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Abstract: Process prediction is a well known method to support participants in performing business processes. These
methods use event logs of executed cases as a knowledge base to make predictions for running instances. A
range of such techniques have been proposed for different tasks, e.g., for predicting the next activity or the
remaining time of a running instance. Neural networks with Long Short-Term Memory architectures have
turned out to be highly customizable and precise in predicting the next activity in a running case. Current
research, however, focuses on the prediction of future activities using activity labels and resource information
while further event log information, in particular discrete and continuous event data is neglected. In this paper,
we show how prediction accuracy can significantly be improved by incorporating event data attributes. We
regard this extension of conventional algorithms as a substantial contribution to the field of activity prediction.
The new approach has been validated with a recent real-life event log.

1 INTRODUCTION

Process prediction methods support process par-
ticipants in performing running instances of a
business process, e.g., software development pro-
cesses (Van der Aalst et al., 2011). Therefore, these
techniques use given event logs of the considered pro-
cess, i.e., historical information of completed soft-
ware development processes, as a knowledge base to
make predictions about the evolution of running in-
stances. An event log consists of traces, such that
each trace corresponds to one execution of the pro-
cess. Each event in a trace consists as a minimum of
an event class (i.e., the activity to which the event cor-
responds) and generally a timestamp. In some cases,
other information may be available such as the origi-
nator of the event (i.e., the performer of the activity)
as well as data produced by the event in the form of
attribute-value pairs (Schönig et al., 2016).

Several prediction techniques have been described
in literature that focus on different tasks, e.g., pre-
dicting the next activity to be executed (Becker et al.,
2014) or predicting the remaining runtime of the cor-
responding process instance (Polato et al., 2016). The
results of process prediction approaches can be used
to recommend next process steps to users or to sup-
port planning and resource allocation.

Contemporary process prediction approaches are

tailored to specific prediction tasks and are not gen-
erally applicable. Furthermore, their prediction qual-
ity varies significantly depending on the knowledge
base, i.e., the used input event log. As a result, a cer-
tain technique may produce good prediction results
for one specific process but not for another one. In
many cases, several techniques need to be used in par-
allel to ensure sufficient prediction quality (Metzger
et al., 2015).

Latest research has shown that neural networks
with Long Short-Term Memory (LSTM) architec-
tures (Hochreiter and Schmidhuber, 1997) are highly
customizable and precise in predicting the next activ-
ity in a running case. Here, LSTMs deliver highly
accurate prediction results in a variety of different ap-
plication. For example, the work in (Evermann et al.,
2017) applied LSTMs to predict the next activity in
a running instance. In (Tax et al., 2016) it is shown
that LSTMs also achieve consistent and high quality
results when being applied to further prediction prob-
lems like time-related properties, i.e., timestamp pre-
diction of activities and the remaining instance run-
time.

Current research, however, focuses on the predic-
tion of future activities using activity labels and re-
source information while further event log informa-
tion, in particular additional discrete and continuous
event data is neglected. To the best of our knowl-
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edge there is currently no research work that exam-
ines the impact and effects of discrete and continu-
ous event log data on prediction quality. In this paper,
we show how prediction accuracy can be significantly
improved by incorporating additional event data at-
tributes in LSTM based process prediction. There-
fore, our contribution forms the building blocks for
a comprehensive multi perspective process prediction
method. It substantially improves conventional activ-
ity prediction approaches by opening them to multi
perspectives bearing valuable information for process
prediction. The new approach has been validated with
a recent real-life event log.

This paper is structured as follows: Section 2 de-
scribes fundamentals of neural networks. Section 3
gives an overview of related work. Section 4 intro-
duces our approach to multi-perspective process pre-
diction. Section 5 briefly describes how we imple-
mented the technique. In Section 6 we describe the
evaluation of our approach in detail and the paper is
concluded in Section 7.

2 BACKGROUND

In this section, we introduce the foundations of our
approach. First, we introduce process event logs.
Then, we briefly introduce neural networks and in
particular long short-term architectures.

2.1 Event Logs for Multi-perspective
Process Recommendation

Our prediction approach takes as input a process event
log, i.e., a machine-recorded file that reports on the
execution of tasks during the enactment of the in-
stances of a given process. In an event log, every
process instance corresponds to a sequence (trace)
of recorded entries, namely, events. We require that
events contain an explicit reference to the enacted
task. This condition is commonly respected in real-
world event logs (van der Aalst, 2011). For instance,
the following excerpt of a business trip process event
log encoded in the XES logging format (Verbeek
et al., 2011a) shows the recorded information of the
start event of activity Apply for trip performed by re-
source ST.
<event>

<string key="org:resource" value="ST"/>

<date key="time:timestamp" value="2013-08-06T14:58:00"/>

<string key="concept:name" value="Apply for trip"/>

<string key="lifecycle:transition" value="start"/>

</event>

2.2 Artificial Neural Networks

Artificial neural networks are gaining more and more
importance in many applications, especially through
advancements in the field of deep learning (Schmid-
huber, 2015). A neural network consists of three types
of layers: one input, multiple hidden and one output
layer. These layers consist of neurons which are con-
nected to neurons of the predecessor layer by train-
able weights. Neurons of the hidden and output layer
can be described by input, activation and output func-
tions. In order to accumulate the output oi of the pre-
decessor layer neurons i with their weights wi j, the
input function of a neuron j is a weighted sum func-
tion:

neti = ∑
i

wi j ·oi (1)

Activation and output function can be chosen freely.
In the case of the hidden layer, we use long short-term
memory units that are described in Section 2.3 of the
work at hand. The number of neurons in the input
and output layers is limited by the input and output
dimension of the neural network, respectively. The
number of hidden layers and hidden layer neurons can
be chosen independently to tune the neural network
performance for a given application.

2.3 Long Short-term Memory Units

In this paper, we build on neural network archi-
tecture that uses so called long short-term memory
(LSTM) units. LSTM networks have been intro-
duced in (Hochreiter and Schmidhuber, 1997) and
have proven to be powerful in learning long term de-
pendencies, e.g., for speech recognition (Graves and
Schmidhuber, 2005). Here, a unit can be described by
following equations:

it =σ(Wxixt +Whiht−1 +Wcict−1 +bi) (2)
ft =σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (3)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 +bc) (4)
ot =σ(Wxoxt +Whoht−1 +Wcoct +bo) (5)
ht =ot tanh(ct) (6)

Through the cell state ct it is possible to use contex-
tual information for the prediction at the time t. This
cell state is regulated by an input gate it , a forget gate
ft , and the current input xt . ht is the output of the unit,
ot is the output gate, σ is a sigmoid function chosen
by the user. W are the weight matrices for the corre-
sponding gates or vectors, e.g. Wh f the hidden-forget
weight matrix. During training these weight matri-
ces are optimized. Since the output of a unit depends
on the past output, this neural network architecture
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is called recurrent neural network. This allows us to
predict a next event by taking several past events into
account.

3 RELATED WORK

In this section, we give a short overview of related ap-
proaches to multi-perspective event log analysis and
process prediction. Process event logs have been used
for different purposes such as dynamic guidance fea-
tures in process management systems (Günther et al.,
2012), multi-perspective process mining (Sturm et al.,
2017) or translation of process models from language
to another one (Ackermann et al., 2016). Several
approaches have been proposed that focus on time-
related aspects of process prediction. The work in
(Pika et al., 2012) describes a technique to predict
deadline violations, (Metzger et al., 2015) focuses on
predicting delays of activities and (Senderovich et al.,
2014) predicts delays of instance executions by ap-
plying queue mining techniques. Furthermore, there
are approaches that predict the remaining cycle time
of running instances (Van der Aalst et al., 2011; van
Dongen et al., 2008). Another branch of approaches
focuses on the prediction of case outcomes, i.e., nor-
mal or deviant, based on the sequence of activities that
have been executed (Maggi et al., 2014; Leontjeva
et al., 2015). In order to predict the next activity to
be executed several approaches have been proposed
as well. While the authors in (Breuker et al., 2016)
use probabilistic automatons for prediction, the work
in (Evermann et al., 2017) and (Tax et al., 2016) are
based on LSTMs. The LSTM based solutions have
turned out to be more precise and more generalizable
to further prediction tasks.

None of the mentioned approaches examine the
impact and effects of incorporating discrete and con-
tinuous additional data attributes on prediction quality
and accuracy, i.e. they neglect information available
to improve prediction. Therefore, our approach opens
a new field of prediction algorithms that has the po-
tential to significantly improving prediction quality.
The validation (Section 5) substantiates this thesis.

4 MULTI-PERSPECTIVE
PROCESS PREDICTION
SYSTEM

In this section, we describe how data of an event log
is preprocessed and how the neural network is build
dependent on the preprocessed data.

4.1 Data Preprocessing

A neural network is expecting any input to be in a
vectorial shape so that each input neuron is responsi-
ble for one vector component. Therefore we will con-
sider events and any contextual information as matri-
ces where each row corresponds to one event:event1 resource1 . . . x1

...
...

...
...

eventn resourcen . . . xn

 (7)

In a most minimal case this will only contain n events
of an event log. It is possible to add additional dis-
crete features, e.g., the resource that performed the
corresponding event, or continuous attributes (event
log features) like credit score data. For creating a suit-
able training data set several processing steps have to
be applied.

First, a column has to be added that represents the
expected output. We distinguish between a single per-
spective output, which is ”only” eventt+1, and a multi
perspective output, which consists of at least two fea-
tures, e.g., the next activity to be performed as well as
the performing resource eventt+1 resourcet+1. Here,
we also predict the organizational perspective. After-
wards, this data set is normalized to convert discrete
data into numerical data and to be able to compare
continuous attributes. In case of continuous attributes,
we are using the min-max normalization:

ynorm =
yi− ymin

ymax− ymin
(8)

Discrete attributes are normalized with a one-hot en-
coding. For each value of a discrete feature a new
column has to be introduced that takes the value 1
if the discrete feature was present in that row. The
newly created matrix for a multi-perspective predic-
tion of the next occurring event e and its resource r in
consideration of a discrete or continuous data variable
x can now be written as:

e1 . . . en r1 . . . rn x e2r2 . . .
1 . . . 0 1 . . . 0 x1 1 . . .
...

...
...

...
...

...
...

...
...

0 . . . 1 0 . . . 1 xn 0 . . .

 (9)

The first row was kept for better readability and is not
present in the data set. With this method, an arbi-
trary number of discrete or continuous features can
be used for predicting the next event under consider-
ation of multiple process perspectives, i.e., resources
or data values. This way, the process prediction ap-
proach can be adapted to different business processes
and the corresponding event log knowledge bases.
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4.2 Creating and Training the Neural
Network

Based on the preprocessed data set, we can define the
topology of the neural network. The number of in-
put neurons is equal to the number of columns of the
preprocessed data set minus the columns dedicated
to the output, e.g., event1 resource1. The number of
neurons in the output layer is analogous equal to the
number of columns in the data set representing a nor-
malized output feature. Two hidden layers of LSTM
units are used. Additionally, we choose a softmax
activation function for the output neurons to model
a probabilistic output with a cross-entropy loss func-
tion (Bishop, 1995). This logistic function limits the
sum of the outputs of the output layer to 1. To avoid
overfitting, dropout (Srivastava et al., 2014) was ap-
plied with a probability of 0.3, which means that in
each training step 30% of the hidden neurons with
their weights are randomly dropped. For each out-
put feature the neural network will output a probabil-
ity, so that the feature with highest probability will
win and therefore will dictate the next event or in
a multi-perspective setting the next event performed
by a certain resource etc. This way, it is also possi-
ble to display other outputs with their probability to
give the user additional feedback. This neural net-
work is trained through rmsprop (Tieleman and Hin-
ton, 2012). It is a improved stochastic gradient de-
scent algorithm, which adapts the learning rate.

5 IMPLEMENTATION

To use neural networks on a high abstraction level,
we implemented the neural network with the software
Keras (Chollet, 2015). The user interface is visual-
ized in Fig. 1. We assume that the event logs used
as a data source for constructing the neural networks
are given in the XES standard format (Verbeek et al.,
2011b). After choosing a XES compatible event log
it is subsequently transformed to a CSV file for ac-
complishing the matrix shape as described in Section
4.1.
• Add two columns representing traces and events.
• For each event in the .xes log add a new row and

fill the event column with the event name and the
trace column with the case name.

• For each additional event key, add a new column
and fill it accordingly.
Keras differentiates between stateless and stateful

long short-term memory units. In theory, units are al-
ways stateful, meaning their internal memory will be

Figure 1: Graphical user interface of the process recom-
mender system.

maintained over the whole training period. In Keras,
the memory will be reset by default. This way a unit
can only use the past n predictions for n unfolding
steps. We use these stateless units to avoid influences
between two traces. A graphical user interface was
implemented with tkinter. It allows to load a CSV
file, select input and output features, and to make pro-
cess predictions based on the trained network.

6 EVALUATION

In this section, we provide an evaluation of our pro-
cess prediction system approach w.r.t. a real-life event
log. We first evaluate the prediction accuracy by con-
sidering also discrete and continuous data attributes.
Afterwards, we highlight the impact of the number of
unrolled steps on the prediction accuracy.

6.1 Prediction Accuracy

We evaluated the application of a LSTM network with
different input configurations on a real-life event log
(Van Dongen, 2017) since this offers a high variety of
additional discrete and continuous data attributes be-
sides the standard event data. The event log pertains
to a loan application process of a Dutch financial insti-
tute. The data contains all offers made for an accepted
application. In total, there are 1,202,267 events per-
taining to 31,509 loan applications. For these appli-
cations, a total of 42,995 offers were created. The
prediction target was for every configuration the next
occurring event. We used different input configura-
tions of the discrete input features selected and ac-
cepted, which are describing, whether the offer was
selected and accepted by the customer. Furthermore,
the continuous features credit score and monthly cost
were considered as well. To evaluate possible overfit-
ting, we applied stratified 5-fold cross-validation. The
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Table 1: Prediction accuracy for different input combina-
tions.

Additional Data
Attributes

Training
Accuracy

Validation
Accuracy

None 0.655 0.642
Credit score
(cont.)

0.832 0.814

Credit score,
monthly cost
(cont.)

0.832 0.814

Accepted, se-
lected (disc.)

0.908 0.886

Credit score,
monthly cost,
accepted and
selected (both)

0.917 0.895

data set was split into 5 subsets with the same propor-
tions of prediction targets. Each set was used as a
validation data set, which was not used for training,
the remaining sets are used as training data sets. The
prediction accuracy is given in Table 1. The accuracy
is calculated by dividing the number of correct predic-
tions by the number of all predictions for the current
validation set and afterwards averaged for the 5 dif-
ferent sets. Training took at maximum 100 epochs,
so 100 iterations over the training data set, to achieve
converging loss.

We can report an acceptable level of overfitting
with 2%. Biggest impact on prediction accuracy was
achieved by selecting accepted and selected as in-
put features (accuracy increased from 0.642 to 0.886).
This can be intuitively explained since these are suf-
ficient conditions for an offer to be refused or can-
celed. Addition of credit score lead to an similiar
increasement. Monthly cost had no impact on accu-
racy. To validate the impact of the continuous fea-
ture credit score, the discrete features accepted and
selected were added as input features and input com-
binations were compared. Prediction accuracy could
be increased by 0.9% in case of credit score, monthly
cost, accepted and selected in comparison to this
combination without using the continuous input pa-
rameters.

6.2 Impact of Number of Unrolled Steps

Since the number of unrolled steps is an impor-
tant parameter as mentioned in Section 5, we ex-
amined whether this has impact on prediction accu-
racy. Traces should be viewed independent from each
other. The number of unrolled steps was chosen af-
ter the minimum number of events per trace and the
maximum number of events per trace. The results are

given in Table 2. The work in (Evermann et al., 2017)
shows that the number of unrolled steps has little to no
impact on prediction accuracy. This is also the case if
we add continuous parameters, since these parame-
ters are static for an event trace. Therefore, no long-
term dependencies can be verified. One can expect
that this will change as soon as parameter are chang-
ing during a trace. Results are overall higher, because
we skipped cross-validation, since no improvement of
accuracy could be detected.

Table 2: Validation accuracy over number of unrolled steps.

Input Parameters Number of Unrolled Steps
5 3 1

None 0.649 0.651 0.650
Credit score 0.870 0.870 0.876
Credit score and
monthly cost

0.869 0.871 0.877

Accepted and se-
lected

0.912 0.912 0.919

Credit score,
monthly cost,
accepted and
selected

0.924 0.925 0.931

7 CONCLUSION AND FUTURE
WORK

In this paper, we introduced a general approach to-
wards a multi-perspective process prediction system.
We used a deep learning architecture based on LSTM
units with event logs containing contextual data fea-
tures. We evaluated the architecture for a real-life
event log. It showed to be an effective way to use
an arbitrary number of additional input features be-
sides the main event information. The prediction error
could be decreased from 35.8% to 10.5% (Table 1) by
using additional input features. In this paper, discrete
text data and continuous data were discussed. For
future work, we also want to consider hybrid neural
network architectures that comprise additional input
data like image data. This approach could be used for
process automation by embedding a neural network
into a software agent This way, accurate predictions
by using different data sources can be made automat-
ically executed. Other applications were introduced
like (Bose et al., 2012) with the same goal, but these
depend on explicitly modeling the process.
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