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Abstract: Electric vehicles (EVs) have been proposed to provide flexibility to the energy grid in various ways. With EV
exhibiting very diverse usage patterns on the one hand, and many demand response (DR) schemes and their
respective requirements on the other, aggregators of flexibility, as well as operators of controlled charging
infrastructure, need models and methods to assess the suitability of specific EVs for specific schemes. In this
paper, we provide an application independent flexibility model that allows quantifying the potential amount of
flexibility based on a historical dataset. Further, we provide a process to assess the predictability of flexibility
through modeling it as a short-term load forecasting problem suitable also for smaller aggregations. Our key
findings using real-world data of over 200 charging points are that up- and downwards flexibility per interval
have a similar magnitude, but it is unexpectedly low for the high number of charging points. Further, we find
that forecast errors are quite high, although we can improve upon naïve benchmarks by almost 20% in mean
absolute errors with learning models.

1 INTRODUCTION

In the transition to more intelligent decentralized en-
ergy systems with increasing shares of fluctuating and
uncertain renewable energy supplies, aggregations of
electric vehicles (EV) have been proposed to provide
flexibility to the energy system. In this work, we aim
at both market DR and physical DR (cf. (Palensky
and Dietrich, 2011)). In market DR schemes, EVs
are typically integrated through aggregators, and dif-
ferent energy markets have been proposed, such as
reserve markets (Goebel and Jacobsen, 2016), day-
ahead markets (Vayá and Andersson, 2015) or intra-
day/imbalance markets (Sortomme and El-Sharkawi,
2012). Here, the EVs may even be physically dis-
tributed, but typically within a virtual balancing group
or virtual power plant. Physical DR may aim at for in-
stance grid congestion control (Rivera et al., 2015),
local load management, power-balance across dis-
tricts (Yu et al., 2016), or local renewable energy
share maximization (Tushar et al., 2016; Hrabia et al.,
2015). In this case, the EVs are typically physically
close in either a local area network or a part of the dis-
tribution grid. Neupane et al. (Neupane et al., 2015)
evaluate the value of flexibility, by examining energy
regulation markets. In their simulation study they
show that even small loads can be aggregated effi-

ciently, and find that if in the Nordic power markets
3.87% of total demand would be flexible, regulation
costs can be reduced by 49%.

So with these schemes, on the one hand, there are
EVs that exhibit very diverse usage patterns on the
other. While some EVs used by private owners may
exhibit commuter patterns with quite regular behav-
ior, and long parked times at both work and home,
others exhibit quite irregular behavior (Goebel and
Voß, 2012). Within research projects, we encoun-
tered several different EV use cases, such as station-
ary and free floating car sharing, and different com-
pany cars in Micro Smart Grid EUREF, or parcel de-
livery and nursing service staff fleets in Smart E-User
(see (Lützenberger et al., 2015) for project descrip-
tions). These and ongoing projects cover private, pub-
lic and semi-public controlled charging infrastructure,
each with a central charging control. Further, EV may
be fully electric or plug-in hybrids, which may exhibit
different charging patter (Martinez et al., 2017).

So for a specific EV use case, aggregators need
methods and tools to assess the potential flexibility of
specific EVs and charging stations, to choose a suit-
able DR scheme. Or with a specific DR scheme in
mind, the aggregator could improve an EV portfolio
towards specific requirements, e.g. towards high up-
or downwards flexibility at certain times. To analyze

108
Voß, M., Wilhelm, M. and Albayrak, S.
Application Independent Flexibility Assessment and Forecasting for Controlled EV Charging.
DOI: 10.5220/0006795601080119
In Proceedings of the 7th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2018), pages 108-119
ISBN: 978-989-758-292-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



this, two dimensions are important: how much flex-
ibility can a fleet provide within specific time inter-
vals and how well can a specific fleet’s flexibility be
predicted. In this work, we provide an application
independent simple flexibility model that allows to
quantify the potential amount of flexibility for single
intervals retrospectively, based on historical data, as
well as a method to assess the predictability through
modeling it as a short-term load forecasting problem.
The model is suitable for smaller aggregations of EV
(e.g., a few tens to hundreds of charging stations/EV),
which typically have high uncertainties. Due to the
high uncertainties for few stations, as well as typi-
cally unavailability of relevant state data (such as the
state of charge of battery), our model allows only
for control within a specific control band and makes
assumptions independent from specific smart control
systems.

First, we survey related work in the next section.
Then, we present our flexibility model in section 3.1
and the method to assess the predictability in sec-
tion 3.2. We evaluate the models and methods on
a private real-world dataset of 214 charging stations.
The dataset used is introduced in section 4.1 and we
demonstrate the flexibility model in section 4.2 and
evaluate an instantiation of the forecasting process
with specific machine learning and benchmark mod-
els in section 4.3. Finally, we summarize our contri-
butions and findings in section 5.

2 RELATED WORK

Work on EV flexibility aims at quantifying flexibility
typically as a result of scheduling optimization with a
specific goal, such as in (Goebel and Jacobsen, 2016),
where EV flexibility is analyzed for utilization in pay-
as-bid reserve markets and results of a mixed-integer
linear program. They evaluate their approach on a
simulation study of 10,000 vehicles. However, cur-
rently there are no systems in place where aggrega-
tors control such large fleets centrally. Hence, we fo-
cus on smaller fleets and not on specific scheduling
solutions. Goebel et al. treat uncertainties through a
schedule repair mechanism, but only make assump-
tions regarding the departure time distribution (them
being normally distributed), but they don’t discuss
how to predict them. Similarly, Sortomme and El-
Sharkawi (Sortomme and El-Sharkawi, 2012) don’t
base driving behavior on real data, but simple assump-
tions of EV behavior (i.e. 10% of unexpected leaving
during the day and 20% in evening hours). Sundström
and Binding (Sundstrom and Binding, 2012) make
forecasts of EV usage a central part of their frame-

work, but assume perfect forecasts. In contrast, Bessa
et al. (Bessa et al., 2012) more specifically compare
how their aggregation framework behaves with fore-
cast errors by comparing a perfect forecast of EV load
profiles to a naïve forecast – the same as used in our
work as lower bound benchmark – and find that fore-
cast errors increase costs by up to 17 %. Vayá and
Andersson (Vayá and Andersson, 2015) demonstrate
simulation results to analyze bidding strategies for EV
fleets. They find that while for larger fleets (e.g. <
1,000 EV) the error due to uncertainty in driving pat-
terns is neglectable, but for smaller aggregations un-
certainty of EV usage is a large issue. Mathieu et
al. (Mathieu et al., 2013) show more specifically in
one of their two case studies (the other is for air condi-
tioners) how the uncertainty of EV load profile predic-
tion decreases drastically when moving from 1,000 to
100 vehicles. However, their findings are also based
on simulated data.

There is not much existing work on real-world EV
usage forecasting. In a late broad study on data min-
ing for energy-related time series no EV applications
were presented (Martínez-Álvarez et al., 2015). Some
work on predicting EV usage was done by deriving
conclusions from combustion engine cars, such as
data from a GPS-based study with 76 vehicles over a
year in Winnipeg. It was used for instance in (Ashtari
et al., 2012) to generate charging profiles. Panahi et
al. (Panahi et al., 2015) forecast profiles based on gen-
erated data which again is based on a study where
data was collected manually through driver’s logs.
Such approaches predict typical driver profiles, which
could be and have been used to assess flexibility for
market integration. However, they do not conduct ac-
tual short-term forecasts. Depending on the applica-
tion, day-ahead forecasts or forecasts of up to a few
hours may be of interest. Hence, for assessing the
predictability we need to evaluate how well the short-
term behavior can be predicted. For that Goebel and
Voß analyzed how well the next departure time for
residential drivers (first daily departure time) can be
predicted (Goebel and Voß, 2012). There analyses
was based on data of the Traffic Choices Study (TCS)
collected by the Puget Sound Regional Council in
2005. They found that for a subset of "well-behaved"
commuters the behavior is very predictable and of-
fered a method to first cluster the EV based on that
property and compared for different subsets how well
the departure time can be predicted based on calendar-
based features such as the hour of day, day of week
and if the day is a workday or not. Similarly, Kirk et
al. (Kirk and Dianov, 2015) offer an approach to the
same problem, however more from a fleet then from
an individual driver’s perspective, which is based on
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a Gaussian modeling approach. They evaluated their
approach on data of the NREL’s Secure Transporta-
tion Data Project, and found that the number of ve-
hicles that will depart in a 15-minute time interval
can be predicted with high confidence (around 95%).
For commercial infrastructure with small amounts of
charging points (<20) it was shown through the exam-
ple of a campus that for smaller groups of charging
stations the amount of plugged-in vehicles is hard to
predict (cf. (Hrabia et al., 2015)).

In summary, current work on EV flexibility fo-
cuses mainly on very large fleets (a few thousand
EV), where uncertainty through usage is not such a
big issue. For smaller fleets of a few tens or hun-
dreds of EV however, uncertainty is a very impor-
tant issue that needs to be considered and it has been
shown that costs can increase significantly due to er-
rors. Hence, there is a motivation to improve forecast-
ing (e.g., compared to the presented results of a naive
forecast). However, there is not much work yet on EV
forecasting. This may be due to a lack of available
datasets on EV fleet usage. All the presented stud-
ies are based on data for combustion engines, or on
simulated data, hence not suitable for actual forecast-
ing evaluation. Further, the studies focus on residen-
tial EV, but arguably commercial EV fleets will much
earlier be used in aggregator applications, as they are
easier to integrate into central control schemes and
businesses are more prone to evaluating cost saving
potentials through controlled charging.

3 CONCEPTUAL BACKGROUND

3.1 Flexibility Modeling

In general flexibility is the possibility to adapt an
electricity consumption profile, e.g. through shift-
ing or simply changing loads. Neupane et al. (Neu-
pane et al., 2015) provide a general taxonomy of flex-
ibility as time flexibility and amount flexibility. Time
flexibility is the possibility of shifting the amount of
energy in time, while amount flexibility is the range
between the minimum and maximum energy demand
at a particular point in time. We believe that for a
generic approach the notion of amount flexibility mat-
ters more, as it is mostly of interest how much load
can be changed upwards or downwards for a certain
time interval and is therefore the flexibility notion
we focus on in this work. Similarly to De Coninck
et al. (De Coninck and Helsen, 2013) in the build-
ing energy management domain, we want to view
flexibility as the possibility to deviate from a refer-
ence scenario within a certain time interval indepen-

dently from the possible changes in other time inter-
vals. Inter-dependencies between intervals of course
exist in reality, for instance, several intervals may be
affected in an optimal schedule. Therefore, viewing
only one interval at a time can be seen as a theoretical
lower and upper bound, which will, for the purpose of
analyzing the potential of a fleet, still give a useful in-
dication. For the EV charging domain, the reference
scenario is the naïve charging case, where the vehicle
charges with the highest possible power for each point
of time, as determined by the infrastructure involved.
Similar to (De Coninck and Helsen, 2013) and (Ne-
upane et al., 2015), we refer to positive flexibility as
increasing load for the considered interval and refer
to negative flexibility as decreasing load, compared to
the reference scenario.1

Table 1: Flexibility model parameters.

Parameter Description

l The length of the equally sized inter-
vals i ∈ I. In the context of energy
metering and markets, the intervals
are typically fixed at l = 15 or l = 60
minutes.

S Set of controllable charging sta-
tions for a fleet with parameter pmin,
which denotes the configured mini-
mum charging power.

C A historic set of charging events of
the form (tarr, tdep,eC, pmax) : T ×
T ×E×P.

PM An ordered set of tuples (i, p) : I×P
which represents a metered time se-
ries of historic average power val-
ues.

We calculate the flexibility with the two functions
CalculatePosFlexibility : I → P and CalculateNeg
Flexibility : I → P. Here, I denotes a set of equally
sized time intervals with length l. P models the do-
main of power values. A variable of this domain mod-
els the average power for a given interval. The re-
sult of the function is the amount flexibility, that is
the maximum possible change of power within the
considered interval. Table 1 gives an overview over
parameters relevant to calculate the flexibility. This
flexibility is calculated for a fleet, or more specifi-
cally a set of controllable charging stations S of a fleet.
To calculate the flexibility, a historic set of charging
events C has to be provided as well as a metered time

1Note, that an inverted notion is sometimes used for flex-
ibility, mainly when generators are considered.
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series PM in a regularly sampled interval (e.g., 15 min-
utes or one hour).
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Figure 1: Overview of flexibility concepts for example
charging event c.

Figure 1 provides an overview of the nomencla-
ture throughout a typical charging event c. A charg-
ing event is bound by the time of arrival tarr (which
we assume to be the plug-in time, as well as start of
charging) and the departure time tdep (which we as-
sume to be the plug-out time). The curve presents
an uncontrolled charging curve of the typical shape,
where the load descents towards the end as the inner
battery resistance increases. Domain T denotes points
in time and E denotes amount of energy. eC ∈ E
shows how much energy is charged within a charging
event. Further, the figure demonstrates how we cal-
culate flexibility from the naïve charging case (rep-
resented on the left) for a single charging event in
a specific interval. On the right it shows the posi-
tive and negative flexibility f↑i and f↓i for interval
i3 which is the maximum possible increase (top) or
decrease (bottom) in average load within one consid-
ered interval i (going from naïve charging power pics
to controlled charging power p′ics, for each charging
station s and event c). This value is constrained by
two constants: pmax and pmin, where pmax denotes
the aforementioned maximum charging power of the
naïve case and therefore is defined per charging event
and for each interval, as it is determined by the spe-
cific car, station and cable used. The charging power
must therefore remain below pmax for each interval of
the charging event. Secondly, we introduce the mini-
mum charging power pmin as a constraint, which shall
not be undershot within each interval where the ve-
hicle is connected and the battery could still charge.
This minimum power comes on the one hand from
practical issues, which arise either from the charging
infrastructure, for instance EV may go into a stand-
by mode if electric current is below a certain thresh-
old. On the other hand side, it ensures that even if tdep
occurs much earlier than expected that at least some
energy was charged. With range anxiety being one of
the main inhibitors of EV spreading, we therefore de-
sist from allowing the full degrees of freedoms within

the control band, which is also the most common type
of controlled charging currently in practice. From our
prior experience with different e-mobility fleets and
their use cases, such as car sharing, home care, deliv-
ery or company vehicles, as well as from the current
state in the industry, we find that further neither the
current state-of-charge (SoC) of the battery, nor the
disposition data of the vehicles should be assumed to
be known to a central optimization. The reasons range
form lack of standard protocols, lack of processes and
privacy concerns.

Positive Flexibility. We want to present more in de-
tail how we calculate positive flexibility, the max-
imum possible increase in average load within one
considered interval i which can be calculated indepen-
dently per charging event c and station s:

f↑ics = p′ics− pics, p′ics > pics (1)

The charging power p′ics is as stated constrained
by pmax for each considered interval. Therefore, the
following constraint must hold:

f↑ics <= pmax− pics (2)

Further, we defined that the total energy ec
charged within a charging event should remain unal-
tered. This can be ensured if the amount in the rele-
vant interval i is changed by as much, as the sum of
all changes in all other intervals:

0 = f↑ics− ∑
j∈I\{i}

p jcs− p′jcs (3)

The downward change in all the other intervals is
then constrained as stated by pmin. Therefore, with
equation 3, the change upwards within one interval is
constrained as follows:

f↑ics <= ∑
j∈I\{i}

p jcs− pmin (4)

So in summary, the maximum change from pics
to p′ics is constrained by either maximum charging
power (equation 2) or the amount that can be de-
creased within the other intervals (equation 4). So we
can define the maximum positive flexibility for an in-
terval i within a charging event c to be the minimum
of the two:

f↑ics = min{pmax− pics; ∑
j∈I\{i}

p jc− pmin} (5)

Finally, to calculate the total positive flexibility of
all the charging stations:

CalculatePosFlexibility(i) = ∑
s∈S

∑
c∈C

f↑ics (6)
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Negative Flexibility. Similarly, negative flexibility
f ↓i describes the maximum possible decrease in aver-
age load within one considered interval i:

f↓ics = pics− p′ics, p′ics < pics (7)

It is constrained by the minimum charging power:

f↓ics <= pics− pmin (8)

As for positive flexibility, Ec should remain con-
stant, therefore:

0 = f↓ics− ∑
j∈I\{i}

p′jcs− p jcs (9)

Also, the charging power must for all other inter-
vals of the charging event remain below pmax:

f↓ics <= ∑
j∈I\{i}

pmax− p jcs (10)

Therefore, we can define the maximum negative
flexibility for an interval i within a charging event c
to be the minimum of the constraints (equations 8 and
10):

f↓ics = min{pics− pmin; ∑
j∈I\{i}

pmax− p jc} (11)

And finally, to calculate the total negative flexibil-
ity:

CalculateNegFlexibility(i) = ∑
s∈S

∑
c∈C

f↓ics (12)

3.2 Predictability Modeling

In addition to the amount of flexibility, we are in-
terested in assessing in a second dimension: how
well the amount can be predicted. For most market-
targeted and other energy management use cases the
relevant horizon for forecasting EV load is from a
few hours up to day-ahead which in the load fore-
casting literature is mostly referred to as short-term.
As for electric load in general, EV load is mostly de-
pended on calendar-based independent variables (fea-
tures). Weather-based features may also play a role,
but with a lack of real-world data, this is not satisfac-
torily studied and will most likely vary for different
fleets.

We calculate predictability of positive and nega-
tive flexibility with the function CalculateResiduals :
(I→ P)→ P, where the input is the flexibility as de-
scribed in section 3.1, and the result corresponds to
the residuals based on the evaluation of a forecasting
model on a test set. The calculation of predictabil-
ity has the parameters in table 2, which are described
in more detail in the following paragraphs. So more
specifically, given a time series F = {(i1, p1),(i2, p2),

Table 2: Predictability model parameters.

Parameter Description

A(H ) Forecasting algorithm to use with
hyper-parameters H .

h Forecast horizon to evaluate forecast
on.

Cov Covariate structure to use.
t f ore Forecast time.
n f old ∈ N Number of folds for evaluation

scheme.
split ∈
[0,1]

Split of dataset into training and
evaluation parts.

. . . ,(in, pn)}, where the values of p are the values of
calculated flexibility as described above (either posi-
tive or negative), we split the available data at thresh-
old split into a training set of intervals FT and an
evaluation set FE . Then the features are engineered
according to Cov. The forecasting algorithm A(H )
is trained and iteratively applied to produce fore-
casts of horizon h at forecast time t f ore. The fore-
cast F̂ = {(i1, p̂1),(i2, p̂2), . . . ,(in, p̂n)} is then com-
pared against the actual series to calculate residuals
R = {(i1, p1− p̂1),(i2, p2− p̂2), . . . ,(in, pn− p̂n)}.

Forecasting Algorithms. We treat the problem of
forecasting flexibility of small EV fleets similarly to a
load forecasting problem for buildings. As shown in
the aforementioned survey (Martínez-Álvarez et al.,
2015), the most popular algorithms applied are arti-
ficial neural networks (ANN), support vector regres-
sion (SVR) and multiple linear regression (MLR), and
each may perform better on different datasets (e.g.,
different level of aggregation). We will hence in-
clude these as well as other non-linear regression al-
gorithms and compare all against two simple bench-
marks which should present the lower bounds. Each
of the algorithms has hyper-parameters which influ-
ence the performance of the algorithms. We fine-tune
the selection of these parameters using grid search
and the cross validation scheme as described below.
The algorithms A and their respective most important
hyper-parameters H to tune are the following:

• Naïve Last Day Type (Naı̈ve(τ)): A simple bench-
mark model that predicts the value based on the
value of the same time of day from the pre-
vious day of the same day type as determined
by τ. It is expected to be the lower bound of
forecasting accuracy. The parameter τ could be
workday/¬workday, weekday/weekend or day−
o f −week.

• Middle 4–of–6 Day Type (Middle4o f 6(τ)): An-
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other simple benchmark that predicts the value for
an hour of the day based on the mean value of
the same hour of the past 6 days of the same day
type as determined by τ, ignoring the minimum
and the maximum value. The parameter τ could
be workday/ ¬workday, weekday/weekend or
day−o f −week.

• Ridge Regression (MLR(r)): Multiple linear re-
gression with l2 regularization and ridge parame-
ter r.

• K-nearest neighbors (kNN(k)): A regression
scheme that predicts based on the nearest k neigh-
bors. If k > 1 the mean of the cluster is used.

• Gaussian Processes (GP(l,K)): A probabilistic
regression scheme based on fitting multivariate
Gaussian distributions. With a noise level l and a
Kernel K with hyper-parameters. Here, the radial
basis function (RBF) kernel with parameter γ and
the polynomial kernel with maximum exponent e
are applied.

• Artificial Neural Network (ANN(α,m,n,(hi)
n
i=1)):

A regression scheme that uses backpropagation to
train the weights of a network of nodes that are
activated by a sigmoid activation function. The
backpropagation algorithm is parameterized with
a learning rate α and a momentum m. Further, the
amounts of hidden nodes n have to be specified
(hi being the number of hidden neuron on hidden
layer i).

• Support Vector Regression (SV R(c,K)): Support
Vector Machine for regression with complexity
constant c and a kernel K analogous to the Gaus-
sian Process.

As most of the algorithms are only capable of
learning one dependent variable (the class value)
at a time, we use an iterated (also recurrent or
closed-loop) prediction scheme to produce multiple-
step ahead forecasts. That means in order to fore-
cast steps beyond one-step ahead up to horizon h,
pt+2, pt+3, . . . , pt+h, the previous forecasted values
pt+1, pt+2, . . . , pt+h−1 are used as input.

Feature Modeling. As stated above, assuming no
other external available data such as booking times,
we can base our prediction mainly on the histori-
cal consumption and the dependency on its historic
values (autocorrelation) and calendar-based features,
as well as weather information. Table 3 gives an
overview of the proposed features. These should be
chosen according to the specific requirements of the
application and the specific fleet data as shown in sec-
tion 4.3 applying cross-validation as described in the

Table 3: Proposed input features.

Feature Definition

Short-term lags pt−1, pt−2, . . . , pt−(60/l)·lagshort
Medium-term
lags

pt−(60/l)·24, pt−(60/l)·48,
. . . , pt−(60/l)·lagmed

Hour of day hr ∈ {0,1, . . . ,23}
Day of week d ∈ {1,2, . . .7}
Month of year m ∈ {1,2, . . .12}
Weekday or not w ∈ {weekday,¬weekday}
Temperature Tempi−1

following paragraph. Therefore, we add lagged val-
ues of consumption to Cov. For very short-term fore-
casting the lagged consumption of the recent time in-
tervals up to lagshort are most important. Electric load
forecasting data exhibit typically daily and weekly
seasonality, so that any lagged values lagmed of the
same time of the day within a sliding window of one
week may be relevant features. Additionally, some
calendar-based variables are included as categorical
labels. At minimum the hour of the day hr and the
day of the week d should be included. If the data
spans several months the month of the year m should
be included. If holiday data is available a variable
may be used to model workdays and non-workdays
w. If available, we propose to add the lagged tem-
perature Tempi−1, if the fleet under consideration is
in the same region and data is available. For the ma-
chine learning algorithms these categorical variables
are one-hot encoded (dummy encoded) and all nu-
meric features are normalized (scaled to the interval
of [0,1]). Depending on the residual characteristics,
transformations of the load data may be considered.

Evaluation Scheme. A classic approach to time se-
ries forecast evaluation is out of sample (OSS) ap-
proach, where a model is fitted (trained) on a first part
of the data and then iterativly evaluated on a second
part. Per iteration a forecast is produced and error
metrics are calculated. When using highly non-linear
predictive models n-fold cross-validation (CV) is a
common good practice to evaluate the generalization
of the model to an independent dataset. However, the
general scheme of splitting up the dataset randomly
into training and evaluation parts has been shown to
be problematic for time series data, as the folds may
no longer be i.d.d. (cf. (Bergmeir and Benítez, 2012)).
However, a "blocked" CV scheme, where large parts
of the data remain together, may still improve upon
the OOS scheme and could be used. We propose to
utilize a time series specific blocked cross-validation
scheme (TSCV), where at any moment only blocks of

Application Independent Flexibility Assessment and Forecasting for Controlled EV Charging

113



the past are used to train the model, which basically
simulates forecasting operation, were future blocks
would not be available. The size of each block could
be any length, but should best be chosen according
to typical calendar intervals, such as days, weeks or
months, depending on the size of the dataset, the fore-
cast horizon h and the highest lagged value lagmed .
More specifically each block should be considerably
larger than the sum of the highest lag and the horizon.

Evaluation Metrics. To assess the predictability vi-
sually, mostly the actual residuals are used, as this ab-
solute measure allows for better comparison with the
flexibility results, and is most intuitively interpretable
from the application side. Therefore, we propose to
report the mean absolute error (MAE) if scores are
needed. However, to compare performance of the
algorithms on one specific dataset we propose as is
common, to use root mean square error (RMSE). To
compare the performance across datasets scale inde-
pendent measures should be reported. Due to the in-
termittency of the flexibility time series and the many
actual values of zero, the relative measure mean ab-
solute percentage error (MAPE) is not defined. For
the symmetric MAPE (sMAPE), also the denomina-
tor tends to be too close to zero, making the calcula-
tion unstable (cf. (Hyndman, 2006) for a discussion
of forecasting error metrics). We propose to use the
scale independent metric coefficient of variation of
the RMSE, the CV(RMSE), which is defined as fol-
lows, with F̄ the mean of the flexibility values:

CV (RMSE) =
RMSE

F̄
(13)

4 EXAMPLE CASE STUDY

4.1 Dataset

We want to give an example assessment of flexibil-
ity and its predictability using the introduced models
within a case study. We have no complete suitable
real-world dataset at hand, but we merged two pri-
vate real-world datasets Charging Events and Charg-
ing Metering and add some additional static informa-
tion based on suitable assumptions (Charging Station
Information). The first contains data of 214 differ-
ent charging points operated by a German distribu-
tion grid operator over the course of a year (2013) in
two different German cities. It contains event-based
information for in total 25,462 charging events (cor-
responding to C), most interestingly for us plug-in
and plug-out times, as well as the amount of energy

charged per charging event (tarr, tdep,eC). The sec-
ond dataset consists of 497 metered charging curves
which we collected within different research projects
of the International Showcase of Electric Mobility
(Berlin-Brandenburg), and are hence of a variety of
different types of mostly unknown vehicles. These
charging curves represent Pm and are associated to
the charging events so that it best fits to the charged
amount ec of the charging event. In absence of any
recorded information regarding pmax (which could be
communicated via charging protocols), here the max-
imum metered value of an event is assumed to be the
maximum. Third we needed to add some static in-
formation to the charging stations, most importantly
the minimum charging power allowed pmin. Here
we used different thresholds pmin = 1.2kW , pmin =
2.4kW and pmin = 4.2kW . 1.2 kW and 4.2 kW cor-
respond to about 6 Ampere in 230 V/1-phase and
400 V/3-phase systems. These are to typical techni-
cal threshold in mode 2 systems. We also compiled a
mixed set with 1.2 kW and 2.4 kW, where the thresh-
olds where assigned randomly as it best fits the data.
This mixed set is used below, when no other informa-
tion is given.

4.2 Flexibility Case Study

Figures 2a and 2b demonstrate how positive and neg-
ative flexibility compare to the whole available load.
They are the mean positive and negative flexibility for
all Mondays (fig. 2a) and all Sundays (fig. 2b) in
the dataset, so over a year and the mixed variation for
pmin. It becomes obvious that for our dataset most
flexibility is available from around noon, where also
average loads reach a maximum of around 50kW, and
into the evening where loads are decreasing. Here it
seems that the data does not come from private house-
holds, where one would expect larger peaks around
6-8 p.m. On Sundays the load is a lot lower peaking a
little later than on Mondays at 20kW. Loads and flex-
ibility are quite low in the middle of the night, around
3-6 a.m., which is the time when the connected vehi-
cles are all charged to their maximum capacity. Fig-
ure 2 shows the distribution of positive and negative
flexibility per interval for all Mondays (figure 2c) and
all Sundays (figure 2d) in the dataset, so over a year
and the mixed variation for pmin. It becomes obvious
that for our dataset most flexibility is available from
around noon, where also average total loads reach a
maximum of around 50 kW (not shown here due to
space issues), and into the evening where loads are
decreasing. Here it seems that the data does not come
from private household charging stations, where one
would expect larger peaks around 6-8 p.m. On Sun-

SMARTGREENS 2018 - 7th International Conference on Smart Cities and Green ICT Systems

114



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of Day

0

10

20

30

40

50

60

P
ow

er
(k

W
)

F↑
F↓

(a) Mean pos. and neg. flexibility in comparison to total load
for all Mondays.
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(b) Mean pos. and neg. flexibility in comparison to total load
for all Sundays.
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(c) Distribution of pos. and neg. flexibility per interval for
Mondays (l = 60min).
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(d) Distribution of pos. and neg. flexibility per interval for
Sundays (l = 60min).

Figure 2: Flexibility case study results.

days the load is a lot lower peaking a little later than
on Mondays at 20 kW (also not shown). Loads and
flexibility are quite low in the middle of the night,
around 3-6 a.m., which is the time when the con-
nected vehicles are all charged to their maximum ca-
pacity. The highest flexibility is also around the early
afternoon and it lags the highest value of power by
few hours. Also, positive flexibility is just slightly
higher than negative flexibility, at around 7-8 kW pos-
sible increase or decrease and is lowest in the hours
between 3-5 a.m. with mean flexibility close to 0 kW.
It is further interesting to see: while the mean is quite
similar for Mondays between 1 p.m. and 5 p.m., the
variance is increasing in these intervals. When com-
pared with the loads, it becomes obvious that for our
data the mean flexibility for this fleet is only slightly
higher on Mondays as compared to Sundays, while
the difference in total load is much more significant.

4.3 Predictability Case Study

As for flexibility, we will evaluate the predictability
modeling on the real world dataset as described above
in section 4.1. We want to compare all the different
forecasting algorithms A(H ). If not otherwise stated,

the analyses are done on the full set of 214 charging
stations with the mixed pmin and l = 60min. The fore-
casting is implemented in JAVA and is based on the
WEKA2 machine learning library to implement the
machine learning models, as well as the benchmark
models described in section 3.2.

Figure 3 shows the yearly profile of hourly val-
ues of positive and negative flexibility, as well as the
weekly profile of a random week. It can be seen
that there are as expected clear daily and weekly pat-
terns. Most days have peaks around the early af-
ternoon and in the evening. There is no obvious
strong yearly pattern for our data. We analyzed auto-
correlation and found that there is significant cor-
relation in the lags preceding the current time, as
well as in all lags that are multiples of 24 hours for
both positive and negative flexibility. We therefore
include the lagged consumption of the last 3 hours
which is most valuable for short-term forecasts and
then the multiples of 24 hours within a window of a
week. Unfortunately we cannot easily associate the
dataset with weather information, as the charging sta-
tion locations are within at least two different Ger-

2http://www.cs.waikato.ac.nz/˜ml/weka/
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Figure 3: Yearly (top) and weekly (bottom) profile of positive and negative flexibility.
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Figure 4: Comparison of forecasts.

man cities. For similar reasons we could not asso-
ciate the data with local holiday information, which
could also be done in future improvements. Further
we add the hour of the day, the day of the week
and the month of the year as additional covariates,
so Cov = {pt−1, pt−2, pt−3, pt−24, pt−48, pt−72, pt−96,
pt−120, pt−144 , pt−168,hr,d,m}.

In a first run we compared the performance of the
algorithms on the raw dataset, for day-ahead forecast-
ing with h = 24, t f ore = 00:00. When analyzing the
residuals, we found they exhibit a very skewed dis-
tribution with high heteroscedasticity and non-zero
mean. Changing the complexity parameters of the
learning models could weaken the high bias slightly,
but usually at the cost of higher RMSE. Therefore, we
decided to apply the models on transformed data. We
explored therefore log transformations, the inverse
hyperbolic sine transformation, as well as the Box-
Cox (box) transformation, which we found improved
residuals the most, while not considerably worsen
forecast results. The Box-Cox transformation is de-
fined as follows:

p′ =

{
(p+C)λ−1

λ
, ifλ 6= 0,

ln(p+C), ifλ = 0
(14)

Here, C = 1 is a shift parameter to avoid logarithm of
zero, λ is a form parameter which is fitted to the data
based on a likelihood function. We fitted it in one
variation to the whole data and in another to the data
excluding zero values, which resulted in λ = 0.21 for
the first and λ = 0.3 for the second. The latter vari-

ation improved residual properties the most, so that
the distribution of the residuals only exhibited a slight
skew and slightly fat tails, but was other than that
close to normal using histograms and QQ-plots (not
shown for spatial reasons), which would make most
importantly fitting prediction intervals in this trans-
formed domain a lot easier. However, for both the
Kolmogorov-Smirnov and Shapiro-Wilk test, the hy-
pothesis of a normal distribution has to be rejected at
p-value 0.05. In the following, all analyses are done
on box-transformed data with λ = 0.3.

Table 4 reports results for the comparison of all
the algorithms on the transformed data for day-ahead
forecasting, with n f old = 3, split = 0.75 and as be-
fore h = 24, and t f ore = 00:00. Here, the learning ap-
proaches can as expected considerably improve upon
the Naı̈ve benchmark model, with the best model im-
proving the MAE by 19.7% and RMSE by 19.3%.
kNN and MLR were performing most robust and with
best-achieved error values and were quite fast with
a second or less for training and just milliseconds
for forecasting on a laptop with 2.69GHz and 12GB
RAM. GP, SV R and ANN which are more complex
algorithms were very prone to overfitting and are
hence often performing worse on the evaluation sets.
This becomes for instance obvious when looking at
the best performing kernel, the poly-kernel with low
exponents of 2 and 3.

Figure 4 shows example traces of the actual val-
ues and the predictions on random three days. Here,
kNN shows exemplarily how the learning approaches
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(a) Distribution of pos. and neg. errors per interval for Mon-
days (l = 60min).
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(b) Distribution of pos. and neg. errors per interval for Sun-
days (l = 60min).

Figure 5: Predictability case study results.

Table 4: Comparison of forecasting algorithms on box transformed data.

A kNN MLR GP SV R Middle4o f 6 ANN Naı̈ve
H k = 40 r = 10.0 K =

Poly(e = 3),
l = 5.0

K =
Poly(e = 2),
c = 1.0

weekday/
¬weekday

α = 0.05,
m = 0.2,
n = 1,
h1 = 32

last same
day

P↑

MAE 3501.1 3505.7 3544.7 3635.6 3690.1 3736.7 4362.1
RMSE 5249.7 5460.5 5647.3 5339.2 5369.8 5965.1 6499.3
d̄train 0.18 1.25 430.50 70.68 0.02 43.29 0.01
d̄pred 0.038 0.024 0.06405 0.04019 0.003 0.016 0.001

P↓

MAE 3486.5 3511.9 3556.7 3635.6 3833.7 3556.6 4323.9
RMSE 5523.1 5529.6 5646.6 5339.2 5687.9 5663.0 6368.0
d̄train 0.20 1.10 487.48 95.56 0.01 64.49 0.01
d̄pred 0.042 0.021 0.06037 0.05617 0.003 0.017 0.001
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Figure 6: Comparison of different sizes of charging stations.
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Figure 7: Comparison of errors for different horizons, pre-
sented as difference from the day-ahead errors.

tend to underestimate the values more often when
compared to the benchmarks, but so avoiding higher
penalties due predicting peaks at times, where there
are none. One such example is presented on Monday,
where the Naı̈ve forecaster predicts very high peaks
based on the same day one week ago. It also shows
that the Middle4o f 6 does not forecast the peak, as
it averaged out this high peak. It generally predicts
higher values than the learning approaches. Figure
5 allows a visual predictability assessment, by show-
ing the errors per hour and for the whole dataset and
determined by the kNN algorithm for Mondays and
Sundays. Here, variability is slightly less for week-
ends and is typically higher for negative flexibility.
Errors are also highest for the time were flexibility
is typically highest, around noon and in the evening.
The forecasts are less biased on the weekend when
compared to the weekdays. Figure 6 shows how the
forecast accuracy changes for different sizes of the
dataset. Here, four different sizes of datasets were
randomly generated (25, 50, 100 and 200). While
mean flexibility scales as expected linearly with size,
the forecasting accuracy, expressed by CV(RMSE),
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decreases exponentially, with relatively higher errors
for smaller sets. Figure 7 shows how errors behave
over different horizons for different times of the day
when compared to a day-ahead forecast without any
short-term lags. During the day, the forecast can be
improved by as much as an average 1kW compared
to the day-ahead forecast for the same time, confirm-
ing the importance of the short-term lags. This effect
is significant for horizons of around 3-4 hours.

5 CONCLUSION

With the goal to implement a generic flexibility as-
sessment framework for EV aggregators to analyze
EV fleets and charging stations regarding their flex-
ibility, we developed a flexibility model incorporat-
ing our project experience and reflecting current con-
trolled charging strategies in the industry. It does not
allow for complete rescheduling of charging events,
but only for controlling load within a control band.
We note that the model can only be used retrospec-
tively, as e.g. for planning ahead, uncertain data such
as arrival times would have to be forecasted (which
is current work in project Mobility2Grid), or have
to be provided by charging protocolls such as ISO
15118. But as the specific operation would differ any-
how for each use-case, we focused on an application-
independent model that would still give a useful in-
dication to a fleet operator about flexibility charac-
teristics of its fleet. For instance, in the case study
on real-world data, we found that up- and downwards
flexibility per interval have a similar magnitude and
lag the peaks in load by few hours. As expected the
available amount differs for weekdays and weekends
and is highest in the afternoon. We further find that
it is unexpectedly low for the high number of charg-
ing points. This can be explained by the data being
recorded in a year with not yet much electric traffic in
the considered cities, and therefore a lot of charging
stations with few charging events. Regarding uncer-
tainty, we confirmed that for smaller amounts of EV,
uncertainty is quite high. We further found that learn-
ing approaches can improve upon the simple bench-
mark by almost 20% (considering mean absolute er-
rors), and that less complex models such as ridge
regression and kNN regression perform more robust
than more complex models such as ANN, SVR and
Gaussian Processes for hourly data without tempera-
ture influences. Currently, there are unfortunately no
publicly available datasets on EV fleet and charging
station usage. Some work on predicting EV usage
was done by deriving conclusions from combustion
engine cars. More real-world data is needed to im-

prove research in this area and also to evaluate our
approach more thoroughly and for other fleets. To
further improve forecasts it could help to train differ-
ent models for different parts of the day (e.g. each
hour, or day and night), the week (e.g., per day, per
weekend) or even for different parts of the fleet, as
forecasts tend to be very biased in certain situations.
This could also be done automatically, by first clus-
tering the data, similar to the approach by Wijaya
et al. (Wijaya et al., 2015) for households, or mix-
ture models could be utilized. More features such
as other weather variables, or EVSE backend infor-
mation (e.g. ID of vehicles) could be used. Here,
privacy-preserving data-management strategies are an
interesting research direction. The flexibility model
could be extended for instance to allow calculation for
multiple intervals and also to model vehicle-to-grid
schemes. The concepts have been implemented as a
web-based tool prototype within the research project
EVA service company (Electric Vehicle Aggregator)
to demonstrate how they could be applied by aggre-
gators to optimize their portfolio or choose the right
market scheme.
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