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Abstract: We consider the application of stream reasoning to the problem of monitoring energy consumption of a 
premises with buildings, each building having multiple floors. The floors have energy meters in several 
categories such as AC, UPS and Lighting. The objective is to compute the real-time aggregate energy 
consumption and alert whenever energy consumption thresholds are crossed, at the building, floor or meter-
type level, thus determining whether there is overloading. We also want to have a solution that can be easily 
applied to a large number of floors and buildings. We show how just a few continuous SPARQL queries and 
performance enhancing rules can implement the solution. Finally we compare the performance of queries 
with and without the HAVING clause and with and without using entailments from rules. 

1 INTRODUCTION 

Monitoring the energy consumption of a premises is 
important as it prevents overloading and power 
outages, allowing the business to run smoothly. 
Furthermore, being informed of their current power 
consumption patterns gives companies the 
opportunity to develop more energy-efficient 
approaches to power consumption which would help 
reduce electricity expenses. More and more energy-
efficient technologies are emerging and developing a 
system that can monitor and measure their 
performance is of utmost importance. 

An energy monitoring system is also one 
example where the Internet of Things (IoT) 
technology can be applied. The "things" here are the 
energy meters and the IoT message payloads are the 
energy meter readings. These readings are captured 
at a central processing facility. In this paper, we 
discuss energy monitoring of premises and build-
ings and floors within the buildings. The processing 
consists of generation of alerts when thresholds are 
crossed. 

In this paper, we consider the design of an 
energy monitoring system (EMS) for a building with 
multiple floors, each having meters that measure the 
power consumption of AC, UPS and LIGHTING on 
that floor. The meters stream dynamic data 
continuously to an IoT cloud platform housing a 
stream reasoner. The stream reasoner performs 

reasoning over the dynamic meter data and back-
ground knowledge about the relationships between 
meters and their location (floor, building). The 
stream reasoner is used to send out alerts when 
certain thresholds of power consumption are crossed 
e.g. building-level, floor-level, meter type level etc. 
One of the important requirements of EMS 
addressed in this paper is maintainability: how the 
system can be implemented such that a large number 
of buildings can be monitored with only a few 
continuous queries and rules. The QUARKS 
(QUerying And Reasoning over Knowledge 
Streams) stream reasoner (Mukherjee, Banerjee and 
Misra 2013) has been adopted to implement the 
energy monitoring system. 

The contributions of this paper are: 

 Design of an ontology for the energy 
monitoring application which combines both 
meter domain and building domain 

 A combination of only a few rules and 
continuous queries using aggregate functions to 
implement energy consumption monitoring in a 
premises 

 Design of maintainable Continuous SPARQL 
queries that yield comprehensive and accurate 
results 

 Configuration of sliding windows that perform 
real-time analytics on dynamic data 
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 Evaluation of the pros and cons of using count-
based sliding windows for energy monitoring 

 Experimental performance evaluation using 
energy monitoring use cases. 

 An analysis outlining the various advantages 
and disadvantages of the different types of 
queries used. 

The rest of the paper is organized as follows: Section 
2 presents the Problem Statement, Section 3 presents 
the Related Work, Section 4 presents the Solution 
Approach, Section 5 presents experiments and 
results, and Section 6 presents Analyses of results. 
Section 7 concludes the paper and discusses future 
work. 

2 PROBLEM STATEMENT 

We are given a premises having a number of 
buildings. Each of these buildings have an 
overloading threshold. Additionally, every floor of 
each of these buildings has its own overloading 
threshold. Each floor has 3 meters of type 
AC_meter, UPS_meter and LIGHTING_meter. 
Each type of meter has its own overloading 
threshold as well. Our goal is to develop a system 
that sends out alerts if, at any given point of time, 
any of these thresholds is exceeded. 

To be more specific, an alert is sent out if, at 
any point of time, any of the following cases are 
true: 

 All meters in a building have a total 
consumption greater than or equal to the 
building threshold. 

 All meters on a floor have a total consumption 
greater than or equal to the floor threshold. 

 All AC_meter meters, UPS_meter meters and 
LIGHTING_meter meters in a building or floor 
have a total consumption greater than or equal 
to the AC_meter threshold, UPS_Meter 
threshold or LIGHTING_meter thresholds for 
the building or floor respectively. 

3 RELATED WORK 

In this section, we discuss related work on energy 
monitoring and stream reasoning. 

(Vijayaraghavan and Dornfeld 2010) discusses 
how to monitor energy consumption patterns and 
reduce it to improve the environmental performance 
of manufacturing systems. This is achieved through 

stream processing techniques for automatic 
monitoring and energy consumption. This paper 
describes a software based approach for automated 
energy reasoning to support decision making, 
concurrent energy monitoring, scalable architecture 
for large data and modular architecture for analysis. 
The software also includes components to normalize 
data exchange with a rules engine and complex 
event processing (CEP) to handle data reasoning and 
processing. 

(Vikhorev, Greenough and Brown 2013) 
proposes an advanced energy management 
framework to monitor and manage energy in factory. 
It also does real time energy data analysis and 
performance measurement of energy usage. Key 
performance indicators (KPIs) are used to monitor 
energy and measuring performance indicators. 
Further analysis and optimization are done on the 
result data. Complex event processing technique is 
used to do real time analysis using a set of tools and 
algorithms. It also displays the result data in a graph 
for better visualization. 

In related work on stream reasoners, C-
SPARQL (Barbieri et al 2009) is an early stream 
reasoner that defined a language for stream 
reasoning based upon SPARQL and its windowing 
mechanisms. CQELS (Le-Phuoc et al 2011) is 
another stream reasoner which demonstrates good 
performance and is based on a native approach 
without using existing data stream management 
systems. The stream reasoner QUARKS has 
usability features such as knowledge packets, 
incremental queries and application managed 
windows and also shows good performance. 

This paper discusses the application of Stream 
Reasoning using the QUARKS stream reasoner in 
energy monitoring. Compared to (Vijayaraghavan 
and Dornfeld 2010), our work is focused on 
maintainability aspects i.e. application to large 
number of floors, buildings and premises. We 
discuss potential for improvement of performance 
using rules. Also it signals an alert for any kind of 
threshold violation at any level. 

4 SOLUTION APPROACH 

We outline the solution approach in this section. We 
discuss energy monitoring systems and our solution 
using stream reasoning. 

4.1 Energy Monitoring Systems 

Energy Monitoring Systems (EMSs) use sensors and  
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meters that capture energy consumption, occupancy, 
temperature etc. and create analytical models in 
order to optimize energy consumption across offices 
and homes. Right data models combined with 
advanced machine learning techniques can enable an 
EMS to continuously improve its behavior, leading 
to better predictive capabilities and increased 
accuracy of anomaly detection on an ongoing basis. 
It is also very important to get real-time visibility 
and alerting for the anomalies detected. This work 
implements alerting based on thresholds. It has been 
tested on energy consumption (classified into 
appliance categories like Lighting, HVAC etc.) and 
occupancy data obtained from a large office 
building. 

4.2 Application Ontology 

To model the problem, we present our design of an 
ontology composed of building elements and meter 
elements. The ontology is presented in Figure 1. 

 

Figure 1: Ontology used in the application. 

The rectangles represent “resources” and the ovals 
are “literals”. The abbreviations are BT: Building 
Threshold, FT: Floor Threshold, LBT: Lighting 
Building Threshold, LFT: Lighting Floor Threshold, 
ABT: AC Building Threshold, AFT: AC Floor 
Threshold, UBT: UPS Building Threshold and UFT: 
UPS Floor Threshold. 

The Building elements are connected to 
Premise elements using isInPremise predicate (i.e. 
Buildings are located in a Premise), the Floor 
elements are connected to Building using 
isInBuilding predicate (i.e. Floors are located in a 
Building). Building elements have a 
BuildingThreshold property which represents the 
energy threshold for the aggregate energy 
consumption of all meters in the building, which 

when crossed triggers an alert. Similarly, Floors 
have a FloorThreshold property. 

Meters are associated with Floors via the 
isOnFloor predicate. It signifies that a meter is 
located on the specified floor. Meters have meter 
types which could be either: Lighting, AC or UPS. 
Each meter type has a building threshold which 
represents the aggregate energy consumption for all 
the meters of that type in the building beyond which 
alerts will fire. Similarly, meter types have a floor 
threshold for aggregate energy consumption of all 
meters of that meter type on floors.   

It is to be noted that the ontology depicted 
above is used in the static background knowledge of 
the energy monitoring application. 

4.3 Why Stream Reasoning? 

We are dealing with continuous, real-time, dynamic 
streams of reading data. Had we been working with 
static data, a query based approach would have been 
sufficient. However, for dynamic real-time analytics, 
we must adopt the stream processing approach. 

This problem requires us to build associations 
between meters, floors, buildings and meter types. 
This requires reasoning over static knowledge as 
well as dynamic knowledge. An example of a static 
fact is that a meter, meter_1 is on floor_1. The static 
fact is thus represented as an RDF (Resource 
Description Framework) triple:  

<meter_1, isOnFloor, floor_1>  

Two examples of a dynamic facts are the following: 
<reading_1 hasMeter meter_1> 
<reading_1 hasValue val> 

The reading_1 represents a meter reading streamed 
from the meter to the stream reasoner after 
conversion of raw meter data to the RDF triple 
format. The set of two dynamic facts are part of a 
Knowledge Packet (KP) in QUARKS. (Triples in a 
KP are processed atomically by the QUARKS 
stream reasoner). The first dynamic fact states that 
the reading originates from meter meter_1. The 
second dynamic fact states that the reading has a 
value of “val” (val is a literal which contains the 
actual energy consumption of the meter). 
Using the static fact and the two dynamic facts we 
can compute the aggregate energy consumption on 
the floor by a SPARQL query, as follows: 

Select ?floor sum(xsd:float(?value)) where { 
?meter isOnFloor ?floor. 
?reading hasMeter ?meter. 
?reading hasValue ?value. 
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} GROUP BY ?floor 

Further we might define rules that allow us to reason 
over the background knowledge to derive the 
building-level energy consumptions: since we know 
that a meter is on a specific floor and the floor is in a 
specific building, we can associate a meter with the 
building using a rule and then compute the sum of 
all meter readings within the building. 

For example, we know from the background 
knowledge that the meter_1 meter is on floor floor_1 
and that it is of type AC_meter. Again, from the 
background knowledge we know that floor_1 is 
located in building building_1. Thus we can reason 
automatically that meter_1 is located in building_1. 
Similarly, we can also associate AC_meter with 
building_1 since we know that meter_1 is an 
AC_meter and is located in building building_1. 
This reasoning becomes important when we are 
calculating energy consumption at the meter type 
level and are required to query all the AC_meter 
meters in building_1. 

The energy consumption reported by meter_1 
(i.e. the reading of meter_1) is constantly changing 
and is an example of continuously streamed dynamic 
data. Now, we not only have to associate meter_1 
with building_1 but also the reading of meter_1 with 
building_1. 

Thus we see that both dynamic facts and static 
facts are required in the reasoning and querying, 
necessitating a stream reasoner. 

4.4 Design and Architecture 

The energy monitoring system described in this 
paper uses the stream reasoner, QUARKS, which 
uses query processor and reasoner of Apache Jena. 
QUARKS accepts streams of facts expressed as 
triples and encapsulated in data structures called 
knowledge packets (KP). These dynamic facts are 
combined with static facts stored in background 
knowledge in a working memory. Rules are run 
using the fast Rete reasoner (Forgy 1982). Then 
continuous SPARQL queries are fired to discover 
situations which need alerting. These situations are 
conveyed to listener objects which takes necessary 
actions for generating alerts. The architecture of the 
application is depicted in Figure 2. 

An important component of the architecture 
is the “meter data to KP converter”. The meter data 
is simply an energy reading. Along with the reading, 
the meter id can also be obtained. The KP converter 
takes these two information and constructs a 
knowledge packet consisting of two triples: 

<reading_1, hasMeter, meter_1> 
<reading_1, hasValue, value> 

The KP converter sends the KP to the stream 
reasoner. 

 

Figure 2: Architecture of the application. 

The output generated by the continuous queries are 
handled by the query listener objects which “listen” 
to the query and processes the results produced by it. 
Processing could include printing these results or 
performing mathematical computations using these 
results or even comparing these results with an 
instance variable (like a threshold) and only printing 
them under certain conditions (like if the threshold 
has been exceeded). 

QUARKS supports windows. A count-based 
window is used to monitor the meter reading values. 
The way a count-based window works is that it 
processes a specified number of events at once. In 
the case of our problem, the count-based window 
processes a number of meter readings together. The 
syntax is: COUNT N, where N is the number of 
events (KP) maintained in working memory. This 
count-based window slides by taking N events, 
processing them and then adding the newest event 
after deleting the oldest one. This window slides by 
1 and only one event is added as another is deleted, 
thus, maintaining N events at all times. 

This sliding count-based window allows us to 
continuously process meter reading events together 
which is useful because for the computation we need 
to perform, we need data from all the meters at a 
given time. With a sliding window, we can 
continuously add the latest meter reading while 
deleting the oldest one. This allows for real-time 
energy monitoring. 
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4.5 Solution Details 

In order to instantaneously monitor energy, we have 
designed building-level, floor-level and meter type-
level queries that are fired simultaneously, 
additionally configuring floor-level, building-level 
and meter type-level thresholds and meter-floor, 
floor-building, and meter-type relationships in the 
background knowledge. 

Continuously streamed dynamic knowledge is 
converted into triples that give us information 
regarding the meters and their readings. These 
triples could have been constructed in a number of 
different ways: 

 <meter, hasValue, value>: This triple creates a 
direct association between a meter and its power 
consumption at a given point in time. However, 
for two readings of the same meter which have 
the same value, the system overwrites the 
reading with the most recent reading observed 
in the stream. For our purpose, we need 
readings of each meter separated by time. 

 <reading, hasMeter, meter>, <reading, 
hasValue, value>: Here, we are using two 
triples to separately store a meter and its 
reading. With each new event, the value of 
“reading” (which is a resource in this case) 
serves as an iterator which helps us identify the 
chronological order of events. Reading values 
are stored as “reading1”, “reading2”, … 
“reading n”. This ensures that the subject is 
unique for every event, therefore, preventing the 
overwriting problem we faced with the previous 
triple. 

Now that we have both static as well as dynamic 
knowledge, let us dive into the reasoning part of this 
solution. In addition to the background knowledge, 
we have written a number of rules that the stream 
reasoner uses to reason on: 

Rule 10002: Building Meter Rule 
(?meter isOnFloor ?floor) 
(?floor isInBuilding ?building) 
→(?meter hasBuilding ?building) 

In this rule, if a meter is located on a particular floor 
and that floor is located in a particular building, 
there is a direct association created between the 
meter and the building. Both the triples are obtained 
from the background knowledge. 

Rule 10003: Building Reading Rule 
(?meter hasBuilding ?building) 
(?reading hasMeter ?meter) 
→ (?reading hasReadingBuilding ?building) 

In this rule, we condense the combination of two 
triples into one. Here, if a meter is located in a 
certain building, then the reading resource adopts its 
value as the building's value. It should be noted that 
the first triple is an entailment of Rule 10002 
described earlier in this section. Therefore, 
executing this rule will automatically execute the 
Building-Meter Rule. 

rule10005: Reading Meter Type Rule 
(?meter hasMeterType ?type) 
(?reading hasMeter ?meter) 
→ (?reading hasReadingMeterType ?type) 

This rule builds an association between the reading 
and type of meter that is being reported. Here, if a 
meter has a certain type, then the reading resource 
adopts its value as the meter type's value. 
Rule 10006: Floor Value Rule 

(?meter isOnFloor ?floor) 
(?reading hasMeter ?meter) 
→ (?reading hasReadingFloor ?floor) 

Here, if a meter is located on a particular floor, then 
the reading resource adopts its value as the floor's 
value. Thus, this rule builds an association between 
the reading and the floor on which it is recorded. 
Rule 10001: Remove Meter Value Rule 

(?reading hasMeter ?meter) 
(?reading hasValue ?value)  
(?reading removeMeter ?meter) 
(?reading removeValue ?value) 
→ remove(0) remove(1) remove(2) remove(3) 

When we wish to delete an event, we simply add the 
corresponding “remove” triples to the working 
memory. An example of a remove triple is: 
<reading1, removeMeter, meter1>. These newly 
added “remove” triples in the working memory 
match the meter and value of an existing reading. 
Once the appropriate triples with the specific ?me-
ter and ?value have been found, they (including the 
corresponding “remove” triples) are removed from 
the working memory and are no longer included in 
any computations, facilitating the “slide”. 

Now that we have our repertoire of rules, we 
can implement them in queries at the different 
levels: 

Query 01: Building-level Query 
SELECT ?building ?threshold 
(SUM(xsd:float(?value)) as ?sumBuilding) WHERE 
{  

?reading hasReadingBuilding ?building. 
?building hasBuildingThreshold ?threshold. 
?reading hasValue ?value. 
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} 
GROUP BY ?building ?threshold 
HAVING (SUM(xsd:float(?value)) >= 
AVG(xsd:float(?threshold))) 

This query returns the continuous building-level 
power consumption if, and only if, the total power 
consumption of the building meets the building-level 
threshold at that particular time. There are multiple 
<building, hasBuildingThreshold, threshold> triples 
in the result that all have the same threshold value 
but are continuously added due to the number of 
events generated by the same building. Therefore, 
we would not be able to compare the ?sumBuilding 
to ?threshold as there are multiple threshold values 
for the same subject and predicate leaving the 
system confused as to which particular value we are 
referring to, even though they are all the same! Thus, 
a good way around that problem is to compare 
?sumBuilding with the with the average value of 
?threshold since all the values we are considering 
are the same. 

Similarly we could have a floor level query as 
mentioned below: 

Query 02: Floor level Query 
SELECT ?floor ?threshold (SUM(xsd:float(?value)) 
as ?sumFloor) WHERE  
{ 
 ?reading hasReadingFloor ?floor. 
 ?floor hasFloorThreshold ?threshold. 
 ?reading hasValue ?value. 
} 
GROUP BY ?floor ?threshold 
HAVING (SUM(xsd:float(?value)) >= 
AVG(xsd:float(?threshold))) 
  
Query 03: Type Building-level Query 
SELECT ?type ?building ?threshold 
(SUM(xsd:float(?value)) as ?sumType) WHERE  
{ 
 ?reading hasReadingMeterType ?type. 
 ?reading hasReadingBuilding ?building. 
 ?type hasTypeBuildingThreshold ?threshold. 
 ?reading hasValue ?value. 
} 
GROUP BY ?type ?building ?threshold 
HAVING (SUM(xsd:float(?value)) >= 
AVG(xsd:float(?threshold))) 

This query returns the continuous meter type-level 
power consumption if, and only if, the total power 
consumption of that meter type meets the building 
meter type-level threshold at that particular time. 

Similarly, we can have a Type Floor-level 
Query (Query 04), definition of which is similar to 
the Type Building-level Query.  

Note that the queries above output the location 
(building, floor) as well as type of meter (AC, UPS 
etc). This gives the user comprehensive information 
about the alert. 

This design makes the energy monitoring 
application modular as it gives the user the option to 
set floor-level thresholds for each type of meter. 

All the queries described above implement a 
count-based sliding window of value 12, since there 
are a total of 12 different meters in our data set 
which means that, for any given time, there will be 
12 distinct meter readings. 

Note that these queries only display the results 
when one of the thresholds has been met thus saving 
us the pain of writing code for the listener to check if 
the sum of energy readings is meeting a threshold 
and having the queries to function as per our specific 
requirement. 

5 EXPERIMENTS AND RESULTS 

In this section we present the experiments, results 
and analyses. 

5.1 Experiments Conducted 

The experiments conducted were: 
Experiment 1: Compare the query times for the 
building level query with and without rules, and with 
and without the having clause 
Experiment 2: Repeat the above for the floor level 
query. 

The experiments were conducted on an Intel 
Core I5 2.67 GHz CPU with 4 GB RAM. As already 
mentioned in Section 4.1, the system has been tested 
on energy consumption (classified into appliance 
categories like Lighting, UPS etc.) obtained from a 
large office building. 

All experiments were run with 1000 events 
(readings) and the results were averaged. 

5.2 Results 

Table 1 shows results for building level query. 
Times are in milliseconds. (Insert time is the time to 
insert in working memory). The following codes are 
used in the table: B – building level query, F – floor 
level query, R – with rules, H – with HAVING. 
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Table 1: Building level query analysis. 

Scenario Query 
time 

Insert 
time 

Listener time 

BRH 3.261 0.3096 0.052 
BR 2.389 0.299 0.037 
BH 3.578 0.198 0.044 
B 2.847 0.171 0.0437 

The results for floor level query are in the table 
(Table 2) below. 

Table 2: Floor level query analysis. 

Scenario Query 
time 

Insert 
time 

Listener time 

FRH 3.198 0.345 0.122 
FR 2.898 0.2685 0.2283 
FH 3.253 0.207 0.091 
F 3.228 0.223 0.207 

6 ANALYSIS OF RESULTS 

The results show us that the queries perform best 
when the HAVING clause is not implemented. It 
would make sense that removing the HAVING 
clause would increase the performance of these 
queries as it allows us to omit querying for each 
threshold and then comparing the power con-
sumption to those different thresholds. Therefore, 
each query executes fewer computations and runs 
faster, leaving the bulk of the work for the listeners 
to do. 

Regarding the performance enhancing rules, the 
performance enhancement is seen only in specific 
queries where the corresponding query without rule 
support would have a large number of patterns. In 
our case, some improvement is seen in the building 
level query (Query 01). The building level query is 
aided by 2 rules: Building Meter Rule (Rule 10002) 
and Building Reading Rule (Rule 10003), where the 
former rule output is used in Rule 10003. The 
Building level query has 3 patterns whereas the 
same query without rules would need 5 patterns. 
While the Building Meter rule works on static 
background knowledge, it will always remain pre-
computed in the working memory and is therefore 
efficient. However Building Reading rule has to be 
computed every time a reading is received. 

The system performs best without the HAVING 
clause. This is because, removing the HAVING 
clause means there will be less processing load on 
the SPARQL processor, therefore, improving 

performance. Furthermore, we no longer need to 
query for the threshold of each floor/building/meter 
type which, again, eases the processing load for the 
SPARQL engine. 

Based on the above, it may seem that removing 
the HAVING clause and implementing the threshold 
checking logic in the listener would be the best 
approach. However, there is a big disadvantage in 
making the listener compute and manage thresholds. 
It entails writing a tedious amount of code. In this 
approach, we are not utilizing SPARQL to its fullest 
and are depending on regular code to monitor the 
energy. A big disadvantage with this design is the 
lack of modularity in the system. This is because, 
while it is fairly simple to declare instance variables 
that describe thresholds for different meter types, 
floors and buildings, it is extremely tedious to do 
this in cases where there are many buildings in the 
premises: this means the number of floors increases 
manifold. By managing threshold overloading 
within the query itself, we simply access the 
background knowledge to identify the various 
thresholds instead of hard coding each of them 
individually. Also all configuration data including 
floor, building, meter type etc. and the thresholds are 
maintained in the background knowledge, making it 
more convenient for SPARQL continuous queries to 
access them, and eliminating need for additional 
code in listener. 

7 CONCLUSION AND FUTURE 
WORK 

We conclude that despite the fact that the queries 
without the HAVING clause perform the best in our 
use case, it is better to develop queries that 
implement the HAVING clause since that would 
reduce the load on the listeners, the lines of code 
having to be written and would make our energy 
monitoring system far more modular and main-
tainable. Moreover, we have shown that the entire 
energy monitoring system can be implemented using 
only a few rules and continuous queries. 

Further, as currently implemented, our energy 
monitoring system uses a sliding count-based 
window which accepts as many values as there are 
meters. Since the data fed in is ordered by time and 
meter, the window contains a reading from each of 
the meters at all times. However, these readings are 
not necessarily recorded at the same time. This is 
because of the sliding feature. This is why, we can 
also consider a tumbling window. This way, the 
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window will contain all the meter readings at a 
particular time, and once all the readings have come 
in, it will delete all of them and add the next 
specified number of readings. 
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