
Microservices for Redevelopment of Enterprise Information Systems and
Business Processes Optimization

Robert Stricker1, Daniel Müssig2 and Jörg Lässig1,2

1Institutsteil Angewandte Systemtechnik AST, Fraunhofer-Institut für Optronik,
Systemtechnik und Bildauswertung IOSB, Am Vogelherd 50, Ilmenau, Germany

2University of Applied Sciences Zittau/Görlitz, Brückenstrasse 1, Görlitz, Germany

Keywords: Microservices, Cloud Computing, Legacy Systems, Enterprise Architectures, Business Processes, ITIL,
Service Management.

Abstract: Due to cost pressure and static technological development, the lifecycle of large enterprise information sys-
tems in operation is coming to an end. At the same time and as part of possible solutions, the demands for
cloud systems in the enterprise context is continuously growing. Although microservices have become an
established architectural pattern used by well-known companies, many especially smaller corporations are
shying away from using them. In this paper we present the positive and negative effects of converting legacy
applications into cloud-based microservice architectures. In addition to technical aspects such as maintain-
ability and scalability, organizational consequences are considered and analyzed. Furthermore, the positive
effects on existing business processes, especially ITIL Service Management Processes, are addressed and it is
demonstrated how ITIL metrics such as MTRS, MRTT or TRD can be optimized by using microservices. We
show advantages of a microservice architecture in the optimization of existing business fields and how new
business areas can be opened up easier compared to conventional enterprise architectures. Even if microser-
vices are not a silver bullet, they should be considered and evaluated as an opportunity for a new software
lifecycle of a legacy enterprise application or as an architectural pattern for profound redevelopment.

1 INTRODUCTION

Within the last few years, the microservice architec-
ture has become established for a huge set of appli-
cations. Many well-known companies such as Netflix
or Amazon base much of their success on the use of
microservices. Several other corporations currently
realize that their applications are approaching the end
of the software lifetime (Ganesan and Chithralekha,
2016) and are no longer up to today’s demands. Es-
pecially the inclusion of the cloud into existing legacy
systems causes technical problems and in addition, a
significant change in customer requirements can be
seen.

It has almost become a matter of course that an
application can be accessed from anywhere and the
response time has to be very short, data must not be
lost and the system must be available without inter-
ruption. Furthermore, the pay-per-use model contin-
ues to spread, since the customer is only willing to pay
for the parts of an application that he actually uses,
while the desire for customization continues to grow.

We are also recognizing a dramatic change in

the demands of enterprises, especially in conserva-
tive sectors such as the utilities industry. IT systems
are no longer only supporting regular processes, they
are increasingly representing the actual value-adding
processes in more and more industries. It also has
to be reasonable to implement comprehensive anal-
yses and evaluations as easily and automatically as
feasible, and errors must be detected and eliminated
as soon as possible.

We are currently observing all of this at the same
time. This results in the desire to replace legacy sys-
tems with new, modern ones that meet the new re-
quirements (internal and external). Also, this change
involves a great deal of effort so that possible alterna-
tives are carefully evaluated. We have determined that
when assessing microservice architectures, often only
the technical aspects are taken into account (Dragoni
et al., 2017b), and usually, solely the positive features
are highlighted (Hasselbring and Steinacker, 2017).
In this paper, we want to present not only the chal-
lenges of introducing microservices, in particular for
corporate organizational structures but also the many
positive effects on business processes that may arise.

Stricker, R., Müssig, D. and Lässig, J.
Microservices for Redevelopment of Enterprise Information Systems and Business Processes Optimization.
DOI: 10.5220/0006791607190726
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 719-726
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

719



We use a variety of ITIL processes as examples to
show how they can be optimized and how related
metrics can be improved. Primarily the latter offers
high potential for optimization, as advantages can be
achieved directly at the value-adding processes.

Modern architectures play an increasingly impor-
tant role in the strategic orientation of enterprises.
Barely any industry can afford not to deal with the
current developments, which are supposed to be de-
scribed with the slogans Cloud Computing, Big Data,
Industrial IoT, Artificial Intelligence, or Smart any-
thing. These requirements did not exist when the
architectures of today’s legacy applications were de-
signed. It is therefore necessary to choose an architec-
ture that can meet the new demands and responds as
flexible as possible to changes in the future. We want
to show that microservices can handle this not only
at the technical but also at the process level and that a
microservice architecture is worth serving as the basis
for future concepts.

The remainder of this paper is organized as fol-
lows: Section 2 presents various projects and appli-
cations of microservices and the focal points of their
work. The weaknesses of conventional enterprise ar-
chitectures concerning technical characteristics and
business processes are discussed in Section 3. In
Section 4, we look at some critical points in the im-
plementation of microservices within an organization
and identify the difficulties that can arise. The result-
ing advantages, particularly for business processes,
are presented in Section 5 as well as the opportuni-
ties to exploit new business areas. In Section 6 we
conclude our main propositions and the aspects to be
examined are shown.

2 RELATED WORK

There are several case studies, surveys, and ap-
proaches, which describe the stance of enterprises
adopting to microservices or even accomplishing
the transition from a monolithic application to mi-
croservices. Wittland and Steffens performed a sur-
vey among employees of several companies asking
if they and their companies consider adopting mi-
croservices (Wittland and Steffens, 2015). Over-
all, microservices were rated very well. However,
there were serious differences between employees
and companies in the evaluation of the focal points.
Companies aim to keep costs as low as possible, while
employees rate flexibility, maintainability, and sus-
tainability higher. The authors concluded from their
studies that the optimal architecture has the following
characteristics: low costs, high flexibility, good main-

tainability and easy migration. An architecture should
be sustainable and easy to understand for employees.

Zúñiga-Prieto et al. describe in their successive
papers a model-driven approach for the incremen-
tal integration of microservices into cloud applica-
tions (Zúñiga-Prieto et al., 2015) (Zúñiga-Prieto et al.,
2016). They show that there is currently a lack of
methodologies to integrate microservices into cloud
environments. They proposed to model integrations
first and then generate the necessary code.

Levcovitz and Valente proposed a technique to ex-
tract microservices from monoliths (Levcovitz et al.,
2016). Facades, business functions, and database ta-
bles are modeled in a dependency graph in several
steps in order to identify subsystems and later mi-
croservices based on them. They have tested their
approach on a large distributed real monolithic bank-
ing system with about 750,000 lines of code. Among
other things, they were able to identify 613 facades,
1131 business functions, and 198 database tables. Af-
terwards, they have successfully implemented several
identified microservices.

Balalaie et al. have shared in their paper their
experiences migrating to a cloud-native architecture
(microservices architecture) (Balalaie et al., 2016b).
They followed, among other things, the steps from
Sam Newman’s book (Newman, 2015) and showed
the lessons learned. They noted that some additional
services were needed, such as a service discovery and
a load balancer. Also they remarked that compliance
with the service contracts is very important and must
not be underestimated, but also that developing in a
distributed application presents special challenges to
the developers.

Mazlami et al. proposed a tool to extract microser-
vices from a monolithic application (Mazlami et al.,
2017). They demonstrate a method which can be used
to automatically extract microservices in a version
control system. The method is based on the classes,
the authors and the author’s commits to the classes.
They investigated three different extraction strategies,
which they also combined among others. Then they
applied these to 21 different open-source projects and
examined the strategies on their performance accord-
ing to custom metrics. They discovered a reduction of
the team size to a quarter and reduce domain redun-
dancy by 70 percent.

Hasselbring and Steinacker describe the usage
of microservices at otto.de, one of the largest e-
commerce platforms in Europe (Hasselbring and
Steinacker, 2017). They demonstrated the successful
reimplementation of a online shop system and the re-
sulting positive changes through the use of microser-
vices. Among other things, they were able to increase

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

720



the number of weekly live deployments from 40 to
about 500 with a tiny amount of live incidents. It was
not only the improved scalability and agility from a
technical point of view but also the better adaptabil-
ity with the number of teams and developers in teams
that persuaded them to switch to the new architecture.

3 WEAKNESSES OF
CONVENTIONAL ENTERPRISE
ARCHITECTURES

At first, we will focus on traditional architectures that
are not or not yet running in the cloud.
Many negative aspects of an architecture results from
the size of the artifacts, which can be considered as a
unit due to their close coupling and dependencies as
shown in Figure 1.

Function A Function B

Lib A Lib B

Database Z

Artifact 1

Function A

Lib A

Artifact 1

Function B

Lib B

Artifact 2

Function C

Database Z

Artifact 3

Figure 1: Most weak points in common architectures are
based on the size of individual artifacts and the tight cou-
pling of functions, whereas a microservice architecture re-
sults in smaller independent artifacts.

First of all, this size influences basic metrics such
as startup or shutdown time which has a huge impact
on other essential aspects of the life cycle of an ap-
plication. Especially in the processes of service vali-
dation or testing, developers have to compile and ex-
ecute the code again and again. Integration tests and
system tests usually have to be carried out overnight
because they take several hours. If errors occur, the
release often has to be postponed by at least one day.
In addition to the long execution time of the tests, the
vast code base makes it difficult to find the causes of
errors. This includes bugs that are not discovered until
the application is deployed to the production system.
In the case of large monolithic applications, signifi-
cant changes usually lead to big-bang releases, which
is not suitable for a modern change or release manage-
ment according to a survey of Heusingfeld1. These
entail many risks, as the effects of changes in one part

1https://jaxenter.de/microservices-warum-57795

often cannot be assessed against others. In addition,
the boundaries of individual modules become blurred
much more easily, which means that supposedly small
changes can have a significant impact on other parts
of the application.

Another important point is the training of new
employees, which is made unnecessarily difficult by
large artifacts. The dependencies have to be men-
tally resolved, therefore a large number of libraries
have to be considered. Heusingfeld also describes the
unattractiveness for clients and applicants as another
reason for turning away from conventional architec-
tures.

Furthermore monolithic architectures are not
technology-agnostic (Dragoni et al., 2017a) or
software-stack-agnostic. The latter means that the
application depends heavily on the software to third
party components. If the provider of these external
parts stops developing the software or prohibits the
use of the software for any reason, the entire mono-
lithic application has to be changed to another library
within a very short period of time.

Turning to the cloud is a trend that has been go-
ing on for several years. Thus the companies want
to save costs and at the same time achieve greater
scalability and availability. However, the same legacy
monolithic architectures are still used in many cases
and are just copied to a virtualized environment (Bal-
alaie et al., 2016b). The most significant issue with
that is that a cloud infrastructure can fail at any time.
Therefore, the application has to be designed to han-
dle these circumstances. In addition, scalability can
only be achieved if the architecture is also scalable.
Thus the startup and shutdown times of an application
should be as short as possible. Some cloud providers
are now accounting on a per-minute basis, so the op-
erational time of the application should be at an opti-
mum not more than that. Every minute that is needed
to start or stop the application, no consumers can be
served and the company loses money during this time.

4 CHALLENGES WHILE
ADOPTING MICROSERVICES

4.1 Transformation of Corporate
Organization

Even though microservices are currently a
technology-driven trend, technical changes are
not the only ones approaching a company that wants
to use a microservice enterprise architecture. A
positive aspect is often suggested when the enterprise

Microservices for Redevelopment of Enterprise Information Systems and Business Processes Optimization

721



organization is adjusted (Hasselbring and Steinacker,
2017). We believe that this change is essential if
microservices should be used permanently and with
a maximum efficiency, as the corporate structure has
a direct impact on the produced products, mentioned
in Conways Law (Conway, 1968). The significantly
shorter communication channels, as shown in Fig-
ure 2, have a positive impact on both product quality
and business processes, which is discussed in detail
in Section 5.2.

Team 1

Dev

Team 2

QM

Team 3

Operation

Team 1

Dev

QMOperation

Team 2

Dev

QMOperation

Figure 2: In order to fully exploit the advantages of mi-
croservices, it is necessary to transfer the corporate struc-
ture from a departmental organization (left in the figure) to
a product-oriented organization (right in the figure).

Since different microservices can use completely
different technology stacks, the product-oriented or-
ganization results in advantages from a competence
point of view. Each team only has to deal with the
technology needed for its microservice, while hetero-
geneity and complexity within a corporation is in-
creasing.
The company is faced with a great deal of effort in
carrying out this restructuring, especially when both
legacy monoliths and novel microservice architec-
tures are present in the portfolio. In addition, capable
employees are needed, since either a certain distance
from the specialization is taken (one product team
consists only of software developers who perform all
three DevOps (Balalaie et al., 2016a) tasks (develop-
ment, quality management, operation) or specialists
from their fields must work closely together, which
requires a high degree of social competence. The
teams should therefore be built up from experienced
employees at the beginning (Taibi et al., 2017), while
after the introductory phase new employees can be
ideally trained. By working in different teams they
can get knowledge about a lot of specialized technolo-
gies, agile software development, thoroughly valida-
tion and reliable operation of services. In this way,
the qualification of employees can be significantly im-
proved compared to relatively strict division into de-
partments.

4.2 Entrusting the Cloud with
Corporate Values

When we talk about legacy systems and optimizing
business processes, we must not only look at start-ups
and small, dynamic companies (e. g. in the software
development industry). A large number of compa-
nies, primarily in very conservative sectors (energy
supply, craft, production) are still afraid to store rele-
vant company data in the cloud. In Germany in partic-
ular, this can be described as a factor hindering devel-
opment and progress. This is often based on the mis-
taken assumption that the term ”cloud” is only used
to describe the public cloud (Amazon AWS, Google
or Azure). However, there are also other forms: pri-
vate cloud (own infrastructure within the company)
and hybrid cloud (a combination of both). Accord-
ingly, sensitive data can be protected by a private
cloud in which the microservice architecture can be
implemented to achieve the advantages presented in
Section 5 of this paper. This was implemented in one
of our projects for an energy supplier and fully com-
plies with the legal data protection requirements. Sec-
tion 5.3 deals with the possibilities of new business
areas through microservices, which can also be seen
as advantages of using a cloud (regardless of which
type of cloud is used).
In addition to privacy, security also plays a major
role. Microservices generate more complexity (Bal-
alaie et al., 2016b) due to the larger number of inter-
faces, which is reflected in a higher risk for security
incidents. This has to be taken into account through
comprehensive safety and risk management.

4.3 Eventual Consistency

Another important aspect that should be consid-
ered when introducing microservices is the so-called
eventual consistency or adherence to the CAP-
theorem (Brewer, 2000). This includes a somewhat
depressing statement: a maximum of two of the three
points consistency, availability and partition tolerance
can be fulfilled completely. Consequently, if a legacy
system gets redesigned, it must be borne in mind that
not all three points are feasible, which is a question
of the demands placed on the system. If the major-
ity of operations are transactions, whereas availability
is less important, microservices may not be the right
way. However, it can be observed that most of the new
business areas (see Section 5.3) are mainly committed
to high availability and reliability.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

722



5 ADVANTAGES OF A
MICROSERVICE ENTERPRISE
ARCHITECTURE

5.1 Technical Improvements

The greatest advantage of microservices compared
to monoliths is the scalability (Dragoni et al.,
2017b) (Müssig et al., 2017). Smaller systems are
much more scalable because there are fewer depen-
dencies on system environments and only the func-
tions (services) that are in greater demand have to be
scaled. This makes microservices ideal for products
that are intended to appeal to a large number of cus-
tomers or, as in the case of Smart Grid, have to deal
with a very high number of measurement values. The
resulting new opportunities for companies are exam-
ined in Section 5.3.

Another important technical advantage is the
maintainability of an application. Although the com-
plexity and effort of monitoring increases (Sun et al.,
2015), errors can be assigned to a microservice more
easily and, due to the small size, can usually be
eliminated more quickly (Gouigoux and Tamzalit,
2017). In addition, services can be added or removed
quickly and easily through containerization. Since
microservices can be seen as the upper edge of the
scale cube (Abbott and Fisher, 2015) and thus as the
most extreme form of separation of functions (except
serverless architectures (Baldini et al., 2017)), they
are an extremely pronounced form of modulariza-
tion, which also has a positive effect on maintainabil-
ity. Testability also increases as a result of increasing
modularization and is therefore very well integrated
in microservices. Another important improved as-
pect concerns the quality attribute modernisability. In
addition to the aforementioned features of microser-
vices, complemented by the ability to use different
programming languages, and the simple HTTP inter-
faces (when using RESTful microservices (Newman,
2015)), individual modules can be easily renewed and
improved. New functions can be added step-by-step,
which underlines the agile character also in the de-
velopment process of the software (see Section 5.2).
New services can also be operated in parallel to old
versions, which is not possible with monoliths and
can be used for new business areas, as described in
Section 5.3.

5.2 Improvement of Business Processes

It is already known that many business processes can
be optimized by adopting the cloud. Microservices

are a cloud-native architecture (Balalaie et al., 2016b)
so the circle is complete. But there are some other as-
pects that speak in favour of using microservices.

While in the first part of this paper we have fo-
cused on comparing microservice architectures with
monoliths, we now want to show that existing service-
oriented architectures can also be improved by using
microservices. Therefor we are looking at ITIL IT
service management processes and provide examples
of how these processes can be optimized by using mi-
croservices.

Service Design. In Service Design, the processes
service level management, capacity management and
availability management can be improved due to the
usage of microservices. The smaller services make
it easier to differentiate between different quality and
cost categories. Consider a service which is convert-
ing a given input to some output through different
steps. By using Microservices and a pipes-and-filters
pattern several service levels can be offered, which
supports the increasing customer demand for a pay-
per-use model.

Availability management is closely linked to ser-
vice level management, since thresholds for availabil-
ity are often defined via SLAs. Two important met-
rics can be optimized by using a microservice ar-
chitecture. On the one hand, the number of service
interruptions can be minimized, since microservices
scale better compared to established architectural pat-
terns (Taibi et al., 2017) and make it easier to cre-
ate redundancies. On the other hand the mean time
to restore service (MTRS) can also be significantly
reduced, since microservices can be restarted very
quickly (Dragoni et al., 2017a) due to the technology
of containerization, without any negative impact on
other services. This can also be done fully automati-
cally and is used, for example, in the Docker Swarm2.

The optimization of capacity management is
closely linked to this issue. The really great scala-
bility of microservices forms the basis for optimiz-
ing many processes like shown in Figure 3. Mi-
croservices can thus be scaled horizontally faster
than other architectures (Hasselbring and Steinacker,
2017). This applies not only to the rapid start of a new
service instance, but also to targeted monitoring and
intelligent load balancing (Balalaie et al., 2016b), so
that the number of incidents due to capacity shortages
can be reduced. Capacity bottlenecks can not only
be better predicted, but also quickly eliminated due to
the fast start times of microservices and the low effort
involved in integrating a new service instance, which
reduces the Resolution Time of Capacity Shortage.

2https://docs.docker.com/engine/swarm/

Microservices for Redevelopment of Enterprise Information Systems and Business Processes Optimization

723



Service Transition. The simplified and optimized
deployment has already been considered from a tech-
nical point of view in Section 5.1. As a result, deploy-
ment management can also be improved and adapted
to the increased customer requirements. Like shown
in Figure 3, frequent releases are possible and allow
for real a continuous improvement, not erratic up-
dates (Taibi et al., 2017).

In addition, the total release downtime (TRD) can
be reduced, since the improved deployment man-
agement and smaller service releases have a smaller
scope - the effects are therefore limited and releases
can be carried out more quickly. It is obvious that the
risk of a system failure is much higher if changes are
made in many places by means of rare, large releases
compared to the adaptation of individual, small com-
ponents.

Accordingly, change management is actively sup-
ported by microservices. Changes can not only be
brought to market more quickly, which improves the
mean request for change turnaround time (MRTT),
they can also be developed faster as we show in Sec-
tion 5.1. This is also achieved by the optimized com-
pany organization, which guarantees short communi-
cation channels and fast development cycles (see Fig-
ure 2).

The service transition also includes validation and
testing of the services. Microservices are easier to
test, especially in the area of component testing (New-
man, 2015). For validation, e. g. of service levels, it
can be added that microservices can be implemented
relatively quick due to their simple interfaces and low
functionality. The shorter development cycles result
in a further advantage that is known from agile soft-
ware development. In this way, results can be pre-
sented to the customer more quickly and the feed-
back can be returned to the developer more quickly,
which includes many of the processes already dis-
cussed. However, it also has an impact on the metrics
of the passed acceptance tests, as customer require-
ments can be implemented even more effectively. The
improved testability due to the increased modulariza-
tion has a positive effect on change management as
the number of failed changes can be reduced. It be-
comes clear that the processes are closely connected
and microservices provide benefits at critical places,
enabling a variety of different processes to be opti-
mized, which is illustrated in Figure 3.

Service Operation. The final point is service oper-
ation. The transformation of the corporate organiza-
tion from a departmental organization to a product-
oriented design (DevOps) presented in Section 4.1
results in many advantages. Not only are develop-

Microservice
Infrastructure

Deployment Scalability

influences
optimize

Service Level M.

Capacity M.Test M. Release M.

Change M. Availability M.

Figure 3: Due to their technical advantages (small func-
tional scope, containerization) Microservices achieve an
improvement of central capabilities such as scalability and
easy deployment, which in turn influence many relevant
processes.

ers encouraged to write higher quality source code
to avoid being woken up by incidents at night (quo-
tation M. Fowler), but entire process chains can be
optimized. The communication channels of Incident
Management, for example, can be shortened con-
siderably (like shown in Figure 2), and any errors
that may have occurred can be quickly eliminated by
adding the processes mentioned above. It shows that
many processes can be optimized through the use of
microservices and thus offer customers added value,
which has a direct positive effect on the company.

5.3 Developing new Business Areas

In the strategic orientation of companies, terms such
as Industry 4.0, Industrial IoT, Smart followed by
something (e. g. Smart City, Smart Grid, Smart
Home) or artificial intelligence play an important role.
What they all have in common is that the cloud
is used for at least data aggregation and in most
cases for much more complex business logic. While
monolithic applications are less suitable for this,
microservices are a cloud-native architecture (Bal-
alaie et al., 2016b). Due to their size, indepen-
dence through containerization, and communication
via simple interfaces, they are also ideal for dis-
tributed systems. Modern applications consisting of
automated data acquisition including pre-processing
and detailed business logic in the cloud are therefore
ideal for implementation. Examples of this are Smart
Cities (Krylovskiy et al., 2015) or Smart Grids (Bot-
taccioli et al., 2017), but also energy management sys-
tems or applications in the field of ambient assisted
living.

Compared to monoliths, functions can be de-
signed, developed and, in most cases, released more
independently, so the development phase of the prod-

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

724



uct lifecycle can be significantly optimized and the
time-to-market can be reduced.

In addition to the completely new areas of busi-
ness that can be developed, there is also room for op-
timization potential in existing business fields. As de-
scribed in the previous section, smaller services can
be offered individually. Consequently, a large num-
ber of individual products are created from a former
main product, which can be sold individually. Never-
theless, the compositions, i. e. products consisting of
a variety of microservices, are also marketable. New
compositions can be created easily by the simple in-
terfaces and the loose coupling, see Figure 4. The re-
sult is a dynamic environment from which new prod-
ucts can be created.

BA C D

microservices

products

A B

Figure 4: The simple interfaces and the loose coupling
make it possible to create new products by combining ex-
isting microservices, which only have to be scaled horizon-
tally if it is necessary.

In contrast to the use of a monolith, it is also pos-
sible to operate microservices in parallel in different
versions. This has the advantage that newer services
can also be marketed in a different way without forc-
ing users to update, new service levels are thus cre-
ated automatically by the improvement process of a
service. The customer orientation can thus be clearly
optimized and the analysis of demand is much more
detailed than with monoliths.

5.4 Improvement of Security Features

It is often pointed out that a microservice architec-
ture has weak points in the area of security (Dragoni
et al., 2017a). We also mentioned this in Section 4.2,
but the benefits of microservices in terms of security
should not stay unmentioned. If one considers the
three most important security goals confidentiality, in-
tegrity and availability (CIA-Triad), it can be deter-
mined that one central goal can be clearly optimized
by using microservices. They make it easier to im-
plement highly available systems than monoliths, as
illustrated in Section 5.1 and Section 5.2. Additional
effects can be achieved by applying the Security-by-
Design principle when designing a microservice ar-

chitecture (Müssig et al., 2017). Loose coupling be-
tween each other provides increased robustness, while
in the case of a monolith, the failure of one component
usually results in a complete failure of the system, mi-
croservices can be encapsulated in such a way that
both failure and compromise of an individual service
have no effect on other services. This is useful, for
instance, if individual services are used to collect data
and others to process data. Even if the data process-
ing fails, the data is safely recorded. Nevertheless,
more research is still needed in the field of microser-
vice security to ensure that all security objectives are
adequately met.

6 CONCLUSION

The microservice architecture was created in soft-
ware development as a result of increasing modular-
ization and a stronger focus on service orientation.
Since microservice-based architectures become a se-
rious alternative for common enterprise architectures
and are evaluated as such, not only the technical as-
pects should be addressed.

Nevertheless, we have outlined the main advan-
tages of microservices in this area because they rep-
resent the basis for process optimization as shown
in Figure 3. In order to exploit these possibilities
to their full potential, however, there are some hur-
dles to be overcome. In particular, the changes in
the corporate organization from a departmental to a
product-oriented structure and the associated over-
head should be taken into account urgently before mi-
croservices are applied on a large scale within an en-
terprise. However, if this step is possible, there are
many other advantages in addition to improved com-
munication or real agile development which can be
achieved.

Many business processes in the service lifecycle
can be significantly improved, from service design to
service operation. It can be seen that the technical
advantages have a positive effect on some basic ser-
vice management processes, which, due to their de-
pendency on other processes, provides great potential
for optimization, as described in detail in Section 5.2.

In addition, new business areas can be opened
up, as microservices create a dynamic environment
of small-scale functions in which new products can
be built through combination. A library of products
is formed, which can be managed by optimized pro-
cesses and the customer orientation can be further im-
proved.

Nevertheless, microservices are not a panacea
- there will always be domains in which classical

Microservices for Redevelopment of Enterprise Information Systems and Business Processes Optimization

725



monoliths are preferable, for example if transaction
safety is rated higher than availability. However, in
addition to the technical aspects, the effects on busi-
ness processes presented in this paper should also be
taken into account when considering the introduction
of a microservice-architecture.

REFERENCES

Abbott, M. L. and Fisher, M. T. (2015). The Art of Scalabil-
ity: Scalable Web Architecture, Processes, and Orga-
nizations for the Modern Enterprise. Addison-Wesley
Professional, 2nd edition.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016a).
Microservices Architecture Enables DevOps: Migra-
tion to a Cloud-Native Architecture. IEEE Software,
33(3):42–52.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016b).
Migrating to Cloud-Native Architectures Using Mi-
croservices: An Experience Report, pages 201–215.
Springer International Publishing, Cham.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., et al. (2017). Serverless comput-
ing: Current trends and open problems. arXiv preprint
arXiv:1706.03178.

Bottaccioli, L., Estebsari, A., Pons, E., Bompard, E.,
Macii, E., Patti, E., and Acquaviva, A. (2017). A
Flexible Distributed Infrastructure for Real-Time Co-
Simulations in Smart Grids. IEEE Transactions on
Industrial Informatics.

Brewer, E. A. (2000). Towards robust distributed systems.
In PODC, volume 7.

Conway, M. E. (1968). How do committees invent. Data-
mation, 14(4):28–31.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,
M., Montesi, F., Mustafin, R., and Safina, L. (2017a).
Microservices: yesterday, today, and tomorrow. In
Present and Ulterior Software Engineering, pages
195–216. Springer.

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M.,
Mustafin, R., and Safina, L. (2017b). Microservices:
How To Make Your Application Scale.

Ganesan, A. S. and Chithralekha, T. (2016). A Survey on
Survey of Migration of Legacy Systems. In Proceed-
ings of the International Conference on Informatics
and Analytics - ICIA-16, pages 1–10, New York, New
York, USA. ACM Press.

Gouigoux, J.-P. and Tamzalit, D. (2017). From mono-
lith to microservices: Lessons learned on an indus-
trial migration to a web oriented architecture. 2017
IEEE International Conference on Software Architec-
ture Workshops (ICSAW), pages 62–65.

Hasselbring, W. and Steinacker, G. (2017). Microservice
Architectures for Scalability, Agility and Reliability in
E-Commerce. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages
243–246. IEEE.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing a
Smart City Internet of Things Platform with Microser-
vice Architecture. In 2015 3rd International Confer-
ence on Future Internet of Things and Cloud, pages
25–30. IEEE.

Levcovitz, A., Terra, R., and Valente, M. T. (2016). To-
wards a Technique for Extracting Microservices from
Monolithic Enterprise Systems. CoRR.

Mazlami, G., Cito, J., and Leitner, P. (2017). Extraction
of Microservices from Monolithic Software Architec-
tures. 2017 IEEE International Conference on Web
Services (ICWS), pages 524–531.

Müssig, D., Stricker, R., Lässig, J., and Heider, J. (2017).
Highly scalable microservice-based enterprise archi-
tecture for smart ecosystems in hybrid cloud environ-
ments. In ICEIS 2017 - Proceedings of the 19th Inter-
national Conference on Enterprise Information Sys-
tems, volume 3.

Newman, S. (2015). Building microservices: designing
fine-grained systems. O’Reilly Media, Inc.

Sun, Y., Nanda, S., and Jaeger, T. (2015). Security-
as-a-Service for Microservices-Based Cloud Applica-
tions. In 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (Cloud-
Com), pages 50–57. IEEE.

Taibi, D., Lenarduzzi, V., Pahl, C., and Janes, A. (2017).
Microservices in agile software development. In Pro-
ceedings of the XP2017 Scientific Workshops on - XP
’17, pages 1–5, New York, New York, USA. ACM
Press.

Wittland, J. and Steffens, A. (2015). Adoption of emerging
Architectural Approaches in German Software Com-
panies. Full-scale Software Engineering.

Zúñiga-Prieto, M., Abrahão, S. M., and Insfrán, E. (2015).
An incremental and model driven approach for the
dynamic reconfiguration of cloud application ar-
chitectures. In Information Systems Development:
Transforming Healthcare through Information Sys-
tems (ISD2015 Proceedings).

Zúñiga-Prieto, M., Insfran, E., Abrahao, S., and Cano-
Genoves, C. (2016). Incremental Integration of Mi-
croservices in Cloud Applications. In Information
Systems Development: Complexity in Information
Systems Development (ISD2016 Proceedings).

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

726


