, the Finnish National Curriculum 2014 (FNC-2014) adds programming to K-12 math.
However, we claim that the anticipated addition remains too vague and subtle. Instead, we should take into
account education recommendations set by computer science organizations, such as ACM, and define clear
learning targets for programming. Correspondingly, the whole math syllabus should be critically viewed in the
light of these changes and the feedback collected from SW professionals and educators. These findings reveal
an imbalance between supply and demand, i.e., what is over-taught versus under-taught, from the point of view
of professional requirements. Critics claim an unnecessary surplus of calculus and differential equations, i.e.,
continuous mathematics. In contrast, the emphasis should shift more towards algorithms and data structures,
flexibility in handling multiple data representations, logic; in summary – discrete mathematics.

1 INTRODUCTION

21st century society is digitizing rapidly and job des-
criptions of current professions are changing accor-
dingly. Digitalization triggers pressure to change the
current education system. Both domestic and multi-
national governing bodies have recognized the skills
gap of computer science and the growing need for a
digitally fluent workforce. Consequently, the EU has
outlined a strategy for improving e-skills for the 21st
century to foster competitiveness, growth, and jobs.
Just-published technical reports provide guidance for
educators and politicians at the European level (Re-
decker and Punie, 2017; Bocconi et al., 2016), high-
lighting the pervasive and ubiquitous nature of digi-
talization. Digital literacy, responsible use of techno-
logy, and civic participation are thus relevant to ever-
ybody. In consolidation, digitally skillful workers are
more likely to keep their positions and, if displaced,
are reemployed more quickly than employees without
digital skills (Peng, 2017).

The skills gap concerns not only the number of
SW professionals but also the quality of their skills.
The STEM shortage paradox highlights the peculia-
rity of having hard-to-fill open positions and at the
same time an excess of graduates who cannot find a
job (Harris, 2014; Smith and White, 2017). One ex-

planation is the skills mismatch, and in compliance
with this, employers point out the candidates’ inca-
pability of breaking down problems into managea-
ble chunks and solving them, and the gaps in techni-
cal, data modeling, and analytical skills. Accordingly,
data base, data management, data analysis and statis-
tics skills outnumber other requested digital skills of
job advertisements in the US (Beblavỳ et al., 2016).

The discussion of the role of computer science
(CS) in education is global. A number of countries
all over the world have introduced CS into their K-12
curricula. In line with others, the FNC-2014 compri-
ses algorithmic thinking and programming as parts of
the mathematics syllabus (Finnish National Board of
Education, 2014). In pursuit of consistent CS sup-
port, the entire math syllabus should be reviewed al-
ong with these newly introduced additions. This study
then asks:
• RQ1: What elementary math syllabus areas

should be strengthened for the anticipated CS
emphasis?

• RQ2: Are there math syllabus areas that are cur-
rently overemphasized from this viewpoint?

First, this study reviews the discourse of CS as a
scientific discipline and the learning targets of mat-
hematics in anticipation of supporting CS. In the Re-
lated Work section, we list already-existing directi-

154
Niemelä, P. and Valmari, A.
Elementary Math to Close the Digital Skills Gap.
DOI: 10.5220/0006800201540165
In Proceedings of the 10th International Conference on Computer Supported Education (CSEDU 2018), pages 154-165
ISBN: 978-989-758-291-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ves and recommendations of institutions that aim at
building a flexible future work force, such as ACM.
There, we focus on suggested math courses in parti-
cular. For comparison, we check the elementary-level
math and computing syllabi of current strong perfor-
mers in CS, i.e., the UK and US. The Results and Dis-
cussion section cross-exposes these recommendations
with feedback from in-service software engineers by
focusing on the evaluated profitability of the curri-
culum topics. To conclude, we propose hypothetical
math learning trajectories for a CS support.

2 CS&SWE VS. ICT

Most natural sciences and engineering disciplines rely
on calculus, differential equations, and linear algebra
as a mathematical foundation appropriate for continu-
ous phenomena. Systems relying on such phenomena
can be adequately tested. For instance, a bridge does
not need tests for all possible loads between zero and
a maximum value. Testing the maximum load under
typical and extreme weather conditions suffices.

In contrast, Parnas highlights the different nature
of software (Parnas, 1985). Unlike bridge load tests,
testing a piece of software with typical and extreme
values does not guarantee expected behavior with un-
tested values. Furthermore, software is rarely concise
enough to be tested inside out, and unlike mathema-
tical theorems, it is not comprehensively checked by
other experts in the field. Thus, frequent errors and
failures are common (Charette, 2005).

As we will discuss later, computer scientists have
suggested topics such as logic, formal grammar, and
set theory as an appropriate mathematical basis for
mastering software and improving its quality. In addi-
tion, the importance of algorithmic thinking has been
discussed extensively. In traditional engineering de-
gree programs, classic mathematics and physics are
included early on. The rationale is to develop a suit-
able mindset, that is, a way of thinking that facilita-
tes a more profound learning of engineering topics.
The basis is laid already in elementary school phy-
sics and mathematics. Similarly, professional compu-
ter science and software development need a suitable
mindset that should be developed before studying the
bulk of the software topics. However, because soft-
ware cannot be appropriately mastered with tools sui-
ted for continuous phenomena, this mindset is not the
same as that of, say, an electrical engineer.

The discussion of the educational needs in Fin-
land suffers from a poor distinction between Informa-
tion and Communication Technology (ICT), Compu-
ter Science (CS), and Software Engineering (SWE).

For more than a decade, the Finnish mobile phone
company Nokia was very successful and its educa-
tional needs had a remarkable impact on the Finnish
educational discourse. In addition to SW engineers,
Nokia needed expertise in the fields of hardware, ra-
dio technology, and signal processing. Therefore,
ICT and SWE were emphasized instead of CS, with
SWE largely perceived via analogy to traditional en-
gineering, less through its relation to CS. As a conse-
quence, Finnish scholars and educators have only par-
tially conceived the special character of CS and SWE
as disciplines distinct from ICT, thus requiring a dif-
ferent educational foundation, which implies changes
in the math syllabus as well.

To clarify the conceptual difference, we define the
relation of CS to SWE more closely. Parnas equates
it to the relationship between physics and electrical
engineering (Parnas, 1999, p. 21): physics belongs
to the natural sciences, which target an understanding
of a wide variety of phenomena; electrical engineer-
ing is an engineering discipline striving to create use-
ful artefacts. Although electrical engineering is ba-
sed on physics, it is neither a subfield nor an exten-
sion of it. Analogously, CS is a science, and SWE
is an engineering discipline based on CS. Therefore,
CS degrees must focus on the underlying computatio-
nal phenomena and the acquisition of new knowledge
of these, while SWE degrees concentrate on imple-
menting trustworthy, human-friendly software cost-
effectively.

In regard to math, the latest specifications of
ACM&IEEE explicate the similarity of required skills
both in CS and SWE (ACM&IEEE, 2013; Ardis et al.,
2014). Even if CS is more scientific as a discipline
and more deeply grounded in math, SW engineers be-
nefit from more theoretically-oriented CS education
and discrete math to be able to implement quality soft-
ware. Hence, the conceptual difference does not di-
verge the required math and computing fundamentals.
Consequently, Meziane and Vadera concluded, ’There
is very little difference between the SE and CS pro-
grams currently offered in English Universities’ (Me-
ziane and Vadera, 2004).

3 RELATED WORK

3.1 ACM Recommendations

The standards developed by the Association for Com-
puting Machinery (ACM) are used as a premise in
curriculum planning in a number of Finnish univer-
sities. The CS concepts introduced in the first courses
are important either for their own sake or for further

Elementary Math to Close the Digital Skills Gap

155

topics. Obviously, the first fundamental concepts are
also the most evident candidates when considering to
advance some basics at the elementary school level.

3.1.1 CS Knowledge Areas of ACM

ACM promotes CS as a discipline and in compliance
prepares normative recommendations for teaching CS
at the tertiary level. ACM (ACM&IEEE, 2013) intro-
duces Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science (ACM-CS2013).
The material is divided into Knowledge Areas (KA)
and further to Knowledge Units (KU) that match with
no particular course. Instead, courses may incorpo-
rate topics from multiple KAs. Topics are divided into
Core and Elective, and the Core is further subdivided
into Tier-1 (to be fully completed) and Tier-2 (at mi-
nimum 80% coverage). The KAs with the most Tier1
hours are:
1. Software Development Fundamentals (43 h)
2. Discrete Systems (37 h)
3. Algorithms and Complexity (19 h)
4. Systems Fundamentals (18 h)

The natural flow of concepts is to introduce soft-
ware development fundamentals (SDF) and simulta-
neously strengthen the mathematical foundation with
Discrete Systems (DS). In descending order of allo-
cated hours, algorithms and complexity (AL) come
next, where mastering common algorithms is consi-
dered general CS knowledge. Complexity conside-
rations consist of evaluating the algorithm efficiency
based on execution time and consumed resources. Sy-
stems Fundamentals (SF) give an insight into system
infrastructure and low-level computing by acquain-
ting students with computer architecture, main HW
resources and memory, and, e.g., sequential and pa-
rallel execution.

From the list above, items 2 and 3 link closely with
math. According to ACM, DS comprises the follo-
wing areas in descending order of emphasis (Tier-1
+ Tier-2 hours): Proof Techniques (11), Basic Logic
(9), Discrete Probability (8), Basics of Counting (5),
Sets, Relations, and Functions (4), and Graphs and
Trees (4). AL in turn consists of basic and advanced
KUs of Analysis, Strategies, Fundamental Data Struc-
tures, Automata, Computability, and Complexity.

In sum, algorithms and data structures are at the
center of gravity together with the programming ba-
sics of SDF.

3.1.2 The Most Relevant Math to Support CS

ACM-CS2013 highlights the tight and mutual inter-
dependence between math and CS. However, instead

of being prepared for every kind of career option,
ACM-CS2013 focuses on the common denominator.
Thus, only directly relevant requirements are speci-
fied, such as elements of set theory, logic, and dis-
crete probability comprising the KA of DS. On the
other hand, ACM-CS2013 states that “while we do not
specify such requirements, we note that undergradu-
ate CS students need enough mathematical maturity
to have the basis on which to then build CS-specific
mathematics”. It also mentions that “some programs
use calculus . . . as a method for helping develop such
mathematical maturity” (ACM&IEEE, 2013).

The recommendations make a distinction between
such mathematics that is an important requirement for
all students in the faculty and mathematics that is re-
levant only to specific areas within CS, exemplifying
this with linear algebra that “plays a critical role in
some areas of computing such as graphics and the
analysis of graph algorithms. However, linear alge-
bra would not necessarily be a requirement for all
areas of computing” (ACM&IEEE, 2013).

If it were decided to emphasize discrete math in-
cluding logic in the elementary school math curri-
culum, then an age-appropriate and tested subset of
ACM Basic Logic could be found in the National Cur-
riculum and GCSE Mathematics of the UK. The UK
has already emphasized discrete math for a longer pe-
riod, see section 3.3. Logic is deployed frequently
in programming, not only when implementing con-
ditions in selection and iteration statements. Subse-
quently, university-level logic targets more sophisti-
cated and far-reaching knowledge than this. In conse-
quence, Basic Logic of DS introduces normal forms,
validity, inference rules, and quantification.

Although probability is linked more weakly to the
programming fundamentals than logic, it gives readi-
ness for various prominent topics, such as the analy-
sis of average-case running times, randomized algo-
rithms, cryptography, information theory, as well as
games. Its basics should cover conditional probabi-
lity, independent and dependent events, and multipli-
cation and addition rules.

3.2 SWEBOK Recommendations

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) of the IEEE breaks down
the mathematical foundations into smaller knowledge
areas (Bourque et al., 2014). In the review, we focus
on both Chapters 13 and 14 of the guide, i.e., Compu-
ting and Mathematical Foundations.

Computing Foundation in Chapter 13 is inclu-
ded because it comprises algorithms and data struc-
tures. Data structures have various classifications,

CSEDU 2018 - 10th International Conference on Computer Supported Education

156

e.g., linear–nonlinear, homogeneous–heterogeneous,
stateful–stateless. For instance, linear structures or-
ganize items in one dimension (lists, stacks), compa-
red to the two or more hierarchies (trees, heaps) of
non-linear structures. Well-designed data structures
accelerate data storage and retrieval. The efficiency
of algorithms depends significantly on the selection
of a suitable data structure. Appropriate data struc-
tures can foster algorithm development. When the
effects are combined, performance and memory con-
sumption may range from poor to extremely efficient.

Chapter 14 highlights CS as an applied maths to-
pic. The foundational KAs concentrate on logic and
reasoning as the essences that a SW engineer in par-
ticular must internalize. The chapter describes mat-
hematics as a tool of studying formal systems, wi-
dely interpreted as abstractions on diverse applica-
tion domains. These abstractions are not restricted to
numbers only, but include, e.g., symbols, images, and
videos.

The following subtopics constitute the foundatio-
nal KAs of math. Our assumption is that the order
implicates their importance. We divide these topics
into continuous (c) and discrete (d):

1. Sets, Relations, and Functions (c/d)

2. Basic Logic (d)

3. Proof Techniques (d)

4. Basics of Counting (d)

5. Graphs and Trees (d)

6. Discrete Probability (d)

7. Finite State Machines (d)

8. Grammars (d)

9. Numerical Precision, Accuracy, and Errors (c)

10. Number Theory (d)

11. Algebraic Structures (d)

One obvious observation is a notably smaller por-
tion of continuous math compared to traditional engi-
neering education. In particular, calculus, differential
equations, and linear algebra are missing. Instead, se-
veral topics target a better position of underlying lo-
gic (2,3); and primers for data types, data structures
and algorithms (1,4,5,9,11). In addition, subtopics of
Basics of Counting (4), and Discrete Probability (6)
and Number Theory (10) scaffold a deeper understan-
ding of probability and cryptography. Numerical Pre-
cision, Accuracy, and Errors (9) section reveals un-
derlying HW and memory specifics that have an effect
on, e.g., the resolution of measurements and impossi-
bility of expressing most real numbers precisely.

3.3 K-12 Math and Computing Syllabi
of the UK and US

For comparison, we went through the National Cur-
riculum (UKNC) and General Certificate of Secon-
dary Education (UKGCSE) of the UK (Department of
Education, 2014; GCSE, 2015), and the Core Curri-
culum of US (USCC) (Core Standards Organization,
2015). The logic basics are present in the syllabi of
both, with a comprehensive subset. Yet Boolean logic
is currently included in the computing curriculum of
UKNC, not in math. However, Boolean logic would
fit well in the math syllabus as a consistent continuum
of inequalities.

Sets can illustrate nested number sets of natural
numbers (N), integers (Z), and reals (R) that match
with variable types (unsigned, int, float) in program-
ming. However, due to differences in how, e.g., reals
appear in both, we note that this juxtaposition is prone
to misconceptions. For instance, in:

i n t x =1; f l o a t y=x / 2 ;

division may produce a value of zero depending on
the used language. All the same, not every int is a
float, in contradiction of the math subset relation of
Z� R. In addition to primitive types, sets are the ba-
sic mathematical abstraction of containment, and are
thus relevant for programming as a cognitive tool. A
group of numbers may be introduced as a set, a vec-
tor or a matrix, and the same group operations apply.
Therefore, set theory would be useful in any mathe-
matics curriculum designed to support programming.
Currently, sets are a part of UKNC, but absent from
USCC and FNC-2014.

Linear algebra basics are included in the USCC
as matrices and basic operations; and as vectors and
transformations in UKNC, whereas they are missing
from the FNC-2014. For example, linear algebra ba-
sics could be a beneficial addition even if supported
by ACM-CS2013 only as an elective math topic, be-
cause matrices are extensively exploited in the fields
of statistics, data analysis, games, and graphics, for
instance. The need for matrices is increasing, because
of

topicality of their application areas and because
many libraries in, e.g., Python exploit them extensi-
vely. As a topic, matrices and vectors belong together,
and various transformations (such as scaling, transla-
tion, reflection and rotation) are main operations on
image manipulation and animations.

Matrices are extensively exploited, e.g., in ma-
chine learning, data analysis, pattern recognition, and
game engines for 2D/3D-transformations. All sugge-
sted math syllabus areas remain at the preliminary le-

Elementary Math to Close the Digital Skills Gap

157

Table 1: Math Syllabi (KS=key stage, G=grade, HS=high
school. Each key stage covers several grades ranging from
two to four. The GCSE exams follow KS4.

UKNC USCC
Logic (in CS)

KS2: logical reaso-
ning to explain how
simple algorithms
work
KS3: Boolean logic
(AND/OR/NOT)
and its applica-
tion in circuits and
programming

Sets
Prob

KS3: enumerate sets,
unions/intersections,
tables, grids and Venn
diagrams
KS4: data sets from
empirical distribu-
tions, identifying
clusters, peaks, gaps
and symmetry, ex-
pected frequencies
with two-way ta-
bles, tree and Venn
diagrams

G6: data sets,
identifying clus-
ters, peaks, gaps,
symmetry
G7: random sam-
pling to generate
data sets
HS: interpreting
differences in
shape, center
and spread of a
distribution

Vectors
Mat-
rices

KS4: (in Geome-
try) translations as 2D
vectors, addition and
subtraction of vectors,
multiplication with a
scalar, diagrammatic
and column represen-
tations
GCSE: transformati-
ons & vectors

HS: addition,
subtraction, mul-
tiplication of
matrices, multi-
plication with a
scalar, identity
matrix, transfor-
mations as 2x2
matrices

vel in UKNC and USCC and we propose the same: in
logic truth tables and Boolean logic in order to sim-
plify several simultaneous conditions; in sets, Venn
diagrams and basic operations of union, intersection
and cut with at most three sets; and in matrices, trans-
formations of translation, reflection, rotation and en-
largement and finding an inverse matrix. This new
math knowledge should be carefully bridged with the
prior knowledge with lots of visual exercises and by
starting early enough. Table 1 illustrates in which or-
der these topics are handled in the UKNC and USCC.

Thus, in lieu of the ACM DS Logic subset, a
readily field-tested elementary syllabus is found in
GCSE CS (GCSE, 2015). It contains the following
topics:

• binary and hexadecimal notations

• binary addition and shift

• Boolean values (true, false)

• Boolean operators (AND, OR, NOT); truth tables

Sets prompt types in programming and they can be
utilized in abstracting both primitives and collections.
UKNC specifies the syllabus of sets followingly:

• sets visualized by Venn diagrams

• set operations: subset, proper subset, intersect,
and union, combinations of these

• sets represented as lists, and

• set and its complement

In addition, in the CS syllabus of the GCSE clear le-
arning targets for algorithms are set: at a minimum,
binary search and merge sort (GCSE, 2015).

4 METHOD

This study complies with the scope of curriculum the-
ory (Pinar, 2012), and its key question of what kno-
wledge is most valuable and how this knowledge is
constructed as consistently as possible. Here, we are
concerned with the educational and sociological as-
pects due to the aim of improved employability and
filling the digital skills gap. This study is restricted to
elementary math and compares the FNC-2014 to the
UKNC and USCC (Department of Education, 2014;
English Department for Education, 2013; Core Stan-
dards Organization, 2015) and to the recommendati-
ons given by the ACM and IEEE (ACM&IEEE, 2013;
Bourque et al., 2014). The comparison exploits con-
tent analysis in searching for the math syllabus antici-
pated to be the most useful for CS students.

In addition to the comparison, the effectiveness of
the university-level SWE studies reflects back to the
curriculum design. We do not collect any new data but
reuse the data of existing studies (Lethbridge, 2000;
Puhakka and Ala-Mutka, 2009; Surakka, 2007; Kit-
chenham et al., 2005). The results of the previous
studies are cross-correlated to confirm their validity
in order to draw conclusions about the most profita-
ble math topics.

5 RESULTS AND DISCUSSION

In this section, we first review the feedback from the
field: SW professionals evaluate the curriculum to-
pics according to their profitability in working life.
Having being informed of both the previous section’s

CSEDU 2018 - 10th International Conference on Computer Supported Education

158

recommendations and criticisms of the current rea-
lization, we summarize the necessary math syllabus
content and bridge the learning trajectories from ele-
mentary to higher-education math.

5.1 Feedback From SW Engineers

To evaluate the effectiveness of their education, SW
engineers have scored the profitability of a plenty of
curriculum topics (Lethbridge, 2000). An imbalance
between supply and demand was discovered and as a
remedy, the author recommends putting less emphasis
on the topics of minor importance – or teaching them
in a way that makes them more relevant to SWE stu-
dents. The study was run in year 1997 and repeated
in 1998. The differences between outcome remained
modest. In 1998, the sample size was N � 181, and
the survey consisted of 75 topics of CS, SWE, etc.

A few years later, in 2004, Kitchenham & al. con-
ducted a research focusing on the curricula and gra-
duates of four UK universities (Kitchenham et al.,
2005). The methodology was somewhat different and
so was the obtained list of the most under-taught to-
pics. The findings regarding mathematics were, ho-
wever, the same. Then in 2009, a decade after Let-
hbridge’s original research setup, Puhakka et al. pu-
blished an analogous study conducted in Tampere
University of Technology (Puhakka and Ala-Mutka,
2009, N � 212). Out of the original 75 subtopics,
three were removed because of their not being com-
mon in Finnish curricula. Both sub-figures of Fig. 1
illustrate the differences between math-related per-
ceptions among SW professionals in the examined co-
horts of US and Finland. First, we observe that the re-
sults correlate surprisingly well, taking into account a
timespan and continent switch. The scientifically sig-
nificant values of R2 are 0.88 in the upper, and 0.91 in
the lower figure.

The green circles in sub-figures designate the
areas considered either useful (the upper) or in need
of more emphasis (the lower) to build work-life com-
petences of SW professionals. The lower sub-figure,
however, demonstrates the rarity of topics in need
of more emphasis. Negative values indicate a post-
graduate knowledge loss, whereas positive values a
knowledge gain, in other words, inadequate learning
of such topics in higher education.

The latter sub-figure is visually telling.
Only algorithms and data structures are in need

of more emphasis. In addition to these, the Let-
hbridge top-ten consists of no other mathematical but
instead such items as negotiation, human-computer
interaction, and leadership.

In comparison with both previous surveys, Su-

Figure 1: The comparison of usefulness and adequacy of
math education evaluated by SW professionals (Lethbridge,
2000; Puhakka and Ala-Mutka, 2009, N � 181; N � 212).

rakka separates the sample into the cohorts of SW
engineers, academics (professors, lecturers) and stu-
dents, see Fig. 2.

The winner is again clear: algorithms and data
structures, also the prominence of discrete math com-
pared with continuous math is unchallenged, yet the
bias has an academic flavour. Discrete math scores
highest among professors and lecturers (3.1).

5.2 CS-supportive Math for Elementary

In constructing a strong basis for CS, both ACM and
SWEBOK emphasize discrete math, confirmed by the
feedback from the field. After programming basics,

ACM values discrete systems as the second most,
and algorithms, data structures, and complexity as the
third most prominent KAs, whereas the in-service SW
engineers value this area the highest. In SWEBOK,
nine out of eleven math KAs comprise discrete math.
UK, spearheading in CS, invests in discrete math alre-

Elementary Math to Close the Digital Skills Gap

159

Figure 2: The math areas perceptions [1(not important),
4(very important)] of Surakka’s engineers, academics, and
students contrasted with Lethbridge and Puhakka et al.;
N � 11,19,24,181,212; respectively.

ady at the elementary level and in addition, provides
CS as a separate subject with more in-depth topics.

Algorithmic thinking

The referenced studies categorize algorithms and data
structures as part of the CS Core. In programming-
oriented math, data structures can be seen as an appli-
cation of set theory, e.g., sets conceptualize collecti-
ons. In programming, collections are of various ty-
pes: a set is an unordered collection of values, a list
an ordered collection, and a map a collection of va-
lues identified by keys, which may also be interpreted
as a representation of a mathematical function.

Denning equates algorithmic and computational
thinking (Denning, 2009), which he in turn associ-
ates with general problem solving (Denning, 2017).
When solving a problem, it is beneficial to start by
decomposing it to smaller solvables implemented in a
code as sub-routines, for instance. At its simplest, an
algorithm may then be understood as a sub-routine,
a sequence of commands called repeatedly as many
times as desired, e.g., (CSTA, 2016). Computing is
what Wing refers to as automation of abstractions, al-
gorithms being the most prominent class of these ab-
stractions (Wing, 2008).

The gradual division between human-completed
calculation and computer-based computing has been
the watershed between the disciplines of math and
CS. In pondering the difference between the mindsets
of mathematicians and computer scientists, Knuth
points out that computer scientists need to be concer-
ned about algorithms and their computing specifics,
such as the notion of complexity or economy of ope-
rations. In most programming languages, the com-
puting process comprises a series of sequential state
changes executed assignment-by-assignment, which
is an operation absent in math. Moreover, data struc-

tures in CS are inhomogeneous, which spreads the
spectrum of concerns compared with more convergent
mathematical structures (Knuth, 1985), excluding the
data structures of advanced set theory and logic.

Algorithmic thinking has been brought within re-
ach of school or even pre-school children with mul-
tiple initiatives such as (Liukas, 2015). It may be
well taught even without computers, as demonstrated
by the CS-unplugged movement (Taub et al., 2012),
and algorithmic plays (Futschek and Moschitz, 2010).
Puzzles and games can be thought-provoking, thus
this approach is also exploited by a number of univer-
sities in familiarizing students with algorithms (La-
magna, 2015). Unplugging removes the extra cogni-
tive load of programming details.

Data represented and modeled in multiple ways

Multiple external representations (MERs) elucidate
the data and problem from different perspectives. For
example, a function may be represented as an ex-
pression, a curve, a map from argument set to image
set, a table with two columns, or a function machine.
Flexibility in moving from one representation to anot-
her indicates a deeper understanding of the concept
(McGowen et al., 2000), which facilitates problem
solving. Wilkie and Clark denote representational
flexibility as fluency with the order of operations;
commutative, associative, and distributive laws; and
equivalence of expressions (Wilkie and Clarke, 2015).
In programming, representational fluency is practi-
ced, e.g., with the syntactic diversity of operations,
such as addition: x� y, �px, yq, or p� x yq.

Fig. 3 illustrates the use of the MathCheck lear-
ning tool (Valmari and Kaarakka, 2016) in studying
the relationship between textual and tree representati-
ons. Such exercises aim at training the precedence
and left- and right-associativity rules in particular.
The exercises help students to grasp the distinction
between semantics and syntax by differentiating bet-
ween associativity as a semantic notion and left- and
right-associativity as syntactic notions. Furthermore,
the example in Fig. 3 reveals that the relation opera-
tors (� and ¥, and so on) are neither left- nor right-
associative unlike arithmetic operators (�, �, and so
on). Consequently, in x � y ¥ z, the first comparison
result is not passed as an argument to the second, but
instead, a Boolean AND is performed on both. Thus,
drawing � as a child of ¥, or vice versa, would be
misleading. Being even, the relation operators must
share the root of a tree as Fig. 3 illustrates. This also
makes it explicit that although y occurs only once,
both comparisons use it as an argument.

In problem solving, the ability to model and ab-
stract the data is crucial. USCC specifies Modeling as

CSEDU 2018 - 10th International Conference on Computer Supported Education

160

Figure 3: A tree representation of a model relation chain,
and a failed student attempt to yield a similar tree.

one syllabus area of HS math (Core Standards Orga-
nization, 2017; Core Standards Organization, 2015).
Modeling links to a broader pedagogical idea of using
open-ended problems of everyday life and it combi-
nes skills from math, statistics and technology, and
’ . . . and an ability to recognize significant variables
and relationships among them. Diagrams of various
kinds, spreadsheets and other technology, and alge-
bra are powerful tools for understanding and solving
these problems.’ Although modeling, say, a banking
system for implementation as software is fundamen-
tally different from modeling a physical or statistical
problem, the need to recognize and formalize the es-
sential aspects of the problem is common to all of
them. Modeling requires ’specificational thinking’,
which is necessary for both SW engineers and their
customers in order to reach a common vision, and
describe use cases and requirements pellucidly. In
FNC-2014, phenomenon-based learning approaches
the anticipated open-endedness in problem setting.

Logic

In CS formalization, Dijkstra described its distincti-
veness with a formula (Dijkstra et al., 1989): CS �
math� logic. In accordance, he called students to
learn formal math and logic to construct a well-
grounded basis for CS. UKNC points out that already
a novice programmer at the elementary level needs
simple Boolean logic, for example, the operators of
AND, OR and NOT, and combinations, see Fig. 4.
In the same context, logic gates in circuits are intro-
duced. This connection between Boolean logic and
logic gates can be used to create a link with electrical
engineering and physics.

Figure 4: Logic in UKNC.

To skim other logic uses, we reviewed ACM
course descriptions. The chief applications were
proofs, correctness, combinational and sequential lo-
gic of state machines, and in addition to these, logic
of knowledge representation and reasoning that tar-
gets translating natural language (e.g., English) sen-
tences into predicate logic statements. Such a skill
would stand out when applying specificational thin-
king, check page 7.

Sets, statistics, probability

Sets

xA’ A

U

P(A)+P(A’) = 1
n(A) = 1 (only x, in this case)

B={0,1,2,3}
A={x | x∊B, x>2 } descriptive

C={x | x∊B, x<2},D={}, D=∅

visualized by Venn listed complemented

A⊂B
proper subset

B⊆B
subset

A∩B
A intersects B

A∪B
A union B

A∩B∩C

 B
 A

 B

 A B

 A B

 A B

 C

Figure 5: Sets in UKNC.

The syllabus areas of sets, statistics and probabi-
lity are inter-related at the elementary level, justifying
a combination of these topics. Sets are missing from
FNC-2014, whereas UKNC defines a functional sub-
set visualized in Fig. 5. Sets (naı̈ve set theory) in
UKNC are a gentle kick-start for the set theory, fa-
miliarizing students with different notations, e.g., the
interchangeable use of either a list or a Venn diagram
(excluding some special cases). A number of basic
concepts are introduced, such as a set and its comple-

Elementary Math to Close the Digital Skills Gap

161

ment, a universe, and a subset. Set operations cover
union and intersection.

Building the knowledge base and gaining expe-
rience of these topics may be initiated, for instance,
by collecting data of concrete phenomena, such as
measuring the heights of students of a class and con-
structing a histogram of the heights of the class. Stu-
dents should be capable of reading and interpreting
these charts. For instance, the shape of the height
histogram should resemble the typical bell-shape of a
normal distribution making it timely to introduce the
concepts of mean, median, and mode in this context.
In addition to histograms, the alternative way of re-

semi-interq:
28/2=14

UQ

MED

LQ

Statistics

illustrated by e.g.
Pie Bar Line

characterized by

Histogram,
frequency polygon

Cumulative frequency

Box and whiskers

Strong positive
correlation

Negative
correlationMean<Mode Mode<Mean

Figure 6: Statistics in UKNC.

presenting this information is to construct a cumula-
tive frequency chart, in the UKNC subset visualized
in Fig. 6, the left bottom corner. Ultimately, informa-
tion could be reduced to a box-and-whiskers chart.

Venn diagrams and relative frequency charts
prompt probability issues. The relative frequency of
an event, e.g., which percentage of students are 140–
150 cm tall, provides an obvious scaffold to inves-
tigate the probability of a randomly-selected student
being 140–150 cm tall. In Venn, the bin of 140–150
cm students can represent the set A, where the com-
plement set of A represents all the students not within
this height category. In the universe of this class (or
any other), a selector will get either a student from
the set A or its complement A with 100% probability,
i.e., PpAq �PpAq � 1. In Finnish elementary math,
probability links closely with statistics in the descri-
bed manner. In contrast, UKNC progresses further by
including the multiplication and addition rules (Fig.
7).

The sun either shines or not, no other options ex-
ist. However, if the sun shines, a bird will sing more
probably. A decision tree assists in constructing the
combined probabilities correctly: the multiplication
rule applies horizontally to each branch at a time, and

Figure 7: Probability in UKNC.

the products are added vertically. In a tree, all the
probability branches of one joint must sum up to one.

In preparation for CS and related math courses of
higher-education including sets, statistics, and proba-
bility, UKNC specifies a valid and deliberately plan-
ned math syllabus for an elementary level that could
be emulated as such in FNC-2014.

5.3 The Learning Trajectories Bridged
from Elementary to Higher-ed Math

Fig. 8 divides into four horizontal layers: Elem.math,
CT, HS math, and Tert.math. Elementary school is
compulsory, the rest elective. Vertical dashed lines re-
present the learning trajectories of discrete math pro-
posed in the previous sections. The learning trajec-
tory of algorithms and data structures is marked with
green to illustrate its prominence. Currently, elemen-
tary math does not specify any other learning targets
of algorithms except the need for algorithmic thin-
king. It starts with problem solving and decomposi-
tion, which in programming implies subroutines. Ul-
timately in algorithms, e.g., the simplest sort and se-
arch algorithms were a natural learning goal. Data
structures are prompted by number sets that corre-
spond with variable types; in programming types can
be, e.g., primitives or collections, such as arrays, lists,
and vectors. Structuring data in various ways, mo-
deling and visualizing it, assists in raising the ab-
straction level and in problem solving. The second
most prominent trajectory is logic. Like algorithmic
thinking, logic is included only as a requirement of
logical thinking, except optionally in programming,
where it is needed for the conditions of selection and
iteration structures. The logic subset illustrated in
Fig. 4 is proposed to partly enhance Y7–9 math, phy-
sics, and native language syllabi. To add further value
to this age range, the UKNC syllabus areas of sets

CSEDU 2018 - 10th International Conference on Computer Supported Education

162

S
ta

t.
Fi

g.
6

P
ro

b.
Fi

g.
7

S
E

T
S

Fi
g.

5

L
O

G
IC

S
Fi

g.
4

A
L

G
O

R
IT

H
M

IC
T

H
IN

K
IN

G
P.

7

Fig.3

number
sense

integers spatial
imagery

problem
solving

coordinates
2D

shapesreals comparison
operators

data
collection

chartsrel.fq

µ
med.
mode

multiple representations

statistics
calc.

rnd

truth
values

logical
operators

condition

selection iteration

variable

variable

problem
decomp.

expression
equation

inequality

function

functiontype, data
structure

recur-
sion

higher-
order
func.

container

array
list

vector

Pythag.
trig.

point,line angle

transfor-
mations

graphs 3D
shapes

Turtlecomputer
graphics

animations

Algebra (A)Arithmetic (N) Geometry (G)

Abstraction

Automation

Y1-2

Y3-6

Y7-9

Statistics
Probability

testing, debugging, optimizingAnalysis

Logic(L) Creativity(C)

CT

Elem.math

HS math

Tert.math

course description
MAB5 statistics and probability

(MAB8) statistics and probability II

MAA10 probability and statistics
combinatorics

course description
MAY1 numbers,sequences
MAB4 modeling,patterns
MAB6 commercial math
MAY1 numbers,sequences
MAA8 root,log functions

(MAA11) number theory,proofs Euclidean alg.
(MAA12) algorithms in math Newtonian alg.

course description
MAB2 expression,equations

(MAB7) math.analysis

MAA2 polynomials
MAA6 derivative
MAA9 integral calculus

(MAA13) diff.equations

course description
MAB3 geometry

MAA3 geometry
MAA4 vectors
MAA5 analytic g.
MAA7 trigonometry

statistics,
prob. set theory predicate

logic
algorithms,
data structs

calculus differential
equations

Discrete Math Continuous Math

math skills for modern SW engineers

time, resources

Figure 8: Hypothetical learning trajectories bridged from the FNC-2014 elementary to higher education math.

(Fig. 5), statistics and probability (Fig. 6 and 7) were
worth considering in descending order of importance.
However, due to time constraints, adding content to
the math syllabus is problematic. CS, as a separate
subject, would solve the problem. Below elementary
math, the CT layer illustrates the computing enhance-
ment and how the process divides into abstraction, au-
tomation, and analysis phases. In this layer, the math
fundamentals have their computational counterparts.
The math schedule (Y7–9) implies an appropriate in-
troduction order of corresponding CS fundamentals.

The next layer of high school (HS) math is
elective. It divides into A and B math: A is the ma-
jor (ten compulsory MAA* courses, four electives), B
being the minor subject (six compulsory MAB* cour-
ses, two electives) (Finnish National Board of Edu-
cation, 2015). Regrettably, the HS math rigidly tar-
gets the matriculation exam, whose importance has
lately grown as a selection criteria for tertiary educa-
tion, thus extending the CT layer to cover the HS level

is not topical. In HS, algorithms are introduced only
in the elective courses of ’Number theory and proofs’
(MAA11), and ’Algorithms in math’ (MAA12). Clo-
sest to logic is the elective MAA11 with conjunctives
and truth values. In regard to the remaining trajecto-
ries, sets are missing from the FNC-2014, both at the
elementary and HS, whereas the situation of statistics
and probability is brighter. They start already at the
elementary, and HS allocates three courses to the to-
pic: MAB5, MAB8, MAA10. Tertiary math elucida-
tes the required skills for modern SWE by represen-
ting the most prominent topics only.

6 CONCLUSIONS

RQ1: Math syllabus areas to be strengthened? Ac-
cording to the reviewed studies, SW engineers need
stronger algorithms and data structure skills. In ac-
cordance, fluency with multiple representations and

Elementary Math to Close the Digital Skills Gap

163

modeling is considered beneficial in illustrating and
structuring data, thus improving problem solving
skills. To further strengthen the theoretical basis ne-
cessitates the inclusion/teaching of primarily logic,
and secondarily set theory, statistics, and probability.

In increasing discrete math, the UKNC math and
CS provide an exemplar to emulate in elementary
education in Finland. USCC defines HS Modeling
for structuring data, and the area could be subset age-
appropriately for the elementary level. Modeling as-
sociates also with the use case/requirement specifica-
tions of SWE, which prompts the new term of ’speci-
ficational thinking’.

However, discrete math does not benefit only fu-
ture SW engineers, but all students in becoming gene-
rally educated and acquainted with CS. Even though
continuous and discrete math are posed as opposite, in
practice, they are deeply interconnected and comple-
ment each other. Natural sciences continue to exploit
continuous math as before, so continuous math must
keep a significant role in the curriculum. However, to
meet the challenges of digitalization, we believe that
it is appropriate to move some emphasis from conti-
nuous to discrete math.

RQ2: The overemphasized math syllabus areas?
Curriculum planning is a zero-sum game. If the

volume of discrete mathematics were increased, some
areas ought to be decreased correspondingly. The pro-
posal is to move some emphasis from continuous to
discrete math already at the elementary level. For all
the intended content the current time allocation is ex-
iguous, which is why adding CS as a separate subject
is a distinct option.

Further studies

The shifting of more emphasis to discrete math must
be executed in an evidence-based manner, i.e., the le-
arning outcomes must be carefully evaluated in co-
operation with pedagogical experts both in elemen-
tary and higher education. To advance this approach
further, the results should speak for themselves. To
achieve the full potential of discrete math in higher-
education, traditional ’Advanced Engineering Calcu-
lus’ would need its discrete math counterparts, say,
’Programmers’ Introduction to Automata and Formal
Languages’ or ’Set Theory for Software Engineers’,
which indisputably explicate the benefits of the rene-
wed math syllabus for the good of programming.

Is the time ripe for the next Lethbridge iteration to
evaluate the current topics of the SWE curriculum?

ACKNOWLEDGEMENTS

Thanks to the Academy of Finland (grant number
303694; Skills, education and the future of work) for
their financial support.

REFERENCES

ACM&IEEE (2013). Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, December 20, 2013.
Technical report.

Ardis, M., Budgen, D., Hislop, G., Offutt, J., Sebern,
M., and Visser, W. (2014). Software Engineering
2014: Curriculum Guidelines for Undergraduate De-
gree Programs in Software Engineering. Joint effort
of the ACM and the IEEE-Computer Society.

Beblavỳ, M., Fabo, B., and Lenearts, K. (2016). Demand
for Digital Skills in the US Labour Market: The IT
Skills Pyramid. CEPS Special Report No. 154/De-
cember 2016.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., En-
gelhardt, K., Kampylis, P., and Punie, Y. (2016). De-
veloping Computational Thinking: Approaches and
Orientations in K-12 Education. In EdMedia: World
Conference on Educational Media and Technology,
pages 13–18. Association for the Advancement of
Computing in Education (AACE).

Bourque, P., Fairley, R. E., et al. (2014). Guide to the soft-
ware engineering body of knowledge (SWEBOK (R)):
Version 3.0. IEEE Computer Society Press.

Charette, R. N. (2005). Why software fails. IEEE Spectrum,
42:42–49.

Core Standards Organization (2015). Mathematics
Standards — Common Core State Standards
Initiative. http://www.corestandards.org/wp-
content/uploads/Math Standards1.pdf.

Core Standards Organization (2017).
High School: Modeling.
http://www.corestandards.org/Math/Content/HSM/.

CSTA (2016). Computer science standards.
https://www.csteachers.org/resource/resmgr/Docs/
Standards/2016StandardsRevision/
INTERIM StandardsFINAL 07222.pdf.

Denning, P. J. (2009). The profession of IT Beyond com-
putational thinking. Communications of the ACM,
52(6):28–30.

Denning, P. J. (2017). Remaining trouble spots with com-
putational thinking. Communications of the ACM,
60(6):33–39.

Department of Education (2014). National Curriculum in
England. Key stages 3 and 4 framework document.

Dijkstra, E. W. et al. (1989). On the cruelty of really te-
aching computing science. Communications of the
ACM, 32(12):1398–1404.

English Department for Education (2013). National Curri-
culum in England Computing programmes of study.

Finnish National Board of Education (2014). Finnish Nati-
onal Curriculum 2014.

CSEDU 2018 - 10th International Conference on Computer Supported Education

164

Finnish National Board of Education (2015). National
core curriculum for general upper secondary educa-
tion. http://www.oph.fi/download/172124 lukion
opetussuunnitelman perusteet 2015.pdf.

Futschek, G. and Moschitz, J. (2010). Developing algo-
rithmic thinking by inventing and playing algorithms.
Proceedings of the 2010 Constructionist Approaches
to Creative Learning, Thinking and Education: Les-
sons for the 21st Century (Constructionism 2010), pa-
ges 1–10.

GCSE (2015). GCSE subject content for computer science.
https://www.gov.uk/government/uploads/system/
uploads/attachment data/file/397550/
GCSE subject content for
computer science.pdf.

Harris, M. (2014). The STEM shortage paradox. Physics
World, 27(10):56.

Kitchenham, B., Budgen, D., Brereton, P., and Woodall, P.
(2005). An investigation of software engineering cur-
ricula. Journal of Systems and Software, 74(3):325–
335.

Knuth, D. E. (1985). Algorithmic thinking and mathema-
tical thinking. The American Mathematical Monthly,
92(3):170–181.

Lamagna, E. A. (2015). Algorithmic thinking unplugged.
Journal of Computing Sciences in Colleges, 30(6):45–
52.

Lethbridge, T. C. (2000). What knowledge is important to a
software professional? IEEE Computer, 33(5):44–50.

Liukas, L. (2015). Hello Ruby. A childrens’ book available
in 22 languages.

McGowen, M., DeMarois, P., and Tall, D. (2000). Using
the function machine as a cognitive root.

Meziane, F. and Vadera, S. (2004). A comparison of com-
puter science and software engineering programmes
in English universities. In 17th Conference on Soft-
ware Engineering Education and Training (CSEE&T
2004), 1-3 March 2004, Norfolk, VA, USA, pages 65–
70. IEEE Computer Society.

Parnas, D. L. (1985). Software aspects of strategic defense
systems. Commun. ACM, 28(12):1326–1335.

Parnas, D. L. (1999). Software engineering programs
are not computer science programs. IEEE Software,
16(6):19–30.

Peng, G. (2017). Do computer skills affect worker employ-
ment? An empirical study from CPS surveys. Com-
puters in Human Behavior, 74:26–34.

Pinar, W. F. (2012). What is curriculum theory? Routledge.
Puhakka, A. and Ala-Mutka, K. (2009). Survey on the kno-

wledge and education needs of Finnish software pro-
fessionals. Tampere University of Technology, Depart-
ment of Software Systems.

Redecker, C. and Punie, Y. (2017). European Framework
for the Digital Competence of Educators: DigCom-
pEdu. EUR - Scientific and Technical Research Re-
ports, The European Commission’s science and kno-
wledge service.

Smith, E. and White, P. (2017). A ‘great way to get on’?
The early career destinations of science, technology,
engineering and mathematics graduates. Research Pa-
pers in Education, 32(2):231–253.

Surakka, S. (2007). What subjects and skills are impor-
tant for software developers? Communications of the
ACM, 50(1):73–78.

Taub, R., Armoni, M., and Ben-Ari, M. (2012). CS unplug-
ged and middle-school students’ views, attitudes, and
intentions regarding CS. ACM Transactions on Com-
puting Education (TOCE), 12(2):8.

Valmari, A. and Kaarakka, T. (2016). MathCheck: a tool
for checking math solutions in detail. In SEFI 2016
Annual Conference Proceedings, pages VK.1–VK.9.
European Society for Engineering Education SEFI.

Wilkie, K. J. and Clarke, D. M. (2016; 2015). Develo-
ping students’ functional thinking in algebra through
different visualisations of a growing pattern’s struc-
ture. Mathematics Education Research Journal,
28(2):223–243.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical transactions of the
royal society of London A: mathematical, physical and
engineering sciences, 366(1881):3717–3725.

Elementary Math to Close the Digital Skills Gap

165

