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Abstract: Big data are in the midst of many scientific and economic issues. Furthermore, their volume is continuously 
increasing. As a result, the need for management and processing solutions has become critical. 
Unfortunately, while most of these data have a spatial component, almost none of the current systems are 
able to manage it. For example, while Spark may be the most efficient environment for managing Big data, 
it is only used by five spatial data management systems. None of these solutions fully complies with ISO 
standards and OGC specifications in terms of spatial processing, and many of them are neither efficient 
enough nor extensible. The authors seek a way to overcome these limitations. Therefore, after a detailed 
study of the limitations of the existing systems, they define a system in greater accordance with the ISO-
19125 standard. The proposed solution, Elcano, is an extension of Spark complying with this standard and 
allowing the SQL querying of spatial data. Finally, the tests demonstrate that the resulting system surpasses 
the current available solutions on the market. 

1 INTRODUCTION 

Today, it becomes crucial to develop systems able to 
manage efficiently huge amounts of spatial data. 
Indeed, the convergence of the Internet and 
cartography has brought forth a new paradigm called 
“neogeography”. This new paradigm is 
characterized by the interactivity of location based 
contents and the possibility for the user to generate 
them (Mericksay and Roche, 2010). This 
phenomenon, in conjunction with the arrival in the 
market of new captors like the GPS chips in 
smartphones, resulted in the inflation of production 
and retrieval of spatial data (Badard, 2014). This 
new interest for cartography makes the process more 
complex as it becomes more and more difficult to 
manage and represent such large quantities of data 
by use of conventional tools (Evans et al, 2014). 

The Hadoop environment (White, 2012), 
currently one of the most important projects of the 
Apache Foundation, is a de facto standard for the 
processing and management of Big data. This very 
popular tool, involved in the success of many start-
ups (Fermigier, 2011), implements MapReduce 
(Dean and Ghemawat, 2008), an algorithm that 
allows the distribution of data processing among the 

servers of a cluster for a faster execution. The data to 
process are also distributed among the servers by the 
Hadoop Distributed File System (HDFS), which is 
provided by default with Hadoop.  The result is a 
high degree of horizontal scalability, which can be 
defined as the ability to linearly increase the 
performances of a multi-server system to meet the 
user’s requirements in terms of processing time. A 
real ecosystem of interoperable elements has been 
built up around Hadoop, which enables the 
management of such various aspects as streaming 
(e.g. Storm), serialization (e.g. Avro) and data 
analysis (e.g. Hive). 

In 2014, the University of Berkeley's AMPLab 
started to develop a new element of the Hadoop 
ecosystem, which has since been taken over by the 
Apache Foundation, namely Spark 
(http://spark.apache.org/), which offers an 
interesting alternative to HDFS and MapReduce. In 
Spark, data and processing codes are distributed 
together in small blocks called RDD (“Resilient 
Distributed Dataset”) on the whole cluster RAM.  
This architectural choice, which strongly limits hard 
drive accesses, makes Spark up to ten times faster 
than conventional Hadoop use, in some cases 
(Zaharia et al, 2010), although at the cost of a 
greater RAM load (Gu and Li, 2013). Furthermore, a 
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part of Spark called Spark SQL (Armbrust et al, 
2015) dress up Spark RDD with a supplementary 
level called “DataFrames” which allows to organize 
received data from Spark into temporary tables and 
to query them with SQL language. Spark SQL 
minimizes as well the duration of Spark processes, 
thanks to the strategic optimization of queries and 
the serialization of data. Finally, it allows the 
definition of personalized data types (UDT: “User 
Defined Type”) and personalized functions (UDF: 
“User Defined Function”), which permit 
respectively to get new kinds of data and processing 
available from SQL. 

This opportunity to query Big data thanks to 
SQL is of paramount importance as it helps in their 
analysis, with the goal of a better understanding of 
the phenomena they represent on the ground. It also 
empowers analysts with new analytical capabilities, 
using a query language they already master on the 
day to day. Together with the availability of a 
growing amount of geospatial data, it is profitable to 
use these capabilities to analyze the spatial 
component of this huge amount of information, 
which, according to Franklin, is present in 80% of 
all business data (Franklin and Hane, 1992). 
According to a frequently mentioned research of the 
McKinsey cabinet (Manyika et al, 2011), a better 
use of Big data spatial localization could grant 100 
billion USD to services providers and in the range of 
700 billion USD to final users. Lastly, spatial Big 
data management finds itself in the midst of many 
important economical, scientific and societal issues. 
In this respect, Spark appears again as a promising 
solution, because it processes the spatial data at least 
more than 7 times faster than Impala, another 
Hadoop element managing the SQL (You, et al, 
2015). 

Today, some systems relying on Hadoop enable 
the management of massive spatial data, such as 
Hadoop GIS (Aji et al, 2013), Geomesa (Hugues et 
al, 2015) and Pigeon (Eldawy and Mokbel, 2014). 
But they are mainly about prototypes than mature 
technologies (Badard, 2014). In addition, most of 
them only relies on the core version of Hadoop 
without fully scaling the processing power of the 
RAM like it is achieved by Spark. For example, 
Spatial Hadoop (Eldawy and Mokbel, 2013) only 
uses the Map Reduce algorithm of Hadoop. 

Among these systems, only five propose a 
management of spatial data relying on Spark. The 
first two systems, Spatial Spark (You, et al, 2015) 
and GeoSpark (Yu et al, 2015) only add a 
management of the spatial component to the basic 
version of Spark, which do not fully take advantage 

of all the capabilities (e.g. SQL querying) and 
performance of Spark. Hence, the current Spatial 
Spark version can only interact with data in 
command line mode instead of managing SQL 
queries. GeoSpark only uses its own spatial 
extension of the Spark RDD type, which does not 
directly comply with Spark SQL (Yu, 2017). The 
third, Magellan (Ram, 2015), defines spatial data 
types directly available in Spark SQL, but without 
correctly managing some spatial operations like the 
union of disjointed polygons, the symmetric 
differences involving more than a geometry and the 
creation of an envelope. The fourth, Simba (Xie et 
al, 2016), enables the querying of data in SQL for 
points only and without the possibility to trigger 
standard spatial functions. At last, the fifth prototype 
is the Geomesa extension, which can be used from 
Spark. The system is anyway limited in the spatial 
operations that it offers because it has been natively 
designed only for the research of points included in 
an envelope. Furthermore, it presents limited 
performances (Xie et al, 2016) in comparison with 
other solutions. That apparently could be explained 
by the fact that it imposes the use of a key store 
technology (Accumulo, https://accumulo.apache. 
org/) to store the spatial data to process.   

As a conclusion, there is presently no system for 
the management of geospatial data that fully 
manages all kinds of 2D geometry data types and 
that enables their efficient and actionable SQL 
querying. Each model implemented in the five 
studied prototypes which pursue a similar goal 
presents limited capacities both on the types of 
geometry they support as well as on the spatial 
processing capabilities they offer. Details about this 
last point are given in the next section. 

2 LIMITS IN THE GEOSPATIAL 
CAPABILITIES SUPPORTED 
BY CURRENT SOLUTIONS 

In order to assess the capabilities of the different 
geospatial Big data management systems currently 
relying on Spark to fully manage the 2D spatial 
component, the ISO-19125 standard can profitably 
be used as a guideline. Indeed, the two parts of this 
standard respectively describe the 2D geometry 
types and the geospatial functions and operators 
(ISO 19125-1, 2004) and their expression in the 
SQL language (ISO 19125-2, 2004) that a system 
must implement to basically store 2D geospatial data 
and support its querying and its analysis in an 
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interoperable way. In this context, we will first 
introduce the geometry types supported by the 
different systems. Then we will analyze which 
spatial functions they give access to and whether 
they can be extended to easily implement the 
missing ones. Finally, we will study how they 
manage the spatial indexation issue, which is crucial 
when dealing with geospatial data.  

2.1 Geometry Data Types 

A system complying with ISO 19125-1 is supposed 
to handle the seven main 2D geometry types that can 
be built by linear interpolation. These can be divided 
into three simple types (point, polyline and polygon) 
and into four composite types (multipoint, 
multipolyline, multipolygon and geometry 
collection). Here is a study of how the current 
systems meet this standard. 

Spatial Spark and GeoSpark integrate all these 
types of geometries because their model relies on the 
use of the JTS (“Java Topology Suite”, 
https://www.locationtech.org/proposals/jts-topology-
suite) library, which has been designed to meet ISO 
standards and OGC recommendations (Davis and 
Aquino, 2003). Geomesa also manages all the 
geometries in its current version (Commonwealth 
Computer Research, 2017), while Simba only 
manages the point.  

The case of the HortonWorks Magellan system is 
more mixed. It enables the processing of points, 
polylines and polygons. This may seem sufficient if 
one assumes, as one of the designers of the system 
(Sriharasha, 2016) does, that compound geometries 
are reducible to tables of geometries. But in reality, 
such an approach can only lead to a dysfunctional 
system. Indeed, by not being able to explicitly create 
actual complex geometry, such arrays are not 
allowed as operands of a spatial function and their 
return as a result of a spatial operation like the union 
of disjoint polygons causes a type error. 

In addition to its development, Magellan's 
limitations are also due to the use of ESRI Tools as a 
spatial library. The latter does not make it possible 
to process all the 2D geometry types defined by the 
ISO-19125 standard. It lacks the geometry collection 
type, while the multi-polygon type is only partially 
implemented. Furthermore, the adaptation of WKT 
(“Well-Known Text”) provided by ESRI Tools does 
not comply with the ISO standards and the OGC 
recommendations. 

The limitations of the different solutions studied 
in relation to the requirements of ISO-19125-1 are 
summarized in Table 1. Those related to ESRI Tools 

have been added to give an idea of the limits that 
they involve on the evolution of Magellan.  

Table 1: Coverage of the different 2D geometry types 
specified by ISO-19125 in studied prototypes. 

 
Geo

Spark
Spatial 
Spark

Simba Geomssa Magellan ESRI

Point  Yes Yes Yes Yes Yes Yes 
Polyline  Yes Yes No Yes Yes Yes 
Polygon  Yes Yes No Yes Yes Yes 
Multi-Point  Yes Yes No Yes No Yes 
Multi-polyline Yes No Yes No Yes Yes 
Multi-polygon Yes Yes No Yes No In part
Collection Yes Yes No Yes No No 

2.2 Spatial Functions and Operators 

(ISO 19125-2, 2004) specifies how the spatial 
functions (relations, operations, metric functions and 
methods), a spatial data management system should 
implement in SQL to comply with the ISO 19125-1 
standard. It does not specify the way these methods 
have to be implemented. It only defines their 
signatures. These functions define the minimal set of 
operations a system must implement to enable basic 
and advanced spatial analysis capabilities. Even if 
these functions have been defined for querying data 
in classic spatial DBMS, their usage in geospatial 
Big data management systems still pertain. 
Nevertheless, the application of the ISO-19125-2 
standard requires a system allowing SQL queries 
and personalized SQL functions. This section details 
how the five studied systems partly implement the 
standard and describes their extension capabilities. 

Spatial Spark only uses the core of Spark. 
Indeed, it allows to work with RDD’s but not with 
DataFrames or SQL queries. In this context, the 
application of the ISO 19125-2 standard to Spatial 
Spark seems impossible without a full 
reimplementation. 

As we saw, GeoSpark extends the RDD type of 
Spark, and is therefore not directly compatible with 
Spark SQL. Nevertheless, one of its developers 
indicates that the integration of this point is planned 
for a future version of the system and that there 
would be an indirect way of changing these RDD’s 
in DataFrames (Yu, 2017). But neither does he 
describe a general process for it, nor how to apply 
SQL queries afterwards. Indeed, the current version 
of GeoSpark does not seem to be compliant with the 
ISO 19125-2 standard because all geometry types 
cannot be managed from SQL queries. 

Simba released its own adaptation of Spark SQL, 
which might enable the use of SQL queries and the 
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creation of User Defined Functions. In practice 
however, the only accessible geometry is the point. 
Furthermore, the syntactic analyzer does not always 
work properly. By example, it forces to write “IN” 
before “POINT(x, y)” even without a context of 
inclusion. Simba is therefore not a mature and reliable 
solution that could meet the ISO 19125-2 standard. 

Until recently, Geomesa’s Spark extension only 
used Spark’s core. But a recent version tries to 
integrate Spark SQL. However, this solution remains 
restrained by the mandatory use of the CQL format 
and the Accumulo database (Commonwealth 
Computer Research, 2017). Indeed, Geomesa does 
not allow an autonomic and agnostic implementation 
of ISO-19125-2. 

Magellan does not directly manage SQL either. 
But it defines User Data Types for the point. It is 
therefore tempting to assume that the addition of 
Used Defined Functions to its model should be 
enough to allow the SQL functions of the ISO-
19215-2 standard. In practice however, the extension 
of Magellan with these functions only covers two 
thirds of spatial relations, half of the spatial 
operations and a small part of spatial methods 
specified by the ISO-19125-2 standard. These 
limitations are due to both implementation errors 
and the choice of the ESRI Tools library, which only 
partially meets the ISO-19125-2 standard. 

In their current states therefore, none of the 
studied systems totally comply with the ISO-19125 
standard.  

2.3 Spatial Indexation Management 

Spatial indexation can be defined as the 
reorganization of spatial data, typically by using 
their proximity relations, with the purpose of 
accelerating their processing (Eldawy and Mokbel, 
2015). Four of the studied systems provide a spatial 
indexation component, but which is never both 
efficient and extensible. 

The spatial indexation component of Spatial 
Spark uses directly the methods of the JTS spatial 
library, which is not conceived for Big data 
processing in a multi-server environment. GeoSpark 
proposes a more integrated and efficient spatial 
indexation module (Yu, 2017), but without the 
possibility of managing it with SQL queries. The 
indexation component of Simba is described as more 
efficient by its developers (Xie et al, 2016), but has 
important limitations and bugs we already covered. 
Finally, Geomesa offers poor performances because it 
relies on a specific database system (Xie et al, 2016), 
which drastically increases the processing time. 

2.4 Synthesis of Limitations 

Table 2 sums up the main limitations of the studied 
systems. It first recalls their most problematic 
limitations. Then it reminds the geometry types they 
support and as a result their degree of conformance 
to the ISO 19125 standard. Next, it indicates 
whether they manage SQL and whether they comply 
with the ISO-19125-2 standard. 

Table 2: Limitations of current spatial Big data processing 
systems. 

 Magellan 
Spatial 
Spark 
GeoSpark 

Simba  Geomesa 

Main 
limitation  

Use a 
limited 
spatial 
library  

Inextensib
le to SQL  

Syntactic 
bugs, ́ no 
extensible  

Force to 
use a 
NoSQL  
database 

Types of 
geometries  

Only 
simples  

All Only point All 

ISO-19125-1 In part  Yes In part Yes 

SQL  
management

No, but 
extensible

No 

Yes 
(replace 
Spark 
SQL)  

Yes, 
limited bý 
CQL  

ISO-19125-2 
In part (by 
extension)́ 

No No In part 

Spatial 
indexation 

No 
Yes, but not efficient 

or not extensible 

Next section presents a new system designed for 
the efficient and interoperable management and 
rapid processing of geospatial Big data (vector data 
only). It relies on Spark and overcomes identified 
limitations present in current state-of-the-art 
solutions. This prototype is named Elcano. Its 
release as an open source project has not yet been 
performed but it is envisaged. 

3 PRESENTATION OF ELCANO 

The main objective leading the design of Elcano is 
to model a spatial Big data processing and 
management system that surpasses the other systems 
studied here. It must then integrate each 2D 
geometry types defined in the ISO-19125 standard. 
It must also enable the use of associated spatial 
functions, in order to improve the analysis of spatial 
phenomena. All spatial relations, operations and 
methods defined by the ISO-19125-2 standard must 
then be implemented by Elcano. For example, a call 
to the SQL function ST_Intersects has to indicate if 
two generic geometry objects intersect or not. The 
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system must also allow to load spatial data in a 
simple and generic way, for it to be easy to feed and 
to extend toward other formats. It also must ensure 
data persistence in memory, in a compact manner so 
that it enables a faster processing of the geospatial 
component. It has to be easily extensible in order to 
potentially support new geometry types or 
extensions to the geometry types defined in the ISO-
19125 standard (for example the inclusion of 
elevation in geometric features definition, i.e. 2.5D 
data). Finally, it must offer good processing 
performances in comparison with current processing 
systems. A model seeking to meet these objectives is 
presented and justified below. 

3.1 Architecture Figure 1 illustrates the model on which Elcano is based. In this model, classes of the geometry 
package integrate the elementary geometries and 
spatial functions linked to Elcano. 

 

Figure 1: Elcano’s model. 

The loader package enables the use of SQL 
spatial functions. Data persistence for processing 

and data retrieval is managed by the “Table” class, 
together with the support of the conversion methods 
from the GeometryFactory class. Finally, the index 
package deals with the indexation of spatial data for 
its faster processing. Details on the way these 
different capabilities are implemented are given in 
the next sections. 

3.1.1 2D Geometry Types Management 

The geometry package of Elcano contains a concrete 
class for each geometry type described in the ISO 
19125 standard. These classes use the JTS spatial 
library, which is specifically conceived to comply 
with many ISO standard (including ISO 19125) and 
the OGC recommendations (Davis and Aquino, 
2003). This choice avoids the problems faced by 
Magellan, which are due to the integration of an 
inadequate spatial library like stated above. The 
system could have used JTS classes directly, as 
Spatial Spark and GeoSpark do, but for optimization 
purposes, it seemed interesting not to be constrained 
by the implementation of a chosen spatial library. To 
this end, the Elcano geometry package uses a JTS-
independent class hierarchy by applying the “proxy” 
design pattern (Gamma et al, 1994). This choice of 
conception allows also to accelerate, whenever 
possible, the JTS methods by overwriting them.  

3.1.2 Spatial SQL Functions Management 

In order to make the spatial functions and operators 
defined in ISO 19125 available as SQL functions in 
Elcano, different User Defined Functions (UDF) has 
been defined. All these functions are in fact 
shortcuts to the different methods supported by the 
different geometry types (i.e. classes included in the 
geometry package) and specified in the ISO 191125 
standard. The build() method of the SqlLoader class 
in the loader package is in charge of declaring all 
these functions at the initialization stage of the 
application. 

3.1.3 Spatial Data Persistence 

Elcano provides a unified procedure for the loading 
of all 2D geometry types and their persistence. The 
Table class of Elcano enables the definition of 
geometric features in WKT. WKT is a concise 
textual format defined in the ISO 19125 standard. 
Elcano thus allows to load tabular data (for example 
from a CSV file where the geometry component of 
each row is defined in WKT) in the form of an SQL 
temporary table. The management of more specific 
formats like JSON (Bray, 2014), GeoJSON or 
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possible spatial extensions to Big data specific file 
formats like Parquet (Vorha, 2016) could also be 
easily added to the system by simply inheriting the 
Table class. 

3.1.4 Data Types Extensibility 

The GeometryFactory class implements the “abstract 
factory” design pattern (Vlissides et al, 1995) and 
allows the extensibility of Elcano. Other geometry 
types than those defined in the ISO-19215 standard 
could thus be added in the future, such as Triangles 
and TINs in order to manage DTMs (Digital Terrain 
Models). 

3.1.5 Spatial Indexation 

The index package of Elcano contains all classes in 
charge of the spatial indexation of data stored in 
Elcano. It drastically speeds up all spatial processes. 
This component is inspired from the one 
implemented in Spatial Spark but with some hooks 
for better performance. Its use is illustrated in the 
benchmark section. Its detailed description is though 
out of the scope of the present paper. It will be 
described and detailed later in another publication. 

4 BENCHMARK  

The present section compares the performances of 
Elcano with another spatial data management and 
processing systems using Spark, aka. Spatial Spark. 
They are also compared with a well-known and 
widely used classical spatial database management 
system (DBMS): PostGIS (Obe and Hsu, 2015). 
Spatial Spark has been chosen among the studied 
systems that manage spatial indexation because it is 
the only one that could be extended to support SQL 
queries (by performing an important reimplementa-
tion though). So, it is the only one of the tested 
prototype that really compares to Elcano. As for 
PostGIS, it is to our point of view, a reference 
implementation of the ISO 19125 standard with 
which we can compare. In addition, it proposes 
efficient and reliable spatial indexation methods.  

For the needs of this benchmark, Elcano and 
Spatial Spark have been installed on a cluster of 
servers using a master server with 8 Go of RAM and 
nine slave servers with 4 Go of RAM. Each of these 
computers uses the CentOS 6.5 operating systems 
and height Intel Xeon 2.33 GHz processors. PostGIS 
has been optimized with the pgTune library 

(https://github.com/le0pard/pgtune) and tested in 
comparable conditions. 

In each of the 3 tests performed, we count the 
number of resulting elements from a spatial join 
between two tables. We group the elements of these 
tables by pair, according to a given spatial relation, 
namely the intersection. This spatial relation has 
been chosen because it implies complex and 
sometimes time consuming processing. The use of a 
fast and reliable spatial indexation system is also of 
importance in such a process. The contents of the 
tables used in the test is fixed. The management of 
changing data is out of the scope of the tests. 

Test 1 compares the execution time of the three 
systems with a raise in data volume. It consists in 
counting the intersections between an envelope 
around Quebec province and seven sets of points 
randomly dispatched in an envelope around Canada. 
These seven sets contain respectively 1000, 10 000, 
100 000, 1 million, 100 million and one billion 
points.  

Table 3 presents a synthesis of the first test 
results for the three studied systems. In order to 
facilitate their comparison, the duration cumulates 
the indexation time and the first query time. It 
appears that performances of Elcano performances 
are better than those of PostGIS and Spatial Spark 
beyond one million points. PostGIS is the best 
choice for lower volumes but encounter a significant 
slowdown after a certain threshold:  it requires many 
hours to process 100 million points against five 
minutes for Elcano. The difference between Spatial 
Spark and Elcano is more tenuous but increases in 
favor of Elcano as data volume increases. 

The drop in PostGIS performances when data 
volume increases is probably explained by its weak 
horizontal scalability: this system is not designed for 
Big data management. In return, performances of 
Elcano when compared to Spatial Spark can be 
explained by its usage of Spark SQL. Indeed, the 
latter uses specific query optimizations and Spark’s 
caching system (Armbrust et al, 2015). But for low 
data volumes (under one million points), the 
classical PostGIS solution is better, probably 
because of its simpler distributed treatments 
architecture. In a similar way, the best performances 
of Spatial Spark between one and ten million points 
can probably be explained by the additional 
treatments imposed by the use of Spark SQL by 
Elcano. 
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Table 3: Test 1 – Processing time with a raise of the data 
volume. 

Volume 
(points)  

PostGIS 
(ms)  

Spatial Spark 
(ms)  

Elcano 
(ms)  

1000  234 6 543  9 516 

10 000  326 6 622  9 714 

100 000  3 783 8 301  9 030 

1 000 000  29 898 8 301  10 747 

10 000 000  269 257 20 487  17 099 

100 000 000  5 752 821 55 017  37 378 

1 000 000 
000  

More 
than 10 

hours 
399 100  273 074

Test 2 compares the horizontal scalability of 
Elcano and Spatial Spark for a number of servers 
from one to nine. It compares the count of the 
intersections between the envelope of the Quebec 
province and one billion points randomly dispatched 
in a bounding box of Canada. PostGIS performance 
is not measured for this test because the previous test 
clearly underlies its poor performances for large data 
volumes and there is no way to distribute the 
processing between many servers as PostgreSQL has 
not been designed for horizontal scalability. 

The table 4 presents a synthesis of the results of 
this second test. Spatial Spark and Elcano both 
appear to have a good horizontal scalability. 
Furthermore, the execution time of the two systems 
presents a similar drop from one to nine servers: 
87,4% for Spatial Spark and 87,2% for Elcano. But 
Elcano remains approximately 1.5 faster than Spatial 
Spark regardless of the number of servers.  

Table 4: Test 2 – Horizontal scalability when the number 
of server increases. 

Servers   Spatial Spark (ms)  Elcano (ms)  

1 3 349 414  2 196 344 

2 1 718 672  1 123 153 

3 1 143 790  762 536 

4 875 284  588 401 

5 696 195  473 635 

6 586 211  391 297 

7 511 111  340 784 

8 456 446  314 796 

9 423 647  280 761 

Elcano’s superior brute speed in this second test 
can probably be explained by its using of Spark 
SQL. Otherwise the rates of scalability of the two 
systems are very close, maybe because both rely on 
the JTS spatial library for the implementation of the 
spatial analysis algorithms. 

Test 3 compares more finely the performances of 
PostGIS, Spatial Spark and Elcano. It counts the 
intersections between one million points in an 
envelope of Canada and the points in a copy of this 
set. Therefore, a total of 100 billion intersection tests 
(spatial join) are processed. The execution time is 
spread between indexation time, first query time 
(cold start) and second query time (hot start). Hot 
start queries are more representative of the response 
times in a running environment in production. 
Indeed, while indexing is only necessary once for 
the two given tables, an SQL query must be started 
for each spatial join operation applied to them.  

Table 5 offers a summary of the results for this 
third test. PostGIS presents a spatial indexation time 
a bit shorter than Spatial Spark, but the execution 
time of its first SQL query is then much longer. 
Elcano presents the best performances in all cases: 
its indexation time is five time lower than with 
PostGIS and the execution of its first query is two 
times faster than with Spatial Spark. Elcano is also 
the only solution to execute a second SQL query on 
the same data significantly faster than the first: the 
second execution is 26 times faster. 

The last point can probably be explained by 
Spark SQL’s caching system. 

Table 5: Test 3 – Execution time is spread between 
indexation time, first query time and second query time. 

Solution 
Indexation 
time (ms) 

First 
query (ms)  

Second 
query (ms)  

PostGIS 29 756 100 742  100 742 

Spatial 
Spark  

36 824 36 824  36 824 

Elcano 13 578 15 754  1 393 

So, to sum up, above a given data volume, 
Elcano surpasses PostGIS and Spatial Spark in terms 
of execution speed. It presents a scalability similar to 
the one of Spatial Spark, but a better execution time 
when the number of servers increases. 
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5 CONCLUSION AND 
PERSPECTIVES 

In conclusion, while Big data with a spatial 
component are in the midst of many scientific, 
economical and societal issues and while Hadoop 
has become a mature de facto standard for Big data 
processing, the number of processing and 
management systems for this type of data using the 
Hadoop environment and available in the market is 
limited. All available solutions are only prototypes 
with limited capabilities. Moreover, only five 
solutions are managing spatial data from Spark, 
which is perhaps the most promising Hadoop 
module for this type of processing, and none of these 
systems can entirely handle the geometry types and 
SQL spatial functions specified in the ISO 19125 
standard. 

To tackle this issue, the present paper proposes a 
new spatial Big data processing and management 
system relying on Spark: Elcano. It is based on the 
SQL library of Spark and uses the JTS spatial library 
for its compliance with the ISO’s standards. Thanks 
to this approach, all SQL functions and operators 
defined by the ISO 19125 standard are fully 
supported.  

The proposed model on which Elcano relies is 
not a simple implementation of JTS. It comes with 
the possibility to use SQL spatial queries with a data 
model that can evolve. Furthermore, it integrates the 
geometric types on a context of Big data and comes 
with a scalable spatial indexation system which will 
be detailed in an upcoming article. 

In addition, Elcano offers better performances 
than Spatial Spark and a similar scalability. The 
detailed study of all the possibilities in term of 
spatial indexation management remains however to 
be done. A way to address it could be to adapt the no 
Hadoop solution defined by (Cortés et al, 2015) to 
the Spark environment, but there is also many 
classical spatial data indexation modes that could be 
explored and adapted in order to fulfill the big data 
processing requirements.  

In a larger perspective, it could be interesting in a 
near future to enable the management of the 
elevation together with dedicated data types such as 
Triangles and TINs in the current model. Raster data 
types, maybe via the use of RasterWKT, are also 
considered for inclusion. That would allow to apply 
the model to many new challenging situations such 
as the processing of large collection of images 
coupled with vector data analytics capabilities or the 
building and analysis of high resolution digital 
elevation models (DEM) or DTM without being 

compelled to split them into tiles in order to be able 
to process them at a whole. 

The current version of Elcano manages only 
batches of data, but adding the possibility of 
processing and displaying continuously received 
data (in streaming) could be very interesting 
(Engélinus and Badard, 2016). Such an extension 
could indeed enable the design of real time 
geospatial analytical tools that will help in users 
(analysts, decision makers, …) in making more 
informed decisions on more up-to-date data and in a 
shorter period of time. Furthermore, it could provide 
some advanced features that deals with the temporal 
dimension of the data, as for example by excluding 
all data outside of a defined temporal window 
(Golab, 2006). Such extensions could allow the 
modelling of such data as a spatiotemporal event or 
flow and maybe to dynamically detect “hot spots” 
(Maciejewsky et al, 2010) in the stream. 

But, if Spark can technically handle streaming, 
taking it into account would induce several 
conceptual and technical problems. It would be 
necessary to define a mode of spatial indexation able 
to manage fluctuating data. Furthermore, what 
would be the visual variables to use for this type of 
data in order to represent their dynamic structure? 
Those defined by Bertin in 1967 (Bertin, 1967) and 
widely used since are inappropriate because of their 
strict limitation to a static spatiotemporal context. 
More recent works have tried to add visual variables 
to Bertin’s models in order to represent motion 
(MacEachren, 2001; Fabrikant and Goldsberry, 
2005), but their application in a context of Big data 
remains unaddressed. Furthermore, once these 
conceptual issues are solved, the definition of a 
system that is effectively able to represent and 
manage streamed data remains to be done. This 
could not be a simple add-on to the classic 
geographic information systems (GIS): they are 
designed to be efficient for classical data only and 
are not able to deal with the huge amount of data and 
velocity that Big data implies. How then is it 
possible to manage and to represent fluctuating Big 
data in an efficient way, without losing the 
horizontal scalability offered by Hadoop? This rich 
problematic seems to require the definition of a new 
type of GIS. This will be the bottom line of our 
future research works. 
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