
Energy Monitoring IoT Application using Stream Reasoning

Varun Shah1, Suman Datta2, Debraj Pal2, Prateep Misra2 and Debnath Mukherjee2
1Union College, NY, U.S.A.

2TCS Innovation Labs, Tata Consultancy Services, Kolkata, India

Keywords: Energy Monitoring, Stream Reasoning, Internet of Things, Maintainability.

Abstract: We consider the application of stream reasoning to the problem of monitoring energy consumption of a
premises with buildings, each building having multiple floors. The floors have energy meters in several
categories such as AC, UPS and Lighting. The objective is to compute the real-time aggregate energy
consumption and alert whenever energy consumption thresholds are crossed, at the building, floor or meter-
type level, thus determining whether there is overloading. We also want to have a solution that can be easily
applied to a large number of floors and buildings. We show how just a few continuous SPARQL queries and
performance enhancing rules can implement the solution. Finally we compare the performance of queries
with and without the HAVING clause and with and without using entailments from rules.

1 INTRODUCTION

Monitoring the energy consumption of a premises is
important as it prevents overloading and power
outages, allowing the business to run smoothly.
Furthermore, being informed of their current power
consumption patterns gives companies the
opportunity to develop more energy-efficient
approaches to power consumption which would help
reduce electricity expenses. More and more energy-
efficient technologies are emerging and developing a
system that can monitor and measure their
performance is of utmost importance.

An energy monitoring system is also one
example where the Internet of Things (IoT)
technology can be applied. The "things" here are the
energy meters and the IoT message payloads are the
energy meter readings. These readings are captured
at a central processing facility. In this paper, we
discuss energy monitoring of premises and build-
ings and floors within the buildings. The processing
consists of generation of alerts when thresholds are
crossed.

In this paper, we consider the design of an
energy monitoring system (EMS) for a building with
multiple floors, each having meters that measure the
power consumption of AC, UPS and LIGHTING on
that floor. The meters stream dynamic data
continuously to an IoT cloud platform housing a
stream reasoner. The stream reasoner performs

reasoning over the dynamic meter data and back-
ground knowledge about the relationships between
meters and their location (floor, building). The
stream reasoner is used to send out alerts when
certain thresholds of power consumption are crossed
e.g. building-level, floor-level, meter type level etc.
One of the important requirements of EMS
addressed in this paper is maintainability: how the
system can be implemented such that a large number
of buildings can be monitored with only a few
continuous queries and rules. The QUARKS
(QUerying And Reasoning over Knowledge
Streams) stream reasoner (Mukherjee, Banerjee and
Misra 2013) has been adopted to implement the
energy monitoring system.

The contributions of this paper are:

 Design of an ontology for the energy
monitoring application which combines both
meter domain and building domain

 A combination of only a few rules and
continuous queries using aggregate functions to
implement energy consumption monitoring in a
premises

 Design of maintainable Continuous SPARQL
queries that yield comprehensive and accurate
results

 Configuration of sliding windows that perform
real-time analytics on dynamic data

Shah, V., Datta, S., Pal, D., Misra, P. and Mukherjee, D.
Energy Monitoring IoT Application using Stream Reasoning.
DOI: 10.5220/0006782006270634
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 627-634
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

627

 Evaluation of the pros and cons of using count-
based sliding windows for energy monitoring

 Experimental performance evaluation using
energy monitoring use cases.

 An analysis outlining the various advantages
and disadvantages of the different types of
queries used.

The rest of the paper is organized as follows: Section
2 presents the Problem Statement, Section 3 presents
the Related Work, Section 4 presents the Solution
Approach, Section 5 presents experiments and
results, and Section 6 presents Analyses of results.
Section 7 concludes the paper and discusses future
work.

2 PROBLEM STATEMENT

We are given a premises having a number of
buildings. Each of these buildings have an
overloading threshold. Additionally, every floor of
each of these buildings has its own overloading
threshold. Each floor has 3 meters of type
AC_meter, UPS_meter and LIGHTING_meter.
Each type of meter has its own overloading
threshold as well. Our goal is to develop a system
that sends out alerts if, at any given point of time,
any of these thresholds is exceeded.

To be more specific, an alert is sent out if, at
any point of time, any of the following cases are
true:

 All meters in a building have a total
consumption greater than or equal to the
building threshold.

 All meters on a floor have a total consumption
greater than or equal to the floor threshold.

 All AC_meter meters, UPS_meter meters and
LIGHTING_meter meters in a building or floor
have a total consumption greater than or equal
to the AC_meter threshold, UPS_Meter
threshold or LIGHTING_meter thresholds for
the building or floor respectively.

3 RELATED WORK

In this section, we discuss related work on energy
monitoring and stream reasoning.

(Vijayaraghavan and Dornfeld 2010) discusses
how to monitor energy consumption patterns and
reduce it to improve the environmental performance
of manufacturing systems. This is achieved through

stream processing techniques for automatic
monitoring and energy consumption. This paper
describes a software based approach for automated
energy reasoning to support decision making,
concurrent energy monitoring, scalable architecture
for large data and modular architecture for analysis.
The software also includes components to normalize
data exchange with a rules engine and complex
event processing (CEP) to handle data reasoning and
processing.

(Vikhorev, Greenough and Brown 2013)
proposes an advanced energy management
framework to monitor and manage energy in factory.
It also does real time energy data analysis and
performance measurement of energy usage. Key
performance indicators (KPIs) are used to monitor
energy and measuring performance indicators.
Further analysis and optimization are done on the
result data. Complex event processing technique is
used to do real time analysis using a set of tools and
algorithms. It also displays the result data in a graph
for better visualization.

In related work on stream reasoners, C-
SPARQL (Barbieri et al 2009) is an early stream
reasoner that defined a language for stream
reasoning based upon SPARQL and its windowing
mechanisms. CQELS (Le-Phuoc et al 2011) is
another stream reasoner which demonstrates good
performance and is based on a native approach
without using existing data stream management
systems. The stream reasoner QUARKS has
usability features such as knowledge packets,
incremental queries and application managed
windows and also shows good performance.

This paper discusses the application of Stream
Reasoning using the QUARKS stream reasoner in
energy monitoring. Compared to (Vijayaraghavan
and Dornfeld 2010), our work is focused on
maintainability aspects i.e. application to large
number of floors, buildings and premises. We
discuss potential for improvement of performance
using rules. Also it signals an alert for any kind of
threshold violation at any level.

4 SOLUTION APPROACH

We outline the solution approach in this section. We
discuss energy monitoring systems and our solution
using stream reasoning.

4.1 Energy Monitoring Systems

Energy Monitoring Systems (EMSs) use sensors and

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

628

meters that capture energy consumption, occupancy,
temperature etc. and create analytical models in
order to optimize energy consumption across offices
and homes. Right data models combined with
advanced machine learning techniques can enable an
EMS to continuously improve its behavior, leading
to better predictive capabilities and increased
accuracy of anomaly detection on an ongoing basis.
It is also very important to get real-time visibility
and alerting for the anomalies detected. This work
implements alerting based on thresholds. It has been
tested on energy consumption (classified into
appliance categories like Lighting, HVAC etc.) and
occupancy data obtained from a large office
building.

4.2 Application Ontology

To model the problem, we present our design of an
ontology composed of building elements and meter
elements. The ontology is presented in Figure 1.

Figure 1: Ontology used in the application.

The rectangles represent “resources” and the ovals
are “literals”. The abbreviations are BT: Building
Threshold, FT: Floor Threshold, LBT: Lighting
Building Threshold, LFT: Lighting Floor Threshold,
ABT: AC Building Threshold, AFT: AC Floor
Threshold, UBT: UPS Building Threshold and UFT:
UPS Floor Threshold.

The Building elements are connected to
Premise elements using isInPremise predicate (i.e.
Buildings are located in a Premise), the Floor
elements are connected to Building using
isInBuilding predicate (i.e. Floors are located in a
Building). Building elements have a
BuildingThreshold property which represents the
energy threshold for the aggregate energy
consumption of all meters in the building, which

when crossed triggers an alert. Similarly, Floors
have a FloorThreshold property.

Meters are associated with Floors via the
isOnFloor predicate. It signifies that a meter is
located on the specified floor. Meters have meter
types which could be either: Lighting, AC or UPS.
Each meter type has a building threshold which
represents the aggregate energy consumption for all
the meters of that type in the building beyond which
alerts will fire. Similarly, meter types have a floor
threshold for aggregate energy consumption of all
meters of that meter type on floors.

It is to be noted that the ontology depicted
above is used in the static background knowledge of
the energy monitoring application.

4.3 Why Stream Reasoning?

We are dealing with continuous, real-time, dynamic
streams of reading data. Had we been working with
static data, a query based approach would have been
sufficient. However, for dynamic real-time analytics,
we must adopt the stream processing approach.

This problem requires us to build associations
between meters, floors, buildings and meter types.
This requires reasoning over static knowledge as
well as dynamic knowledge. An example of a static
fact is that a meter, meter_1 is on floor_1. The static
fact is thus represented as an RDF (Resource
Description Framework) triple:

<meter_1, isOnFloor, floor_1>

Two examples of a dynamic facts are the following:
<reading_1 hasMeter meter_1>
<reading_1 hasValue val>

The reading_1 represents a meter reading streamed
from the meter to the stream reasoner after
conversion of raw meter data to the RDF triple
format. The set of two dynamic facts are part of a
Knowledge Packet (KP) in QUARKS. (Triples in a
KP are processed atomically by the QUARKS
stream reasoner). The first dynamic fact states that
the reading originates from meter meter_1. The
second dynamic fact states that the reading has a
value of “val” (val is a literal which contains the
actual energy consumption of the meter).
Using the static fact and the two dynamic facts we
can compute the aggregate energy consumption on
the floor by a SPARQL query, as follows:

Select ?floor sum(xsd:float(?value)) where {
?meter isOnFloor ?floor.
?reading hasMeter ?meter.
?reading hasValue ?value.

Energy Monitoring IoT Application using Stream Reasoning

629

} GROUP BY ?floor

Further we might define rules that allow us to reason
over the background knowledge to derive the
building-level energy consumptions: since we know
that a meter is on a specific floor and the floor is in a
specific building, we can associate a meter with the
building using a rule and then compute the sum of
all meter readings within the building.

For example, we know from the background
knowledge that the meter_1 meter is on floor floor_1
and that it is of type AC_meter. Again, from the
background knowledge we know that floor_1 is
located in building building_1. Thus we can reason
automatically that meter_1 is located in building_1.
Similarly, we can also associate AC_meter with
building_1 since we know that meter_1 is an
AC_meter and is located in building building_1.
This reasoning becomes important when we are
calculating energy consumption at the meter type
level and are required to query all the AC_meter
meters in building_1.

The energy consumption reported by meter_1
(i.e. the reading of meter_1) is constantly changing
and is an example of continuously streamed dynamic
data. Now, we not only have to associate meter_1
with building_1 but also the reading of meter_1 with
building_1.

Thus we see that both dynamic facts and static
facts are required in the reasoning and querying,
necessitating a stream reasoner.

4.4 Design and Architecture

The energy monitoring system described in this
paper uses the stream reasoner, QUARKS, which
uses query processor and reasoner of Apache Jena.
QUARKS accepts streams of facts expressed as
triples and encapsulated in data structures called
knowledge packets (KP). These dynamic facts are
combined with static facts stored in background
knowledge in a working memory. Rules are run
using the fast Rete reasoner (Forgy 1982). Then
continuous SPARQL queries are fired to discover
situations which need alerting. These situations are
conveyed to listener objects which takes necessary
actions for generating alerts. The architecture of the
application is depicted in Figure 2.

An important component of the architecture
is the “meter data to KP converter”. The meter data
is simply an energy reading. Along with the reading,
the meter id can also be obtained. The KP converter
takes these two information and constructs a
knowledge packet consisting of two triples:

<reading_1, hasMeter, meter_1>
<reading_1, hasValue, value>

The KP converter sends the KP to the stream
reasoner.

Figure 2: Architecture of the application.

The output generated by the continuous queries are
handled by the query listener objects which “listen”
to the query and processes the results produced by it.
Processing could include printing these results or
performing mathematical computations using these
results or even comparing these results with an
instance variable (like a threshold) and only printing
them under certain conditions (like if the threshold
has been exceeded).

QUARKS supports windows. A count-based
window is used to monitor the meter reading values.
The way a count-based window works is that it
processes a specified number of events at once. In
the case of our problem, the count-based window
processes a number of meter readings together. The
syntax is: COUNT N, where N is the number of
events (KP) maintained in working memory. This
count-based window slides by taking N events,
processing them and then adding the newest event
after deleting the oldest one. This window slides by
1 and only one event is added as another is deleted,
thus, maintaining N events at all times.

This sliding count-based window allows us to
continuously process meter reading events together
which is useful because for the computation we need
to perform, we need data from all the meters at a
given time. With a sliding window, we can
continuously add the latest meter reading while
deleting the oldest one. This allows for real-time
energy monitoring.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

630

4.5 Solution Details

In order to instantaneously monitor energy, we have
designed building-level, floor-level and meter type-
level queries that are fired simultaneously,
additionally configuring floor-level, building-level
and meter type-level thresholds and meter-floor,
floor-building, and meter-type relationships in the
background knowledge.

Continuously streamed dynamic knowledge is
converted into triples that give us information
regarding the meters and their readings. These
triples could have been constructed in a number of
different ways:

 <meter, hasValue, value>: This triple creates a
direct association between a meter and its power
consumption at a given point in time. However,
for two readings of the same meter which have
the same value, the system overwrites the
reading with the most recent reading observed
in the stream. For our purpose, we need
readings of each meter separated by time.

 <reading, hasMeter, meter>, <reading,
hasValue, value>: Here, we are using two
triples to separately store a meter and its
reading. With each new event, the value of
“reading” (which is a resource in this case)
serves as an iterator which helps us identify the
chronological order of events. Reading values
are stored as “reading1”, “reading2”, …
“reading n”. This ensures that the subject is
unique for every event, therefore, preventing the
overwriting problem we faced with the previous
triple.

Now that we have both static as well as dynamic
knowledge, let us dive into the reasoning part of this
solution. In addition to the background knowledge,
we have written a number of rules that the stream
reasoner uses to reason on:

Rule 10002: Building Meter Rule
(?meter isOnFloor ?floor)
(?floor isInBuilding ?building)
→(?meter hasBuilding ?building)

In this rule, if a meter is located on a particular floor
and that floor is located in a particular building,
there is a direct association created between the
meter and the building. Both the triples are obtained
from the background knowledge.

Rule 10003: Building Reading Rule
(?meter hasBuilding ?building)
(?reading hasMeter ?meter)
→ (?reading hasReadingBuilding ?building)

In this rule, we condense the combination of two
triples into one. Here, if a meter is located in a
certain building, then the reading resource adopts its
value as the building's value. It should be noted that
the first triple is an entailment of Rule 10002
described earlier in this section. Therefore,
executing this rule will automatically execute the
Building-Meter Rule.

rule10005: Reading Meter Type Rule
(?meter hasMeterType ?type)
(?reading hasMeter ?meter)
→ (?reading hasReadingMeterType ?type)

This rule builds an association between the reading
and type of meter that is being reported. Here, if a
meter has a certain type, then the reading resource
adopts its value as the meter type's value.
Rule 10006: Floor Value Rule

(?meter isOnFloor ?floor)
(?reading hasMeter ?meter)
→ (?reading hasReadingFloor ?floor)

Here, if a meter is located on a particular floor, then
the reading resource adopts its value as the floor's
value. Thus, this rule builds an association between
the reading and the floor on which it is recorded.
Rule 10001: Remove Meter Value Rule

(?reading hasMeter ?meter)
(?reading hasValue ?value)
(?reading removeMeter ?meter)
(?reading removeValue ?value)
→ remove(0) remove(1) remove(2) remove(3)

When we wish to delete an event, we simply add the
corresponding “remove” triples to the working
memory. An example of a remove triple is:
<reading1, removeMeter, meter1>. These newly
added “remove” triples in the working memory
match the meter and value of an existing reading.
Once the appropriate triples with the specific ?me-
ter and ?value have been found, they (including the
corresponding “remove” triples) are removed from
the working memory and are no longer included in
any computations, facilitating the “slide”.

Now that we have our repertoire of rules, we
can implement them in queries at the different
levels:

Query 01: Building-level Query
SELECT ?building ?threshold
(SUM(xsd:float(?value)) as ?sumBuilding) WHERE
{

?reading hasReadingBuilding ?building.
?building hasBuildingThreshold ?threshold.
?reading hasValue ?value.

Energy Monitoring IoT Application using Stream Reasoning

631

}
GROUP BY ?building ?threshold
HAVING (SUM(xsd:float(?value)) >=
AVG(xsd:float(?threshold)))

This query returns the continuous building-level
power consumption if, and only if, the total power
consumption of the building meets the building-level
threshold at that particular time. There are multiple
<building, hasBuildingThreshold, threshold> triples
in the result that all have the same threshold value
but are continuously added due to the number of
events generated by the same building. Therefore,
we would not be able to compare the ?sumBuilding
to ?threshold as there are multiple threshold values
for the same subject and predicate leaving the
system confused as to which particular value we are
referring to, even though they are all the same! Thus,
a good way around that problem is to compare
?sumBuilding with the with the average value of
?threshold since all the values we are considering
are the same.

Similarly we could have a floor level query as
mentioned below:

Query 02: Floor level Query
SELECT ?floor ?threshold (SUM(xsd:float(?value))
as ?sumFloor) WHERE
{
 ?reading hasReadingFloor ?floor.
 ?floor hasFloorThreshold ?threshold.
 ?reading hasValue ?value.
}
GROUP BY ?floor ?threshold
HAVING (SUM(xsd:float(?value)) >=
AVG(xsd:float(?threshold)))

Query 03: Type Building-level Query
SELECT ?type ?building ?threshold
(SUM(xsd:float(?value)) as ?sumType) WHERE
{
 ?reading hasReadingMeterType ?type.
 ?reading hasReadingBuilding ?building.
 ?type hasTypeBuildingThreshold ?threshold.
 ?reading hasValue ?value.
}
GROUP BY ?type ?building ?threshold
HAVING (SUM(xsd:float(?value)) >=
AVG(xsd:float(?threshold)))

This query returns the continuous meter type-level
power consumption if, and only if, the total power
consumption of that meter type meets the building
meter type-level threshold at that particular time.

Similarly, we can have a Type Floor-level
Query (Query 04), definition of which is similar to
the Type Building-level Query.

Note that the queries above output the location
(building, floor) as well as type of meter (AC, UPS
etc). This gives the user comprehensive information
about the alert.

This design makes the energy monitoring
application modular as it gives the user the option to
set floor-level thresholds for each type of meter.

All the queries described above implement a
count-based sliding window of value 12, since there
are a total of 12 different meters in our data set
which means that, for any given time, there will be
12 distinct meter readings.

Note that these queries only display the results
when one of the thresholds has been met thus saving
us the pain of writing code for the listener to check if
the sum of energy readings is meeting a threshold
and having the queries to function as per our specific
requirement.

5 EXPERIMENTS AND RESULTS

In this section we present the experiments, results
and analyses.

5.1 Experiments Conducted

The experiments conducted were:
Experiment 1: Compare the query times for the
building level query with and without rules, and with
and without the having clause
Experiment 2: Repeat the above for the floor level
query.

The experiments were conducted on an Intel
Core I5 2.67 GHz CPU with 4 GB RAM. As already
mentioned in Section 4.1, the system has been tested
on energy consumption (classified into appliance
categories like Lighting, UPS etc.) obtained from a
large office building.

All experiments were run with 1000 events
(readings) and the results were averaged.

5.2 Results

Table 1 shows results for building level query.
Times are in milliseconds. (Insert time is the time to
insert in working memory). The following codes are
used in the table: B – building level query, F – floor
level query, R – with rules, H – with HAVING.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

632

Table 1: Building level query analysis.

Scenario Query
time

Insert
time

Listener time

BRH 3.261 0.3096 0.052
BR 2.389 0.299 0.037
BH 3.578 0.198 0.044
B 2.847 0.171 0.0437

The results for floor level query are in the table
(Table 2) below.

Table 2: Floor level query analysis.

Scenario Query
time

Insert
time

Listener time

FRH 3.198 0.345 0.122
FR 2.898 0.2685 0.2283
FH 3.253 0.207 0.091
F 3.228 0.223 0.207

6 ANALYSIS OF RESULTS

The results show us that the queries perform best
when the HAVING clause is not implemented. It
would make sense that removing the HAVING
clause would increase the performance of these
queries as it allows us to omit querying for each
threshold and then comparing the power con-
sumption to those different thresholds. Therefore,
each query executes fewer computations and runs
faster, leaving the bulk of the work for the listeners
to do.

Regarding the performance enhancing rules, the
performance enhancement is seen only in specific
queries where the corresponding query without rule
support would have a large number of patterns. In
our case, some improvement is seen in the building
level query (Query 01). The building level query is
aided by 2 rules: Building Meter Rule (Rule 10002)
and Building Reading Rule (Rule 10003), where the
former rule output is used in Rule 10003. The
Building level query has 3 patterns whereas the
same query without rules would need 5 patterns.
While the Building Meter rule works on static
background knowledge, it will always remain pre-
computed in the working memory and is therefore
efficient. However Building Reading rule has to be
computed every time a reading is received.

The system performs best without the HAVING
clause. This is because, removing the HAVING
clause means there will be less processing load on
the SPARQL processor, therefore, improving

performance. Furthermore, we no longer need to
query for the threshold of each floor/building/meter
type which, again, eases the processing load for the
SPARQL engine.

Based on the above, it may seem that removing
the HAVING clause and implementing the threshold
checking logic in the listener would be the best
approach. However, there is a big disadvantage in
making the listener compute and manage thresholds.
It entails writing a tedious amount of code. In this
approach, we are not utilizing SPARQL to its fullest
and are depending on regular code to monitor the
energy. A big disadvantage with this design is the
lack of modularity in the system. This is because,
while it is fairly simple to declare instance variables
that describe thresholds for different meter types,
floors and buildings, it is extremely tedious to do
this in cases where there are many buildings in the
premises: this means the number of floors increases
manifold. By managing threshold overloading
within the query itself, we simply access the
background knowledge to identify the various
thresholds instead of hard coding each of them
individually. Also all configuration data including
floor, building, meter type etc. and the thresholds are
maintained in the background knowledge, making it
more convenient for SPARQL continuous queries to
access them, and eliminating need for additional
code in listener.

7 CONCLUSION AND FUTURE
WORK

We conclude that despite the fact that the queries
without the HAVING clause perform the best in our
use case, it is better to develop queries that
implement the HAVING clause since that would
reduce the load on the listeners, the lines of code
having to be written and would make our energy
monitoring system far more modular and main-
tainable. Moreover, we have shown that the entire
energy monitoring system can be implemented using
only a few rules and continuous queries.

Further, as currently implemented, our energy
monitoring system uses a sliding count-based
window which accepts as many values as there are
meters. Since the data fed in is ordered by time and
meter, the window contains a reading from each of
the meters at all times. However, these readings are
not necessarily recorded at the same time. This is
because of the sliding feature. This is why, we can
also consider a tumbling window. This way, the

Energy Monitoring IoT Application using Stream Reasoning

633

window will contain all the meter readings at a
particular time, and once all the readings have come
in, it will delete all of them and add the next
specified number of readings.

REFERENCES

Barbieri, D., Braga, D., Ceri, S., Valle, E., Grossniklaus,
M. 2009: C-SPARQL: SPARQL for continuous
querying. In: Proceedings of the 18th World Wide
Web Conference, 1061–1062. ACM.

Forgy, C.L.1982. Rete: A Fast Algorithm for the Many
Pattern / Many Object Pattern Match Problem.
Artificial Intelligence 19, 17–37.

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J.,
Hauswirth, M. 2011. A native and adaptive approach
for unified processing of linked streams and linked
data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC, Part I. LNCS, vol. 7031, 370–388. Springer,
Heidelberg.

Mukherjee, D., Banerjee, S., Misra, P. 2013. Towards
Efficient Stream Reasoning. In: Demey Y.T., Panetto
H. (eds) On the Move to Meaningful Internet Systems:
OTM 2013 Workshops. OTM 2013. Lecture Notes in
Computer Science, vol 8186. Springer, Berlin,
Heidelberg.

Vijayaraghavan, A., Dornfeld, D. 2010. Automated energy
monitoring of machine tools. Cirp Annals-
manufacturing Technology 59: 21-24.

Vikhorev, K., Greenough, R., Brown, N. 2013. An
advanced energy management framework to promote
energy awareness. Journal of Cleaner Production,
43:103-112.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

634

