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Abstract: There are many stream clustering algorithms that can be divided roughly into density based algorithms and 
hyper spherical distance based algorithms. Only density based algorithms can detect nonlinear clusters and 
all algorithms assume that the data stream is an ordered sequence of points. Many algorithms need to receive 
data in buckets to start processing with online and offline iterations with several passes over the data. In this 
paper we propose a streaming clustering algorithm using a distance function which can separate highly 
nonlinear clusters in one pass. The distance function used is based on information theoretic measures and it 
is called Clustering Evaluation Function. The algorithm can handle data one point at a time and find the correct 
number of clusters even with highly nonlinear clusters. The data points can arrive in any random order and 
the number of clusters does not need to be specified. Each point is compared against already discovered 
clusters and each time clusters are joined or divided using an iteratively updated threshold.   

1 INTRODUCTION 

Rapid increase of Cloud Systems and Internet of 
Things concept have started to generate a huge 
amount of data as streams. The processing of stream 
data requires different approaches as data mining 
algorithms that require the whole data set for 
processing are having problems in terms of memory 
and speed. The data that is already collected and 
called Big Data can also be considered as a stream 
since reading and processing Big Data in one step is 
not possible because of memory constraints. One of 
the important data mining algorithms is clustering the 
data into several similar groups. There are several 
challenges that needs to be addressed here. One of the 
problems is the unknown number of clusters in the 
data set where many clustering algorithms require this 
information before processing. Another problem is 
the arriving order of the data. Each data point from 
any cluster can arrive in any order. The evolving 
nature of some real-time generated data features also 
increases the difficulty of clustering such streams. 

During the analysis no special processing is done 
for categorical data. One of the basic assumptions in 
this paper is that the total data set contains groups that 
can be clustered offline; even theoretically; by a 

clustering algorithm. The motivation of this 
assumption is that although the data arrives as a 
stream one at a time, the total set should contain 
clusters otherwise no algorithm; streaming or not; can 
cluster the data.  

In this paper we propose an algorithm that 
requires one pass over the previous data to cluster a 
stream of data where total number of clusters are not 
known and not needed. To separate clusters properly, 
we need a distance metric between clusters. The 
Cluster Evaluation Function (CEF) developed by the 
author (Gokcay, 2002) is chosen as a metric since 
CEF can cluster nonlinear data sets. Many distance 
measures are using hyper spherical distances and 
cannot cluster nonconvex data sets. The algorithm is 
called CEFStream and it can analyze data streams 
containing nonlinearly separated clusters. 

The order of data points are considered as random. 
The order of arrival should not change the results. 
Each arriving data point is tested against the clusters 
created so far. If the distance is closer than a threshold 
then the point is joined to that cluster. If not, a 
different cluster is created. After each addition, the 
cluster distances are measured again to find out 
cluster groups that need to be merged together. 

The paper is organized as follows. Section 2 gives 
information about previous work. Section 3 

582
Gokcay, E.
A Stream Clustering Algorithm using Information Theoretic Clustering Evaluation Function.
DOI: 10.5220/0006786205820588
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 582-588
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

introduces the CEFStream Clustering algorithm. 
Section 4 presents simulation of the algorithm using 
synthetic data. Finally Section 5 presents future work 
and Section 6 presents conclusion.  

2 RELATED WORK 

In this section we briefly review different approaches 
in clustering data streams.  

In the past decades, many stream clustering 
algorithms have been proposed based on adaption of 
off-line algorithms, such as BIRCH (Tian, 1997), 
CluStream (Charu, 2003), DenStream (Feng, 2006), 
StreamKM++ (Marcel, 2012), etc. These algorithms 
can be generally summarized into two steps: an online 
learning step that derives a data abstraction from 
input data stream, and an offline clustering step that 
generates the final result. During the online learning 
step, input data stream is reduced to smaller size 
representations so that storing the whole data is not 
needed. Obviously these representations should 
represent the original distributions properly to be 
effective. Different algorithms gave different names 
to these abstract representations like “micro-clusters” 
in DenStream, or “coreset” in StreamKm++. After 
receiving new data, there is an online step which 
determines micro-clusters and an offline step that 
uses abstract data to finalize clustering. In this step, 
K-Means (James, 1967) is used by BIRCH, 
CluStream and StreamKM++, while DBSCAN 
(Martin, 1996) is used by DenStream. 

Although many stream clustering algorithms 
adopt K-Means or DBSCAN in their offline 
clustering step. However, both methods have their 
disadvantages. K-Means needs to know the number 
of clusters k, and tends to generate similar sized 
spherical clusters. DBSCAN and similar methods 
(Xu 2016; Lin 2009; Alazeez 2017) can detect a 
suitable number of arbitrary shaped clusters, but it has 
parameters to be decided, which is critical for the 
result but difficult to decide. 

A good review of stream clustering methods is 
given in (Reddy, 2017). 

3 STREAM CLUSTERING USING 
CEF 

Many clustering algorithms are using hyper 
ellipsoidal distance functions resulting in clusters of 
similar shape. One exception is density based 
algorithms (Xu 2017; Chen 2016; Khan 2016; 

Hassani 2016) where there is no assumption about the 
shape of the clusters. The problem with density is 
how to decide the density value so that points are 
considered to be part of a cluster. In this paper the 
Clustering Evaluation Function (CEF) developed by 
the author using Information Theory is chosen. The 
derivation is described in (Gokcay, 2002) and will not 
be repeated here. The distance measured by CEF can 
differentiate nonlinearly separated clusters and 
therefore it is suitable to cluster data with highly 
nonconvex regions. The CEF function defined for 
two clusters is given in (1).  

,௣ܥ൫ܨܧܥ ,௤ܥ ൯ߪ = 1௣ܰ ௤ܰ෍෍ܩ൫ݔ௜ே೜
௝ୀଵ

ே೛
௜ୀଵ− ,௝ݔ ଶ൯ (1)ߪ2

In (1), ܥ௣ and ܥ௤ are clusters of size ௣ܰ and ௤ܰ 
respectively where ݔ௜ ∈ ௝ݔ ௣ andܥ ∈  ௤. Theܥ
Gaussian kernel (G) needs a parameter σ for the 
kernel size which should be determined using the 
scale of the data. 

3.1 Data Stream 

The algorithm assumes that each data point ݔ௡	arrives 
in a random order where ݊ ∈  ܰ and (ܰ)	݉ݎ݁݌݀݊ܽݎ
is the total number of points in the stream. Obviously 
N is not restricted in a real data stream but this will 
not change the assumption about random arrival. 
Another assumption is that the data has d dimensions 
and it is scaled between [-1 .. 1]. Although this seems 
as a strong assumption, it would be easy to scale the 
data online using a pre calculated scaling factor if the 
data has known maximum and minimum limits. The 
time stamp is not important in the analysis.  

3.2 Data Structures 

During processing we need to create several data 
structures besides the data itself. For each generated 
cluster ܥ௠ in the dataset, we have to store number of 
points in the cluster, an array holding the CEF 
distance to other clusters and data points that belong 
to the cluster. The need to store the data stream will 
increase the processing time since although there is 
no requirement to copy all data to memory, disk 
access time will increase total access and processing 
time. As a future study to reduce the storage and 
processing requirements, we can replace these points 
with data skeleton centers (Gokcay, 2016). 
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 :௠ܥ
 ܺ[1. . ܰ௠] (data points of ܥ௠) 
 ܯ (the number of clusters in the dataset 

discovered so far) 
 ܰ௠ (number of data points in ܥ௠) 
 1]ܦ. ܯ. − 1] (CEF distances from current cluster ܥ௠ to ܥ௣ where ݌ ∈ [1. p	and	[ܯ. ≠ 	m) 

 
The combined storage complexity of the data 

stream is ܱ(ܰ) which is proportional to the number 
of points in the stream. The extra information that 
needs to be stored has a complexity of ܱ(ܯ) and the 
distance calculated has a storage complexity of ܱ(ܯଶ) where ܯ is the number of clusters discovered 
so far. We also assume	ܯ ≪ ܰ. 

3.3 CEFStream Algorithm 

The CEFStream algorithm will use one pass over the 
currently stored dataset. There is no online and offline 
parts of the algorithm.  

For each newly arrived sample point ݔ, the 
distance to already formed clusters is measured once 
as in (2).  ܦ௫(݌) = ,ݔ൫ܨܧܥ ,௣൯ܥ ݌ ∈ [1. (2) [ܯ.

The next step is to find the closest cluster as in (3).  
CEF function is inversely proportional to the distance 
between clusters. Therefore we have to maximize the 
function. ݍ = ,(݌)௫ܦ	}	ݔܽ݉݃ݎܽ ݌ ∈ [1. (3) {[ܯ.

The next step is to check if the closest cluster is 
larger than a threshold T. If ܦ௫(ݍ) > ܶ then the new 
sample point is added to ܥ௤. Otherwise a new cluster 
is created.  

After processing the sample point, the data 
structure of each cluster needs to be updated. If a new 
cluster is generated, M will be increased by one for 
each cluster data structure. The size of CEF distance 
array is also increased by one to include the new 
cluster. The distance from the new cluster to other 
clusters are added to the array. Since these distances 
are already obtained in the previous step, there is no 
need recalculate CEF distances again.  

When a new sample point is added to an existing 
cluster, M is not changed but the distances between 
clusters still should be updated. Since the distance 
from the new point to other clusters are already 
obtained, we only need one step operation to update 
each distance.  

Once the new sample is processed, it is time to 
check if there are clusters that need to be merged 
together using the threshold T. Using the updated 
distance array in each cluster, we will check if there 
are clusters closer to each other than the threshold T 
as in (4). The cluster joining operation will continue 
until there are no clusters left to be joined. ݆݊݅݋൫ܥ௣, ௤൯ܥ ݂݅ ,௣ܥ൫ܨܧܥ ௤൯ܥ > ܶ (4)

3.4 Threshold Estimation 

The threshold T used in the calculation to differentiate 
clusters from each other can be estimated using an 
iterative calculation by averaging all distances 
obtained. Since most of the points are close to each 
other to form a cluster, the average will give a nice 
estimation to decide if a point can be considered part 
of a cluster or not. 

3.5 Processing Complexity 

The distance calculation using the new point is done 
only once using the available dataset. Therefore the 
algorithm can be considered as a one-pass algorithm 
and the complexity is ܱ(ܰ) where the total number 
of points stored so far is ܰ. When there is a new 
cluster, updating the existing array and adding the 
distance of the new cluster to other clusters has a 
complexity of ܱ(ܯ). When an existing cluster needs 
to be updated by adding the sample point, we have to 
recalculate all distances. This calculation needs one 
iteration over all clusters and it should be repeated for 
every cluster, hence it requires a complexity of ܱ(ܯଶ). Although the CEF distance calculation 
between clusters ܥ௣	and ܥ௤ requires a complexity of ܱ൫ ௣ܰ ∗ ௤ܰ൯, the complexity can be reduced to ܱ(1) 
by using the already calculated distances and the 
distance calculation of new point x.  

Assume that we have a new point ݔ and we 
already calculated the distances ܦ௫(݌), ݌ ∈ [1.  [ܯ.
from the point to all clusters during cluster 
assignment. Assume that the new point  ݔ belongs to 
cluster ܥ௤ and we have to update all distances from ܥ௤ to all other clusters. For example assume that we 
want to update the distance ܨܧܥ൫ܥ௤,  ௞൯ from clusterܥ
q to cluster k. When we update cluster q by adding x, 
the new distance is given as ܥ)ܨܧܥ௤ା௫,   .(௞ܥ

Cluster C୯ା୶ has N୯ + 1 points and cluster C୩ has N୩ points. The computational complexity of CEF is O(N୯ ∗ N୩). The calculation can be simplified using 
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the previously calculated distance iteratively. The 
iteration is shown in (5). ܨܧܥ൫ܥ௤ା௫, ௞൯ܥ = 	 (( ௤ܰ ∗ ௞ܰ ∗ ,௤ܥ൫ܨܧܥ	 ))/((݇)௫ܦ	+(௞൯ܥ ௤ܰ + 1) ∗ ௞ܰ) (5)

In the calculation ܨܧܥ൫ܥ௤,  ௞൯ is alreadyܥ
calculated in the previous iteration and ܦ௫(݇) ,ݔ)ܨܧܥ=  ௞) is calculated during one pass clusterܥ
assignment operation. So the complexity of the 
calculation is	ܱ(1).  

The final complexity is ܱ (ܰ) ∗  where N is (ଶܯ)ܱ
the # of points in the stream and M is the number of 
clusters in the stream. Although N is not limited, ܱ(ܰ) means that the algorithm is a one-pass 
algorithm. Also we assume ܯ ≪ ܰ and not chancing 
drastically (will not increase during the flow of the 
stream), so that practically ܱ(ܯଶ) can be considered 
as constant. 

3.6 Algorithm 

The CEFStream algorithm is given below. As long as 
there is a new sample, the calculation continues as 
indicated by the while loop. 

____________________________________ 
Algorithm 1: CEFStream algorithm.  
____________________________________ 
Input : Data stream X  
Output : Cluster Data Structure  
while ݔ௥௔௡ௗ ∈ ௌ்ܺோா஺ெ	do  
  for each Cluster ܥ௞	, ݇ ∈ [1.  [ܯ.
      D[k] = CEF(x,	ܥ௞) 
    update T 
 end 
 q = ݉ܽ݃ݎܽݔ	ܥ௞	, ݇ ∈ [1.  [ܯ.
   if ( (ݍ)ܦ > 	ܶ ) 
      Join ܥ௞ and x 
   else 
      create a new cluster using x 
   end 
  for each Cluster ܥ௞	, ݇ ∈ [1.  [ܯ.
    for each Cluster ܥ௤	, ݇ ∈ [1.  [ܯ.
        update  (ࢗ࡯)ࡰ.࢑࡯	 
    end          
 end 
 
 for each Cluster ܥ௞	, ݇ ∈ [1.  [ܯ.
    for each Cluster ܥ௤	, ݇ ∈ [1.  [ܯ.
         if ܥ௞.  T <	(௤ܥ)ܦ
      join ܥ௞ and ܥ௤ 
   end 
     end 
 end 
end 
___________________________________ 

3.7 Outliers 

There is no special processing for outliers like in 
(Thakran, 2012). Outliers can be detected by testing 
the number of points in each cluster. When the 
number is below a certain threshold we can mark that 
cluster as an outlier.  

3.8 Evolving Data Streams 

No special processing is used to track changing 
clusters as the algorithm can track the clusters as long 
as the change is not drastic and sudden. But if the 
change of a cluster starts overlapping with other 
clusters, the algorithm may combine these 
overlapping clusters. To overcome this problem a 
window can be applied to the data stream to slowly 
discard old data. 

4 EXPERIMENTS 

The algorithm is tested using several synthetic 
datasets. Each time the data arrival is randomly 
modified to test whether the clusters depend on the 
arrival order or not. Using a simple dataset given in 
Fig. 1 the dependency to the order is tested. 

 

Figure 1: Sample data set. 

There are 10 points in the data set and each point 
is taken from the set using a random permutation 
simulating a stream. The result after each random 
generation is the same with correct clustering as in 
Fig. 2. 
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Figure 2: Result of CEFStream showing 2 clusters. 

The number of clusters generated during 
iterations can be seen in Fig. 3. During the start of the 
computation number of clusters increase, which is 
expected as the sample order is random. After 
processing several samples the clusters start to merge 
and stays the same. 

 

Figure 3: Number of Groups vs. Iterations. 

The algorithm is tested using several times where 
each time the arrival order is changed using a random 
permutation as given in Table 1. The precision is 
%100 each time which means that the result matches 
with the original labels of the data. 

Table 1: Different arrival orders of 10 sample points using 
random permutations. 

1 5 9 6 7 8 10 4 2 3 
4 9 8 5 3 2 6 7 1 10 
4 1 9 2 10 7 8 6 3 5 
6 5 2 7 8 9 10 1 3 4 
8 4 9 1 10 3 7 5 2 6 
8 6 1 7 9 4 2 10 3 5 

4.1 Test Results 

The CEFStream algorithm is tested using several 
different datasets and each resulting cluster is 
displayed using a different color. The change of 

number of groups is also given in Fig. 4. Each set is 
tested several times using random permutations to 
change the arriving order of points. 

 

Figure 4: Test results with clusters and number of groups. 

The algorithm is also tested with outliers where 
each outlier is assigned to a different cluster which 
will be very easy to eliminate by checking the cluster 
size. The result is given in Fig. 5. 

 

Figure 5: Outliers detected as different clusters. 
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4.2 Difficult Datasets 

There are cases where points from two different 
clusters starts forming a single cluster during the early 
phase of the iterations. For example occasionally the 
dataset given in Fig. 6 generates clusters incorrectly 
depending to the order of arrival. 

 

Figure 6: Occasional incorrect clusters. 

The original algorithm can merge similar clusters 
but what we need is to separate a cluster into 2 
clusters if the addition of a new point start forming a 
different sub-cluster. The extra step will come with 
additional computational complexity. 

After adding the new point to a cluster, that cluster 
will be tested if there is a need to separate the clusters 
into two different clusters. For this operation we will 
use the OptimalNumberofClusters algorithm 
developed (Gokcay, 2017) to find the number of 
clusters in any dataset. The derivation of the 
algorithm will not be repeated here. The motivation is 
not to determine the number of clusters but to test the 
minimum point of the distance plot created by the 
algorithm against the threshold T and separate the 
clusters if necessary. Assuming that the points are 
arriving one at a time, the running complexity of this 
algorithm is ܱ( ௤ܰ) where q is the current cluster.  

5 FUTURE WORK 

As a position paper there is work that needs to be 
completed. The threshold calculation needs to be 
improved because in some cases the average 
calculation may not be enough to detect the boundary 
between clusters. The other improvement will be in 
the incremental version of the data skeleton algorithm 
to reduce the storage requirements. Also the 
algorithm needs to be tested using real data sets as 
well. Although the algorithm performs well against 
random arrivals with nonlinearly separated synthetic 

clusters, the case will be different with more 
complicated cluster shapes.  

6 CONCLUSIONS 

In this paper we have developed a one-pass stream 
clustering algorithm where the clusters are 
independent of the arrival order and highly 
nonconvex cluster distributions pose no problem. The 
distance measure used in the algorithm can cluster 
nonlinearly separable clusters efficiently. This is not 
the case with K-means and all its derivatives since the 
distance measure is hyper-ellipsoidal. No assumption 
is needed about the possible number of clusters where 
many algorithms require this number. Each new 
sample point is processed once and a snapshot can be 
taken from the algorithm at any time since there are 
no on-line and off-line iterations. 
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