
Exploiting BPMN Features to Design a Fault-aware TOSCA
Orchestrator

Domenico Calcaterra, Vincenzo Cartelli, Giuseppe Di Modica and Orazio Tomarchio
Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy

Keywords: Cloud Provisioning, Cloud Orchestration, Fault Tolerance, TOSCA, BPMN.

Abstract: Cloud computing is nowadays a consolidated paradigm that enables scalable access to computing resources
and complex services. One of the greatest challenges Cloud providers have to deal with is to efficiently
automate the service “provisioning” activities through Cloud orchestration techniques. By relying on TOSCA,
a well-known standard specification for the interoperable description of Cloud services, we developed a fault-
aware orchestrator capable of automating the workflow for service provisioning. The BPMN notation was used
to define both the workflow and the data associated with workflow elements. To corroborate the proposal, a
software prototype was developed and tested with a sample use case which is discussed in the paper.

1 INTRODUCTION

Nowadays, Cloud computing is gaining an increasing
popularity over traditional systems in terms of flexi-
bility, which brings both great opportunities and chal-
lenges. One of the critical challenges is resiliency,
defined as the capacity of a system to remain reliable,
fault tolerant, survivable, dependable, and secure in
case of any malicious or accidental malfunctions or
failures that result in a temporary or permanent ser-
vice disruption (Colman-Meixner et al., 2016). Then,
resiliency strongly relates to fault tolerance, meaning
that a system can provide its services even in the pres-
ence of faults. As for service provisioning, a num-
ber of special activities need to be put into place with
proper timing in order to build up a Cloud service.
If any of them fails, in the absence of fault-tolerance
mechanisms, the system might not be able to provide
the required service.

In this work we analyse faults that occurr at provi-
sioning time. Considerations stemmed from the anal-
ysis drove the design of a fault-aware orchestrator
capable of pipelining the service provisioning activi-
ties according to fault-tolerant schemes. The provi-
sioning activities scheduled by the orchestrator can
detect faults when they occur, and automatically put
in force counteractions to recover from faults, thus
minimizing the recourse to human intervention. In
order to operate on top of different Cloud platforms,
we leveraged the Cloud application model description
of the TOSCA specification (OASIS, 2013).

The remainder of the paper is organized in the
following way. In Section 2 we report some litera-
ture works addressing fault management in the Cloud
context. Section 3 provides a bird’s eye view of the
OASIS TOSCA standard. In Section 4 we delve into
faults in Cloud service provisioning, while in Section
5 the design of the proposed fault-aware TOSCA or-
chestrator is presented. We provide a sample use case
in Section 6 and conclude the work in Section 7.

2 RELATED WORK

When it comes to fault tolerance, there is a distinc-
tion made among fault, error and failure (Agarwal and
Sharma, 2015). A fault is defined as the inability of
a system to do its required task caused by an anoma-
lous state or bug in one or more than one parts of a
system. An error is a part of a system’s state that may
lead to a failure, which refers to misconduct of a sys-
tem that can be observed by a user. Faults can be
of various types including: network faults, physical
faults, media faults, processor faults, process faults
and service expiry faults (Sivagami and EaswaraKu-
mar, 2015). Faults may also be generally classified as
transient, intermittent and permanent ones. Various
fault tolerance techniques can be used at either task
level or workflow level to resolve the faults, which are
classified into two types: proactive and reactive (Patra
et al., 2013) (Amin et al., 2015) (Poola et al., 2017).

Calcaterra, D., Cartelli, V., Di Modica, G. and Tomarchio, O.
Exploiting BPMN Features to Design a Fault-aware TOSCA Orchestrator.
DOI: 10.5220/0006775605330540
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 533-540
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

533



By leveraging on the policies of proactive and reactive
methods, several architecture models have also been
proposed to provide fault tolerance (Cheraghlou et al.,
2016).

Different challenges in the context of Cloud com-
puting can be encountered both during and after the
deployment of applications. Specifically, manual de-
ployment of large-scale distributed systems is time-
consuming and error-prone (Hamilton, 2007) (Leite
et al., 2014). That’s the reason why the deployment
process must be automated and resilient. Speaking
of automation, BPEL and BPMN are the most ap-
plied standards for service composition and orchestra-
tion (Vargas-Santiago et al., 2017). Three basic fault
handling concepts are provided by the BPEL engine:
compensation handlers, fault handlers, and event han-
dlers. Nevertheless, BPEL only manages predefined
faults specified by application designers. Similarly,
the BPMN engine provides error events, cancel events
and compensation events.

The scientific community has also taken an in-
terest in research proposals for fault-tolerant frame-
works. In (Varela-Vaca et al., 2010), a framework
for developing business processes with fault tolerance
capabilities was provided. The framework presents
different mechanisms in the fault tolerance scope,
contemplating both replication solutions and soft-
ware fault-tolerant techniques. In (Jayasinghe et al.,
2013), the authors presented a fault-tolerant runtime
(AESON) to recover applications from failures that
could possibly happen during and after deployment.
Three types of failures are supported: node crashes,
node hangs and application component failures. Even
though deployment failures were addressed, this work
suffers from two major drawbacks: a) AESON was
designed as a P2P system, and b) application mod-
els are not TOSCA-compliant. In (Giannakopoulos
et al., 2017), a deployment methodology with error
recovery features was proposed. It bases its function-
ality on identifying the script dependencies and re-
executing the appropriate configuration scripts. Nev-
ertheless, this approach can only resolve transient fail-
ures occurring during the deployment phase.

3 THE TOSCA SPECIFICATION

TOSCA is the acronym for Topology and Orchestra-
tion Specification for Cloud Applications. It is a stan-
dard designed by OASIS to enable the portability of
Cloud applications and the related IT services (OA-
SIS, 2013). This specification permits to describe
the structure of a Cloud application as a service tem-
plate, that is composed of a topology template and

the types needed to build such a template. The topol-
ogy template is a typed directed graph, whose nodes
(called node templates) model the application com-
ponents, and edges (called relationship templates)
model the relations occurring among such compo-
nents. Each node of a topology can also be asso-
ciated with the corresponding component’s require-
ments, the operations to manage it, the capabilities it
features, and the policies applied to it.

TOSCA supports the deployment and manage-
ment of applications in two different flavours: im-
perative processing and declarative processing. The
imperative processing requires that all needed man-
agement logic is contained in the Cloud Service
Archive (CSAR). Management plans are typically im-
plemented using workflow languages, such as BPMN
or BPEL. The declarative processing shifts manage-
ment logic from plans to runtime. TOSCA run-
time engines automatically infer the corresponding
logic by interpreting the application topology tem-
plate. The set of provided management functionali-
ties depends on the corresponding runtime and is not
standardized by the TOSCA specification.

The TOSCA Simple Profile is an isomorphic ren-
dering of a subset of the TOSCA specification (OA-
SIS, 2013) in the YAML language (OASIS, 2017).
The TOSCA Simple Profile defines a few normative
workflows that are used to operate a topology, and
specifies how they are declaratively generated: de-
ploy, undeploy, scaling-workflows and auto-healing
workflows. Imperative workflows can still be used for
complex use-cases that cannot be solved in declara-
tive workflows. However, they provide less reusabil-
ity as they are defined for a specific topology rather
than being dynamically generated based on the topol-
ogy content. Moreover, by default, any activity failure
of the workflow will result in the failure of the whole
workflow. Although some constructs (e.g., on failure)
allow to execute rollback operations, neither policies
nor mechanisms are defined to automatically recover
from failures happening during the deployment of the
topology.

The work described in this paper heavily grounds
on the TOSCA standard and, specifically, on the
TOSCA Simple Profile.

4 ANALYSIS OF FAULTS IN
SERVICE PROVISIONING

IaaS providers usually allow to create and manage
Cloud resources using web-based dashboards, CLI
clients, REST APIs, and language-specific SDKs. Al-
though all the aforementioned approaches provide ac-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

534



cess to different Cloud services, REST APIs do it
without any restrictions whatsoever. Besides, since
REST architectural style uses well-known W3C stan-
dards, it comes with several advantages in terms of
flexibility, portability, simplicity and scalability. As a
result, REST-APIs can be considered as the preferen-
tial way to access Cloud infrastructure services.

Notwithstanding that most of IaaS providers offer
a set of REST APIs, infrastructure differences often
reflect badly upon the semantics of interaction with
heterogeneous services. There is, therefore, a need for
models capable of masking these differences in order
to achieve a unified interaction paradigm. In particu-
lar, a process of homogenization should be carried out
for REST-API error codes and Resource status codes.

Without loss of generality, OpenStack APIs and
Amazon EC2 APIs have been taken into account
for mapping heterogeneous, platform-dependent er-
ror and status codes onto homogeneous, platform-
independent error and status codes. Specifically, map-
ping templates have been produced for the provision
of the following Cloud resources: VM, Storage, Net-
work and Subnet.

Table 1: Error and status codes mapping for VMs.
VM

Error Code Error Mapping
IdempotentParameterMismatch

400 Bad Request

InsufficientFreeAddressesInSubnet
InvalidAMIID.Malformed
InvalidAMIID.Unavailable

InvalidBlockDeviceMapping
InstanceLimitExceeded

InvalidInterface.IpAddressLimitExceeded
InvalidParameter

InvalidParameterCombination
InvalidParameterValue

MissingParameter
SecurityGroupLimitExceeded

Unsupported
UnsupportedOperation

VolumeTypeNotAvailableInZone
AuthFailure 401 Unauthorized

InvalidAMIID.NotFound

404 Not Found

InvalidGroup.NotFound
InvalidKeyPair.NotFound

InvalidNetworkInterfaceID.NotFound
InvalidSnapshot.NotFound

EC2

InvalidSubnetID.NotFound
badRequest 400 Bad Request

unauthorized 401 Unauthorized
forbidden 403 Forbidden

itemNotFound 404 Not Found
OpenStack

conflict 409 Conflict
Status Code Status Mapping

pending wip
running okEC2

terminated error
BUILD wip

ACTIVE okOpenStack
ERROR error

With regard to VM provisioning, let us consider
Table 1, which represents mappings for error codes
and status codes as well. The second column con-
tains error codes (and status codes, in that order),
that are grouped by both the APIs they refer to (as

specified in the first column) and the HTTP error
codes (and the generic status codes, in that order) they
can be mapped onto (as specified in the third col-
umn). For instance, according to Table 1, the “In-
validAMIID.Malformed” entry identifies an Amazon
EC2 APIs error code, which can be mapped onto
the HTTP “400 Bad Request” error code; the “item-
NotFound” entry identifies an OpenStack APIs error
code, which can be mapped onto the HTTP “404 Not
Found” error code. Similarly, the “pending” entry
identifies an Amazon EC2 APIs status code, which
can be mapped onto the “wip” (i.e., work in progress)
status code; the “ACTIVE” entry identifies an Open-
Stack APIs status code, which can be mapped onto
the “ok” status code.

Table 2: Error and status codes mapping for Storage.
Storage

Error Code Error Mapping
MaxIOPSLimitExceeded

400 Bad Request
UnknownVolumeType
VolumeLimitExceeded

IncorrectState
MissingParameter

AuthFailure 401 Unauthorized
InvalidSnapshot.NotFound 404 Not Found

EC2

InvalidZone.NotFound
Status Code Status Mapping

creating wip
available okEC2

error error

Table 3: Error and status codes mapping for Networks.

Network
Error Code Error Mapping

InvalidVpcRange 400 Bad RequestVpcLimitExceededEC2
AuthFailure 401 Unauthorized
Status Code Status Mapping

pending wipEC2 available ok

Table 4: Error and status codes mapping for Subnets.

Subnet
Error Code Error Mapping

SubnetLimitExceeded 400 Bad Request
AuthFailure 401 Unauthorized

InvalidVpcID.NotFound 404 Not FoundEC2

InvalidSubnet.Conflict 409 Conflict
Status Code Status Mapping

pending wipEC2 available ok

In a similar way, Table 2 displays mappings for
Storage provisioning, whereas Table 3 exhibits map-
pings for Network provisioning, and Table 4 illus-
trates mappings for Subnet provisioning instead. For
the sake of brevity, it should be noted that only Table
1 shows error codes and status codes for both Open-
Stack APIs and Amazon EC2 APIs.

Exploiting BPMN Features to Design a Fault-aware TOSCA Orchestrator

535



5 DESIGN OF A FAULT-AWARE
TOSCA ORCHESTRATOR

The objective of this work is to design a TOSCA
Orchestrator which enriches the deployment process
with ad-hoc activities to deal with faults, whenever
they occur. The fault model described in Section 4
was used to design a fault-aware deploying process.
The Orchestrator is part of a bigger framework that
was designed for the provisioning of applications in
the Cloud. Section 5.1 provides a description of such
a framework and its components. In Section 5.2 the
fault-tolerant BPMN schemes enforced by the Or-
chestrator to deploy Cloud applications are discussed.

5.1 System Architecture

In (Calcaterra et al., 2017) a software framework that
automates the provision of Cloud services was dis-
cussed. In this section we briefly report the descrip-
tion of the architecture of the provisioning frame-
work. Starting from the Cloud application model de-
scription, the proposed framework is capable of devis-
ing and orchestrating the workflow of the provision-
ing operations to execute. We have designed and im-
plemented a TOSCA Orchestrator which transforms
the YAML model into an equivalent BPMN model,
which is fed to a BPMN engine that will instantiate
and coordinate the relative process. The process will
put in force all the provisioning activities needed to
build up the application stack. The overall provision-
ing scenario is best depicted in Figure 1.

Cloud Orchestrator
BPMN Engine

Create VM
Service #1

Create VM
Service #2

Deploy DB
Service #1

Deploy App Container
Service #1

BPMN

Service BUS

YAML-TO-BPMN

YAML

Figure 1: Cloud Orchestrator scenario.

Providers can design their services according
to specific templates and offer them to Customers
through an Enterprise Service Bus (ESB). There are
mainly two categories of Provisioning Services that
need to be integrated in the ESB: Cloud Services and
Packet-based Services. In order to integrate all the
mentioned services in the ESB, we deploy a layer

of Service Connectors which are responsible for con-
necting requests coming from the Provisioning Tasks
with the Provisioning Services.

Figure 2 shows the ESB-based architecture. The
Connectors layer provides a unified interface model
for the invocation of the services, which allows to
achieve service location transparency and loose cou-
pling between Provisioning BPMN plans (orches-
trated by the Process Engine) and Provisioning Ser-
vices. The Service Registry is responsible for the reg-
istration and discovery of Connectors. The Service
Broker is in charge of taking care of the requests com-
ing from the Provisioning Tasks.

Cloud Services Connectors implement interac-
tions with Cloud Providers for the allocation of Cloud
resources. For each service type a specific Connector
needs to be implemented. For instance, Instantiate
VM represents the generic Connector interface to the
instantiation of Cloud resources of “Virtual Machine”
type. All concrete Connectors to real VM services
(Amazon, OpenStack, Azure, etc.) must implement
the Instantiate VM interface. Likewise, Add Stor-
age is the generic Connector interface to storage ser-
vices that concrete Connectors to real storage services
in the Cloud must implement.

Packet-based Services Connectors are meant to
implement interactions with all service providers
that provide packet-based applications. When the
YAML-to-BPMN conversion takes place, three types
of BPMN service tasks might be generated: “Cre-
ate”, “Configure” and “Start”. To each of these tasks
corresponds a generic connector interface (Create,
Configure and Start). Those interfaces are then ex-
tended in order to manage many types of applications
(DBMS, Web Servers, etc.). The latters are the ones
that concrete Connectors must implement in order to
interact with real packet-based application providers.

5.2 Fault-tolerant BPMN Schemes

The YAML-TO-BPMN component (see Figure 1) is
responsible for the conversion of the TOSCA YAML
template into the BPMN schemes that the BPM en-
gine will have to execute. Those schemes define a
workflow of fault-tolerant provision activities, that
can detect faults and react accordingly. All recover-
able faults are autonomously managed by the process
tasks thus minimizing the recourse to human interven-
tion (which we will refer to as escalation).

From the analysis of the most common deploy-
ment faults in Section 4, it appears that some faults
may occur on the Cloud Provider side, others are due
to bad service requests issued by the Customers. As
for the faults at the Provider side, some might turn to

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

536



Packet-based Services Connectors

Create
apache 2

Cloud Services Connectors

Enterprise Service Bus

Service
Registry

Process 
Engine

Service 
Broker

Instantiate
VM

Instantiate
VM

Instantiate 
VM

A O …

Create

Create Create Create

DB WS …

Configure

Config Config Config

DB WS …

Start

Start Start Start

DB WS …

Instantiate VM Add Storage

Add 
Storage

Add 
Storage

Add 
Storage

A O …

…

Create
mysql

Create
…

Config
apache 2

Config
mysql

Config
…

Start
apache 2

Start
mysql

Start
…

Figure 2: Enterprise Service Bus and Service Connectors.

be transient, some others are permanent and require
the intervention of an operator. When Customers is-
sue bad requests, instead, there is no way but to call
for human intervention. Also, most of Cloud service
APIs are by their nature asynchronous. The timing of
Cloud service activation is an aspect that needs to be
taken into account when pipelining the provision ac-
tivities. A faulty access to a service instance might be
mistaken for a faulty service, when instead the prob-
lem could just be that the service is being activated
and, therefore, is not yet ready for use.

begin

error
escalation

node

Instantiate Node

deploy
<package>

any error

create
<cloud resource>

any error

node

[cloud resource]

node

[package]

cloud resource
error

package
error

complete

any error
escalation

cloud resource

package

Figure 3: BPMN scheme of the service provision workflow.

The BPMN provisioning schemes we devised take
care of all the discussed requirements for the Cloud
services fault management. In the case of Packet-
based Services, at the moment only schemes for the
detection of faults and the subsequent escalation have
been defined. The definition of more elaborated
schemes to deal with faulty packet-based services will
be object of future work. In Figure 3 the overall ser-
vice provision workflow is depicted. The diagram
is composed of a parallel multi-instance sub-process,
i.e., a set of sub-processes (called “Instantiate Node”)
each processing a TOSCA node in a parallel fashion.

Since a TOSCA node can be either a Cloud resource
or a software package, a sub-process will proceed to
either a “create cloud resource” or a “deploy package”
sub-process. Here, whenever an error is detected, an
escalation is thrown by the relative “escalation end
event” (“cloud resource error” or “package error”) in
the parent sub-process (“Instantiate Node”). The se-
lective escalation ends the faulty “Instantiate Node”
sub-process and keeps all other sub-processes alive
and running, while the faulty one is being recovered.

In Figure 4 the workflow of the “create cloud re-
source” sub-process is depicted. The top pool called
“Node Instance” represents the pool of all instances
of either the “create cloud resource” sub-process or
the “deploy package” sub-process, which are running
in parallel to the “create cloud resource” sub-process
being analysed. The bottom pool called “Cloud Ser-
vice Connectors” represents the pool of the software
connectors deployed in the ESB, which interface to
the Cloud Service APIs. In the middle pool the se-
quence of tasks carried out to create and instantiate
a Cloud resource are depicted. Interactions of the
middle pool with the “Node Instance” pool represent
points of synchronization between the multiple instal-
lation instances, that may be involved in a provision
process. The creation of a Cloud resource starts with a
task that awaits notifications coming from the preced-
ing sub-processes. A service task will then trigger the
actual instantiation by invoking the appropriate Con-
nector on the ESB. Here, if a fault occurs, it is imme-
diately caught and the whole sub-process is cancelled.
Following the path up to the parent process (see Fig-
ure 3), the escalation is engaged. If the creation step is

Exploiting BPMN Features to Design a Fault-aware TOSCA Orchestrator

537



Cloud Service Connectors

c
re

a
te

 <
c
lo

u
d

 r
e
s
o
u

rc
e
>

create <cloud resource>

decrement
retry counter

retry?

<cloud resource>
create error

create
<cloud resource>

wait until created

check period

check
<cloud resource>

create status

create
error

error

<cloud resource>
create timeout

create
error

create
timeout

<cloud resource>
dispose

dispose
<cloud resource>

error

await create
notifications

<cloud resource>
ready

<cloud resource>
create start

node

[cloud resource]

Node Instance

NO

wip

Figure 4: BPMN scheme of the Cloud Service provision workflow.

d
e
p

lo
y
 <

p
a
c
k
a
g

e
>

deploy <package>

create
<package>

configure
<package>

start
<package>

<package>
started

<package>
created

await configure
notifications

await start
notifications

<package>
configured

await create
notifications

<package>
deploy start

<package>
create error

<package>
configure error

<package>
start error

<package>
create error

<package>
configure error

<package>
start error

Node Instance

Packet-based Service Connectors

create configure start

Figure 5: BPMN scheme of the Packet-based Service provision workflow.

successful, a “wait-until-created” sub-process is acti-
vated. Checks on the resource status are iterated until
the latter becomes available for use. The “check cloud
resource create status” service task is committed to in-
voke the Connector on the ESB to check the resource
status on the selected Provider. Checking periods are
configurable, so is the timeout put on the boundary
of the sub-process. An error event is thrown either
when the timeout has expired or when an explicit er-
ror has been signalled in response to a resource check
call. In the former case, the escalation is immediately
triggered; in the latter case, an external loop will lead
the system to autonomously re-run the whole resource
creation sub-process a configurable number of times,
before giving up and eventually calling up the escala-
tion. Moreover, a compensation mechanism (“dispose
cloud resource” task) allows to dispose of the Cloud
resource, whenever a fault has occurred.

In Figure 5 the workflow of the “deploy package”

sub-process is depicted. This sub-process presents
three synchronization points with the “Node In-
stance” pool. Notifications from preceding TOSCA
node instances must be awaited before executing
the “create package”, “configure package” and “start
package” tasks, respectively. Also, the sub-process
is in charge of sending out notifications when each of
the mentioned tasks successfully terminates its execu-
tion. Regarding the management of potential faults,
they are caught and handled via escalation.

6 USE CASE

The Application model taken into consideration de-
ploys a WordPress web application on an Apache web
server, with a MySQL DBMS hosting the database
content of the application on a separate server. Fig-
ure 6 shows the overall TOSCA-compliant architec-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

538



ture (although wordpress, php and apache node types
are non-normative).

HostedOn

H
os
te
dO
n

H
os
te
dO
n

H
os
te
dO
n

C
on
ne
ct
sT
o

ConnectsTo

wordpress

WebApplication

Properties
• context_root

Requirements

Endpoint.Database

Container
PHPModule

mysql_database

Database

Properties
• name
• user
• password
• port

Requirements

Container

Capabilities

Endpoint.Database

php

SoftwareComponent

Capabilities

PHPModule

Requirements

Container

apache

WebServer

Properties
• port
• document_root

Capabilities

Container

Requirements

Container

mysql_dbms

DBMS

Properties
• port
• root_password

Capabilities

Container

Requirements

Container

app_server

Compute

Capabilities

Container
Properties
• disk_size
• num_cpus
• mem_size
• cpu_frequency

OperatingSystem
Properties
• architecture
• type
• distribution
• version

mysql_server

Compute

Capabilities

Container
Properties
• disk_size
• num_cpus
• mem_size
• cpu_frequency

OperatingSystem
Properties
• architecture
• type
• distribution
• version

Figure 6: Wordpress Deploy - TOSCA Template.

There are two separate servers: app server for the
web server hosting and mysql server for the DBMS
hosting. Both servers are configurable on hardware
side (e.g., disk size, number of cpus, memory size
and CPU frequency) and software side (e.g., OS ar-
chitecture, OS type, OS distribution and OS version).
The apache node features port and document root
properties, and is dependent upon the app server via
a HostedOn relationship as well. In the same way,
the php node is dependent upon the app server via
a HostedOn relationship. The mysql dbms node fea-
tures port and root password properties, and a Hoste-
dOn dependency relationship upon the mysql server.
The mysql database node features name, username,
password and port properties, and a HostedOn de-
pendency relationship upon the mysql dbms. Finally,
the wordpress node features the context root property,
and depends on mysql database and php by means
of two ConnectsTo relationships and on apache by
means of a HostedOn relationship, respectively.

The TOSCA template was fed to the YAML-TO-
BPMN converter which produced the BPMN schemes
implementing the provision process. The lack of
space prevented us from reporting all the workflow
diagrams describing the instantiation sub-processes.
In Figure 7, instead, we have reported the BPMN

2.0 Collaboration diagram describing only the inter-
actions among sub-processes. For the sake of sim-
plicity, in all sub-processes only the synchronization
messages have been reported. Messages give a clear
idea of the precedence constraints that affect the pro-
vision. For instance, the “deploy apache” sub-process
awaits the notification coming from the “create appli-
cation server” sub-process, which in turn awaits no-
tifications coming from both the “create private net-
work” and the “create public network” sub-processes;
the “deploy Wordpress” awaits the notification from
the “deploy Apache” sub-process before executing
the creation task, but after that, and before starting
the configure task, it needs two further notifications
from the “deploy database” and the “deploy PHP”
sub-processes, respectively.

7 CONCLUSION

The automation of the provisioning of complex Cloud
applications is becoming a crucial factor for the com-
petitiveness of Cloud providers. Several frameworks
and standards addressing this issue have appeared:
however, as shown in this work, the resilience of the
provisioning process is not adequately dealt with. In
this work, leveraging on the TOSCA specification, we
proposed the definition of a Cloud orchestration and
provisioning framework that automates the Cloud ser-
vice deployment, explicitly taking into account the
occurrence of failures during the provisioning pro-
cess. The resulting fault-aware orchestrator includes
specific plans to recover from those failures, mini-
mizing human intervention. In our future work, the
framework will be enhanced with more complex plans
to deal with different fault types.

REFERENCES

Agarwal, H. and Sharma, A. (2015). A comprehensive
survey of fault tolerance techniques in cloud comput-
ing. In 2015 International Conference on Comput-
ing and Network Communications (CoCoNet), pages
408–413.

Amin, Z., Singh, H., and Sethi, N. (2015). Review on fault
tolerance techniques in cloud computing. Interna-
tional Journal of Computer Applications, 116(18):11–
17.

Calcaterra, D., Cartelli, V., Di Modica, G., and Tomarchio,
O. (2017). Combining TOSCA and BPMN to En-
able Automated Cloud Service Provisioning. In Pro-
ceedings of the 7th International Conference on Cloud
Computing and Services Science (CLOSER 2017),
pages 187–196, Porto (Portugal).

Exploiting BPMN Features to Design a Fault-aware TOSCA Orchestrator

539



c
re

a
te

 "
p

ri
v
a
te

 n
e
tw

o
rk

"

"private network"
create start

"private network"
ready

c
re

a
te

 "
p

u
b

li
c
 n

e
tw

o
rk

"

"public network"
create start

"public network"
ready

c
re

a
te

 "
D

B
 s

e
rv

e
r"

await create
notifications

"DB server"
create start

"DB server"
ready

c
re

a
te

 "
a
p

p
li
c
a
ti

o
n

 s
e
rv

e
r"

await create
notifications

"application server"
create start

"application server"
ready

d
e
p

lo
y
 "

M
y
S

Q
L
"

"MySQL"
started

"MySQL"
deploy start

await create
notifications

d
e
p

lo
y
 "

d
a
ta

b
a
s
e
"

"database"
started

await
configure

notifications
"database"
deploy start

await create
notifications

d
e
p

lo
y
 "

A
p

a
c
h

e
"

"Apache"
started

"Apache"
deploy start

await create
notifications

d
e
p

lo
y
 "

P
H

P
"

"PHP"
started

await
configure

notifications
"PHP"

deploy start

await create
notifications

d
e
p

lo
y
 "

W
o
rd

p
re

s
s
"

"Wordpress"
started

"Wordpress"
created

await
configure

notifications
"Wordpress"
deploy start

await create
notifications

Figure 7: Wordpress Deploy - Collaboration diagram.

Cheraghlou, M. N., Khadem-Zadeh, A., and Haghparast,
M. (2016). A survey of fault tolerance architecture in
cloud computing. Journal of Network and Computer
Applications, 61:81 – 92.

Colman-Meixner, C., Develder, C., Tornatore, M., and
Mukherjee, B. (2016). A survey on resiliency tech-
niques in cloud computing infrastructures and appli-
cations. IEEE Communications Surveys Tutorials,
18(3):2244–2281.

Giannakopoulos, I., Konstantinou, I., Tsoumakos, D., and
Koziris, N. (2017). Recovering from cloud applica-
tion deployment failures through re-execution. In Al-
gorithmic Aspects of Cloud Computing: Second In-
ternational Workshop, ALGOCLOUD 2016, Aarhus,
Denmark, pages 117–130.

Hamilton, J. (2007). On designing and deploying internet-
scale services. In Proceedings of the 21st Conference
on Large Installation System Administration Confer-
ence, LISA’07, pages 18:1–18:12.

Jayasinghe, D., Pu, C., Oliveira, F., Rosenberg, F., and
Eilam, T. (2013). AESON: A Model-Driven and Fault
Tolerant Composite Deployment Runtime for IaaS
Clouds. In 2013 IEEE International Conference on
Services Computing, pages 575–582.

Leite, L., Moreira, C. E., Cordeiro, D., Gerosa, M. A.,
and Kon, F. (2014). Deploying Large-Scale Service
Compositions on the Cloud with the CHOReOS En-
actment Engine. In IEEE 13th International Sympo-
sium on Network Computing and Applications, pages
121–128.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html. Last accessed on 22-01-2018.

OASIS (2017). TOSCA Simple Profile in YAML Version
1.2. http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.2. Last accessed on 22-01-2018.

Patra, P., Singh, H., and Singh, G. (2013). Fault tolerance
techniques and comparative implementation in cloud
computing. International Journal of Computer Appli-
cations, 64:37–41.

Poola, D., Salehi, M. A., Ramamohanarao, K., and Buyya,
R. (2017). Chapter 15 - A Taxonomy and Survey
of Fault-Tolerant Workflow Management Systems in
Cloud and Distributed Computing Environments. In
Software Architecture for Big Data and the Cloud,
pages 285 – 320.

Sivagami, V. and EaswaraKumar, K. (2015). Survey on
fault tolerance techniques in cloud computing envi-
ronment. International Journal of Scientific Engineer-
ing and Applied Science, 1(9):419–425.

Varela-Vaca, A. J., Gasca, R. M., Borrego, D., and Pozo,
S. (2010). Towards Dependable Business Processes
with Fault-Tolerance Approach. In 2010 Third In-
ternational Conference on Dependability, pages 104–
111.

Vargas-Santiago, M., Hernández, S. E. P., Rosales, L.
A. M., and Kacem, H. H. (2017). Survey on Web Ser-
vices Fault Tolerance Approaches Based on Check-
pointing Mechanisms. JSW, 12(7):507–525.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

540


