
Patterns for Modelling and Composing Flexible Workflows 

from Cloud Services 

Imen Ben Fraj, Yousra BenDaly Hlaoui and Leila Jemni BenAyed 
Research Laboratory in Technologies of Information and Communication and Electrical Engineering (LaTICE), Tunisia 

Institute of Sciences and Techniques of Tunis, Tunis, Tunisia 

Keywords: Cloud Service, Flexible Workflow, Flexibility Patterns, Functional Specification, BPMN Model, Behavioural 

Specification, State-chart Diagram. 

Abstract: In this paper, we propose a Model-Driven Approach for the specification and the execution of cloud service 

flexible workflow applications. We define two flexibility patterns based on BPMN that deals with changes of 

resource requirements for workflow. The workflows are built on an abstract level, using a BPMN model for 

the specification of the cloud service workflow structure based on flexibility patterns, and the state-chart 

diagram for the specification of the cloud service workflow behaviour. The execution process is supervised 

by a control system which is responsible for making decisions on the execution of the workflow based on the 

behaviour defined by the state-chart diagram.  

1 INTRODUCTION 

1.1 Motivation 

Nowadays, Cloud computing (Dillon and Chang, 

2010) has emerged in the distributed computing 

community, it is a new delivery model for IT services 

based on Internet protocols. It has become an 

important topic in both industrial and academic areas. 

The basic goal of the cloud computing is to make a 

better use of distributed resources and be able to solve 

large scale computation problems. A cloud service is 

a web service that provides a set of well defined cloud 

interfaces and follows cloud specific conventions. 

These services constitute a powerful basis for modern 

and scientific applications development. In order to 

enable users to compose their applications without 

taking care of the lower level details, the concept of 

cloud workflow has emerged as a method for 

modeling complex and scientific application (Yubin, 

Zeye, Zewei and Ximing, 2013). The problem of 

building such applications requires composing and 

orchestrating appropriate services which are most 

vulnerable and it is frequently a delicate task. This is 

due to the very large number of available services and 

the different possibilities for constructing a flexible 

workflow from matching services. Flexible 

workflows (Yubin, Zeye, Zewei and Ximing, 2013) 

is a solution to fasten information system 

development in distributed and dynamical 

environment like the Cloud. One of the expected 

facilities of cloud is flexibility at different levels. 

Therefore, we propose in this paper a model driven 

approach for developing and executing flexible 

workflow applications composed of cloud services. 

Recently, several solutions have been proposed to 

model applications from cloud services such as works 

presented in (Amziani, Melliti and Tata, 2013; 

Fengyu, Ying, Zheng, Wei and Xilong, 2015). 

However, the proposed solutions need interaction 

with user and guidelines or rules in the design of the 

composed applications. In consequence, the resulting 

source code is neither re-usable nor it promotes 

dynamic adaptation facilities as it should. For 

applications composed of cloud services, we need an 

abstract view not only of the offered services but also 

of the resulting application. This abstraction allows in 

one hand the reuse of the elaborated application and 

on the other hand reduces the complexity of the 

composed applications. It has been proven from past 

experiences that using structured engineering 

methods makes easy the development process of any 

computing system and reduce the complexity when 

building large cloud applications. To reduce this 

complexity and allow the reuse of cloud service 

applications, we adopt a MDA approach. The MDA 

(Gronmo and Jaeger, 2005) approach developing 

starts with defining high-level models in BPMN 

306
Fraj, I., BenDaly Hlaoui, Y. and Jemni BenAyed, L.
Patterns for Modelling and Composing Flexible Workflows from Cloud Services.
DOI: 10.5220/0006772903060313
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 306-313
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

(Allweyer, 2010), defines conversion rules from 

BPMN to target platform BPEL4WS (Shen, 

Grossmann, Yang, Stumptner, Schrefl and Reiter, 

2007), and then use code generation to derive much 

of the implementation code for desired platform. 

1.2 Our Contribution   

We propose a model driven approach to built flexible 

cloud service workflow using BPMN to specify the 

functional view of the flexible workflow, and the 

state-chart diagram of UML (Group, O.M., 2005). To 

describe the behavioural view of this workflow. We 

use our model driven approach to help a user to 

compose and develop her/his cloud service workflow 

applications in an abstract way using BPMN. Then the 

built model will be transformed into a specific cloud 

service workflow platform such as BPEL platform. In 

the modelling step, we guide the user to compose 

her/his workflow using a set of flexibility specified 

patterns that we have developed according to the cloud 

service characteristics. Hence, we propose an 

interactive approach for modelling and executing 

cloud service workflows. In addition, we propose a 

control system which controls the behaviour of the 

BPEL engine based on the properties of flexibility 

defined in a state-chart diagram using the ECA rules. 

Figure 1 presents the architectural view of the 

proposed approach. At the first step of the approach, 

the user specifies its cloud service workflow, by 

modelling a composition request using a BPMN 

model (functional view). Another specification of the 

cloud service workflow behaviour using a state-chart 

diagram (behavioural view) should be defined 

automatically. The provided request will be refined by 

the composition system to build the flexible workflow 

from available cloud services. Before being executed, 

two transformations should be produced, the first one 

is the transformation of the BPMN model into a 

running platform model like BPEL4WS, the second is 

the transformation of the state-chart diagram into a 

running platform using a control system. 

 

Figure 1: Architectural view of the approach. 

1.3 Paper Reminder  

This paper is organized as follows. Section 2 presents 

the related work. Section 3 defines the flexible 

workflow and the properties of flexibility for cloud 

service workflow. Section 4 details the proposed 

approach for modelling and running cloud services 

workflow. Section 5 presents the flexibility patterns. 

Section 6 details the behavioural specification through 

the state-chart diagram. Section 7 presents a 

transformation from BPMN model to BPEL4WS. 

Section 8 illustrates the specification process based on 

the proposed BPMN model and presents some 

experiments results. Finally, section 9 concludes the 

paper and proposes areas for further research. 

2 RELATED WORKS 

Several works and researches were carried out in the 

field of modelling of flexible workflow of cloud 

services like works presented in (Amziani, Melliti and 

Tata, 2013; Fengyu, Ying, Zheng,  Wei and Xilong, 

2015). In (Fengyu, Ying,  Zheng,  Wei and Xilong, 

2015) the authors propose a flexible UML-based 

workflow model that is able to exhibit the architecture 

of workflow engine and to adapt to the changes of 

business process. They were based on UML diagrams 

to describe the flexible workflow. This approach 

would have been better if the composition were 

automatically elaborated since the number of available 

services is in increase with the existence of several 

forms and manners to compose such services. In 

(Amziani, Melliti and Tata, 2013), the authors, 

propose a formal model elasticity for service-based 

business processes (SBP). In this model, processes are 

defined as Petri nets. Then, elasticity operations 

(duplication and consolidation) are defined. Each 

service is represented by at least one place (the set of 

places of each service are related with an equivalence 

relation). The transitions represent calls, transfers 

between services according to the behavioural 

specification of the SBP.   

The originality of our contribution, relatively to 

this work, is that first we save the user from the 

dynamic refinement and execution as we propose an 

MDA approach which separates the specific model 

from the independent model. Second, we facilitate the 

composition of flexible workflow as we guide the user 

to compose her/his workflow using flexibility 

patterns. Third, we consider the properties of 

flexibility in the specification of the workflow in a 

more natural way for the human user as we define the 

functional and the behavioural views. 

Patterns for Modelling and Composing Flexible Workflows from Cloud Services

307



 

3 CLOUD WORKFLOW 

FLEXIBILITY 

The flexibility is the capability to implement changes 

of the requirements in the business process model and 

instances by changing only those parts of the business 

process model and instances that reflect the change. 

Flexibility (Nurcan, 2008) has been the focus of many 

researches (Regev and Wegmann, 2005; Rosemann 

and Recker, 2006; Saidani and Nurcan, 2006; 

Schmidt, 2005). There are many definitions of the 

flexibility in literature (Shi and Danies, 2003). It is 

defined in (Regev and Wegmann, 2005) as “the ability 

to yield to change without disappearing”. Processes 

flexibility means fast reactivity to internal and external 

changes. It reflects the easiness to make evolve 

business process schemes (when required). Flexibility 

is also reflected by the ability that the support systems 

have to take into account business changes. Thus, 

flexibility refers to the executable ability to flexible 

process definition of workflow management system 

(WFMS). Flexibility of workflow means the dynamic 

generation and modification on definition of process 

instances during execution. Workflow have to provide 

means to suit the flexibility and adaptability 

requirements at any given time. Flexible workflow is 

a solution to fasten information system development 

in distributed and dynamical environment like the 

Cloud. The Flexibility of workflows allows users to 

maintain cloud-based workflows, depending on the 

requirements of the particular job or end customer. 

3.1 Flexibility Properties 

In this section, we present the properties of flexibility, 

it can be achieved by three ways in which the routing 

of cases along workflow tasks or cloud services can be 

changed (Van der Aalst, 2001): 

 Extend. Each cloud service has a maximal 

capacity of treatment over that the QoS of 

the service decrease and we risk to have a 

breakdown, thus the solution   is adding new 

tasks which (1) are executed in parallel, (2) 

offer new alternatives, or (3) are executed in-

between existing tasks.  

 Replace. An instance of cloud service could 

be unavailable, so a task is re-placed by 

another task or a subprocess (i.e., 

refinement), or a complete region is replaced 

by another.  

 Re-order. A cloud service instance cannot 

follow the order defined in the workflow to 

reduce the execution time. Changing the 

order in which tasks are executed without 

adding new tasks, e.g., swapping tasks or 

making a process more or less parallel.  

Thus, flexibility in cloud service workflows 

remains a solution for optimizing the cloud 

application performance and running costs of cloud 

services. 

4 THE PROPOSED APPROACH  

The purpose of our approach, is to allow the 

specification and the execution of flexible workflow 

applications composed from cloud services. The 

specification is based on semantic composition of 

cloud services and on flexibility properties that should 

be processed during the workflow run time. There are 

three objectives to achieve by proposing an 

architectural approach for developing distributing 

computing applications:  

1. To consider the flexibility properties in the 

specification of the cloud service workflow,  

2. To control the flexible workflow execution, 

3. Ease the development of such applications.  

To reach these objectives, our approach follows the 

model driven architecture by separating the platform 

development model from the platform specific model. 

Thus, we propose to specify the workflow model by a 

functional view using BPMN model (Allweyer, 

2010). The model provides an abstract and 

understandable description of the cloud application 

which is obtained from the integration of cloud 

services in a workflow. Once a model is created, it will 

be transformed into the specific model to be 

implemented and executed. To resume, our approach 

is based on three steps, the first one is the specification 

of the cloud service workflow, the second is the meta-

model transformation and the latter is the execution of 

the flexible workflow application. These steps will be 

detailed in the next sections. 

4.1 Specification of the Cloud Service 
Flexible Workflows 

The flexible workflow is modelled by a BPMN model 

based on different patterns of composition of 

workflows. Each activity represents the cloud 

service's operation that should provide the result. At 

the same time, the specification of the cloud service 

workflow behaviour is also defined using a state-chart 

model for processing the flexible properties. The 

composition is described in an abstract level using 

BPMN model (Allweyer, 2010) by assisting the user 

to compose her/his flexible workflow using the 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

308



 

appropriate pattern of flexibility. The workflow model 

identifies the resource from one depicted cloud 

service's operation to the next to build and compose 

the whole application. In this paper we emphasize 

upon the modelling of composed flexible workflows 

only from Cloud services and not from sub-

workflows. 

4.2 Meta-Model Transformation 

This step is based on two transformations. The first, 

transforms the BPMN workflow model into a specific 

workflow model which will be executed using the 

BPEL4WS engine. While the second, translates the 

state-chart model describing the behaviour of each 

cloud service into a control system implemented 

language such as ADA (Woodruff and Van Arsdall, 

1998). 

4.3 Execution of the Flexible Workflow 
Application 

The workflow description document is sent to a 

workflow engine that produces implementation code 

for handling control-flow and data-flow. An execution 

engine, such as BPEL4WS engine, executes different 

workflow activities which are specified in a workflow 

execution document in the correct order and with their 

required input and output data. We extend BPEL 

construct to support flexibility patterns that we have 

defined. Before execution, the engine consider the 

preliminaries and requirements mentioned by the 

control system, the latter controls the execution 

process based on the behaviour described by the state-

chart diagram. Thus, the real time meta-model 

transformation is achieved. We will present the 

different steps of the approach through an example 

(Figure 2) of an online computer shopping service 

(Amziani, Melliti and Tata, 2013) composed of four 

services. Figure 2 models the normal workflow 

functional behaviour, without considering the 

flexibility. However, we can meet some anomalies 

during this behaviour. These anomalies should be 

considered in the functional model to predict any 

abnormal behaviour.  

In fact, the functional behavior of the workflow 

depends on each cloud service behavior. We resume 

these anomalies as follows:  

 Anomaly 1: Each service has a 

maximal capacity of treatment over what the 

QoS of the service decrease and we risk to 

have a breakdown (Amziani, Melliti and 

Tata, 2013) 

 

Figure 2: Workflow of an online shopping service. 

 Anomaly 2: In case of quality satisfaction, 

we are with another copy of service, already 

created and useless (Amziani, Melliti and 

Tata, 2013). 

 Anomaly 3: At any state of the execution 

process, we need a required resources, if it is 

not available, the process of the execution 

could be suspended and risks to fail. 

The use of the flexibility properties is the solution for 

these anomalies. We should update the initial 

workflow model (e.g. the model of Fig. 2.) to consider 

each of these properties based on the behaviour 

parameter of the cloud service. Based on the 

properties of flexibility we define three modelling 

solutions: 

 Solution 1 (Duplication): This solution 

consists in duplicating (Amziani, Melliti and 

Tata, 2013) the service which had an excess 

treatment of requests.  This copy is created 

to treat the overloaded service. 

 Solution 2 (Delete):  If the number of the 

requests decreases, then it is necessary to 

delete the new service already created 

(Amziani, Melliti and Tata, 2013). 

 Solution 3 (Add Resource):  This solution 

consists in adding new resource when the 

previous resource is unavailable, after a 

delay of waiting, we should add the new 

resource, to avoid the suspension of the 

execution process. 

These modelling solutions are described graphically 

by BPMN patterns, that we have developed to define 

and specify automatically these situations in the 

workflow model, in order to help the user to compose 

her/his flexible workflow. We add two patterns the 

Duplicated Services Pattern, and the Alternative 

Services Pattern, which should preserve the initial 

semantics of the built workflow. The first pattern is 

used to models the duplication and the delete 

solutions. The second one describes the add resource 

solution. 

Patterns for Modelling and Composing Flexible Workflows from Cloud Services

309



 

5 SPECIFICATION OF THE 

FUNCTIONAL VIEW OF THE 

CLOUD SERVICE FLEXIBLE 

WORKFLOWS USING BPMN 

In the modelling step we predict the behaviour of each 

cloud service based on its running history. This 

history is represented by the QoS data which are 

basically; time, cost and reliability. As the integration 

of the flexibility patterns is systematic, we are 

brought about defining a set of functions which allow 

the selection of the right pattern to use in the 

workflow model. In the following we define formally 

these functions and predicates which depend on the 

history of the implied cloud service. 

5.1 Alternative Services Pattern 

Formalization. When the cloud service of the 

workflow is unavailable, then we should replace its 

instance by another which is available, providing the 

same result and having the same semantic description. 

Let response_time(s) be a function, providing the time 

response of each operation’s service. Another 

function is used, max(s) which present the maximum 

delay that the service could wait to be invoked.  We 

define the predicate alternative-service(s) as follows: 

Alternative-service(s): S →  {true, false} 
Alternative-service(s) = True if 

response_time(s)>max(response_time(si)) 
     False else.  

response_time : S→IR 
     s→t 
max : 2 IR → IR 
          (t1....ti) → t 

with response_time ∈ QoS and  t is the maximum of 

all the values. √i 1≤i≤n 

Description. When the predicate Alternative-service 

is applied on the current activity of the cloud service, 

to be inserted in the workflow and it is evaluated as 

true, the activity is involved in the workflow using the 

pattern alternative-service. 

Proposed Solution. In this solution the activity to 

insert is modeled as a composed super activity with a 

specified input data object and specified output data 

object (Figure 3). The super activity is stereotyped as 

AlternativeServiceInstance to indicate that its task 

may be accomplished by a set of alternative service's 

instances. These alternative service instances are 

described with sub-activities. The sub-activities shall 

be cloud service instances. It was up to decision 

mechanism of the workflow execution engine to 

choose which service instance in a such given 

workflow node is to be invoked and executed.  

 

Figure 3: Alternative Service Pattern. 

5.2 Duplicated Services Pattern 

Formalization. When modeling workflows of cloud 

services, a specific matching based on semantic 

comparison could provide two or more different cloud 

services performing each of them the required 

operation. The Cloud registry could provide more than 

one operation able to produce the required result, the 

composition requires a specific pattern.  Let nb_req(s) 

be a function, providing the number of queries of each 

service. Another function is used, max_req(s) which 

present the maximum number of queries that the 

service could be invoked. To capture this, we define a 

predicate duplicated-service (s) presented as follows: 

duplicated-service (s): S →  {true, false} 
duplicated-service (s) =  True if  nb_req(s) > 

max -req         (nb_req(s)) 
                                        False else. 
nb_req : S→IN 
      s→nb 
max_req : 2 IN → IN 
          (nb1....nbi) → nb 

with nb_req ∈ QoS and  nb is the maximum of all the 

values. √i 1≤i≤n. 

Description. When duplicated-service (s) = true, we 

should duplicate the service s with another service sd 

providing the same result of s. 

Proposed Solution. Semantically, several services 

instances are invoked in parallel threads and will only 

wait for the adequate flow to finish. In Fig. 4, we 

present two same service’s operations 

CloudService1Operation1 and CloudSer- 

vice1DuplicatedOperation1 providing the same 

output data DataOutput. In this solution the activity to 

insert is modeled as a composed super activity (Figure 

4). The super activity is stereotyped as 

DuplicatedServiceInstance to indicate that its task 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

310



 

may be accomplished by one of two same service's 

instances if one of them is overloaded. If the first 

service is overloaded, we duplicate it to its copy (the 

second service), nonetheless, we just use the first 

service. Also, it was up to the decision mechanism of 

the workflow execution engine to choose which 

service instance in a such given workflow node is to 

be invoked and executed. 

 

Figure 4: Duplicated Service Pattern. 

Back to the initial workflow (Figure 2), several 

requests to its composing services might be 

generated, suppose that the workflow receives 100 

requests. If there is not any flexibility adopted, the 

response time of the workflow will be equal to: 62s 

(processing time of a request) × 100 (number of 

requests) = 6 200s (Amziani, Melliti and Tata, 2013). 

The solution is to duplicate some services of the 

workflow, but not any services, we should not create 

a constraint on the consumption of resources. So 

back, to the initial workflow, the service S2 has the 

maximum time and resource consuming. Thus we can 

have an overload on this service when it has a lot of 

calls, to avoid that, we model a flexible workflow 

(Fig. 5) based on the Duplicated Service Pattern. This 

pattern contains two services, the first is the service 

S2, and the second is the duplication of the same 

service named S2-D which will be invoked when it is 

overloaded. When we have an overload we duplicate 

the service as the number of requests, for this 

example, we will have 100 copies of S2 in parallel. 

Thus the response time for processing the requests 

will be equal to 62s. 

When we have an unload, the number of the 

requests decreases, then it is not necessary to 

duplicate the service, we just invoke the initial service 

for this example S2. The choice of which service 

instance, should be invoked and executed is leaded to 

the mechanism of the workflow execution engine. In 

this case, by applying to the DuplicatedService 

Pattern, we can solve the two first anomalies 

mentioned before. 

 

Figure 5: Flexible workflow. 

To solve the last anomaly, the solution consists in 

adding a new resource when the previous resource is 

unavailable, after a delay of waiting, we should add 

the new resource, to avoid the suspension of the 

running of the workflow. To fulfil, we apply to the 

Alternative Service Pattern, which define a number of 

resources available for the same service (Figure 6). 

Back to the example, any services of the four services 

can be replaced by this pattern, because at any time, 

any service could not dispose of the required 

resources. To simplify the representation, we choice 

the service S3 as the service which lacks of resources. 

The response time of the service S3 is 10s, the 

maximum response time is 5s (here 

response_time(S3) > max(response_time)). Thus, we 

add another service named S3-R which provide the 

same resources for the S3. 

 

Figure 6: Adding resource for service S3. 

6 SPECIFICATION OF THE 

BEHAVIORAL VIEW OF THE 

CLOUD SERVICE FLEXIBLE 

WORKFLOWS USING SATE-

CHART DIAGRAM 

In order to control the execution of the flexible 

workflows, we should define the behaviour of each 

cloud service involved into the workflow.  The 

definition of an adequate behaviour for dynamic 

modifications in different situations could avoid any 

eventual suspension of the workflow running process. 

Patterns for Modelling and Composing Flexible Workflows from Cloud Services

311



 

The state-chart diagram models the behaviour to 

recognize which services of flexibility patterns 

should be involved, and is it also supervised by a 

control system implemented by ADA (Woodruff and  

Van Arsdall, 1998). It models as well the actions that 

the control system should perform during the running 

time.  During its processing time, a cloud service 

workflow could be in one of the three states: waiting, 

running and terminated. The two first states are 

composed of sub-states as shown in Fig. 7. (With E1:  

event overload, C1: nb_req> max_req, A1: Add a 

new instance of the cloud service, E2: event 

unavailable resource, C2: response_time> 

max_response_time, A2: Add a new resource for the 

cloud service, E3:  event unload, C3: nb-req< nb-max, 

A3: delete the duplicated instance of the cloud 

service) 

 

Figure 7: State-chart diagram. 

7 TRANSFORMATION OF BPMN 

ALTERNATIVESERVICEINSTA

NCE PATTERN TO BPEL4WS 

BPEL4WS language with its standard constructs does 

not support BPMN AlternativeServicesInstance 

pattern. This later models the semantics that states 

that the two operations are provided by two different 

services but they require the same resource. To fulfill 

this need, we have extended the BPEL4WS 

constructs by alternativeservices construct as 

BPEL4WS is an open source and an open system. To 

be supported by the BPEL4WS execution engine, we 

have defined for the alternativeservices construct a 

JAVA code which is added to the BPEL4WS 

execution engine JAVA code. The mapping pattern 

between Alternative-services pattern and BPEL4WS 

is presented next: 

 

Figure 8: Transformation of BPMN alternative service 

Instance to BPEL4WS. 

To execute this construct, the BPEL4WS 

execution engine will select the operation having the 

higher quality of service in term of cloud service 

response time or cloud service availability. Applying 

on the BPEL model of Fig.8 the transformation 

patterns defined between BPMN and BPEL4WS, we 

generate a BPEL4WS model.  

8 EVALUATION OF THE 

FLEXIBILITY PATTERNS 

In our experiment, we used an invocation scenario 

that represents a calls arrival on the workflow. This 

scenario applies for both Alternative Service Pattern 

and Duplicated Service Pattern. For each pattern, we 

generate a graph which represents all the possible 

evolution of the workflow in term of duplicating, 

deleting and adding resources. The analysis of this 

graph shows the use of the Alternative Service Patten 

(Figure 9 (a).), while the Duplicated Service pattern 

is applied in (Figure 9 (b).). Thus, based on these 

flexibility patterns, our approach helps the user to 

avoid any eventual suspension of the running 

workflow process and it reduces the cost of the 

running time. 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

312



 

 

Figure 9: The evolution of resources and services using 

flexibility patterns. 

9 CONCLUSION 

We have proposed an MDA approach for the 

specification and the execution cloud workflow 

applications from cloud services. We have detailed a 

set of steps for integrating and matching, 

systematically, cloud services in a workflow. In 

addition, we have defined two patterns based on the 

properties of flexibility and predicates which is used 

in the execution process to depict the right cloud 

service to involve in the workflow. The approach 

shows also how the modelling proposed constructs 

are applied to model and represent a flexible 

workflow from cloud services by extending the 

BPEL4WS constructs. This process was illustrated 

under the example of an online computer shopping 

(Amziani, Melliti and Tata, 2013). As a proposal for 

further work, we propose to verify the semantic 

preservation of the different transformations. 

REFERENCES  

Allweyer, T., 2010. BPMN 2.0: Introduction to the 

 Standard for Business Process Modeling.  

Amziani M., Melliti, T., Tata, S., 2013. Formal Modeling 

and Evaluation of Service-Based Business Process 

Elasticity in the Cloud. Chapter On the Move to 

Meaningful Internet Systems: OTM 2013 Conferences. 

Volume 8185 of the series Lecture Notes in Computer 

Science, pp 21-38. 

Dillon, T., Wu, C., Chang, E., 2010.  Cloud Computing: 

Issues and Challenges. In 24th IEEE International 

Conference on Advanced Information Networking and 

Applications, pp 27-33.   

Fengyu, Y., Ying, C., Zheng, H., Wei, Z., Xilong, D., 2015. 

Design and Implement of a Flexible Workflow Model 

Based on UML Modeling Technology. Applied 

Mechanics and Materials Vols. 738-739, pp. 304-310.  

Gronmo, R., Jaeger, M. C., 2005.  Model-Driven Semantic 

Web Service Composition. In. Proc. APSEC'05, Dec, 

pp. 79-86.  

Group, O.M., 2005. Uml 2.0 superstructure specification. 

Technical report. 

Hu, J. M., Zhang, S. S., Yu, X.Y., 2002. A Workflow Model 

Based on ECA Rules and Activity Decomposition. 

Journal of Software, 13(4), pp 761-767.  

Nurcan, S., 2008.  A Survey on the Flexibility 

Requirements Related to Business Processes and 

Modeling Artifacts. In Proceedings of the 41st Hawaii 

International Conference on System Sciences.  

Regev, G., Wegmann, A., 2005. A Regulation-Based View 

on Business Process and Supporting System Flexibility, 

Proc. of the CAiSE’05 Workshop, pp. 91- 98.   

Rosemann, M., Recker, J., 2006. Context-aware Process 

Design Exploring the Extrinsic Drivers for Process 

Flexibility, BPMDS, Luxembourg.   

Saidani, O., Nurcan, S., 2006. A Role-Based Approach for 

Modelling Flexible Business Processes, The 7th 

Workshop on Business Process Modelling, 

Development, and Support (BPMDS'06), (in 

association with CAISE'06), Springer Verlag (pub), 

Luxembourg, 2006.  

Schmidt, R., 2005. Flexible Support of InterOrganizational 

Business Processes Using Web Services. Proceedings 

of the CAiSE’05 Workshop, pp. 51-58.   

Shen, J., Grossmann, G., Yang, Y., Stumptner, M., Schrefl, 

M., Reiter, T., 2007. Analysis of Business Process 

Integration in Web Service Context. Future Generation 

Computing System, vol. 23, no. 3, pp.283–294.  

Shi, D., Danies, R.L., 2003. A survey of Manufacturing 

Flexibility: Implications For E-Business Flexibility. 

IBM Systems Journal 42(3), p.414-427. 

Van der Aalst, W. M. P., 2001. How to handle dynamic 

change and capture management information? An 

approach based on generic workflow models. In 

Proceedings of the Fourth IECIS International 

Conference on Cooperative Information Systems. 

Woodruff, J. P., Van Arsdall, P. J., 1998. A Large 

Distributed Control System Using Ada in Fusion 

Research. In Proceedings of the 1998 annual  ACM 

SIGAda international conference on Ada, pp  121-131.  

Yubin, G., Zeye, C., Zewei, L., Ximing, L., 2013. Design 

and Implementation of a Flexible Workflow 

Management System. Journal of Software, Vol 8, No 

12, pp. 3060-3065.   

Patterns for Modelling and Composing Flexible Workflows from Cloud Services

313


