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Abstract: Testing for security vulnerabilities is playing an important role in the changing domain of industrial automa-
tion and control systems. These systems are increasingly connected to each other via networking technology
and are faced with new cyber threats. To improve the security properties of such systems, their robustness
must be ensured. Security testing frameworks aim at enabling the assurance of robustness even at the time of
development and can play a key role in bringing security into the industrial domain.
Fuzzing describes a technique to discover vulnerabilities in technical systems and is best known from its usage
in IT security testing. It uses randomly altered data to provoke unexpected behaviour and can be used in com-
bination with regular unit testing. Combined with the power of fuzzing, the effectiveness of security testing
frameworks can be increased.
In this work, different fuzzing tools were evaluated for their properties and then compared with the requi-
rements for an application in the industrial domain. As no fuzzer was fully satisfying these requirements,
a new fuzzer, combining the strength of different others, was designed and implemented, and then evalua-
ted. The evaluation includes a real-world application where multiple vulnerabilities in industrial automation
components could be identified.

1 INTRODUCTION

Security testing is becoming an important part of the
development of industrial automation and control sy-
stems (IACS). Through new trends, like Industrie 4.0
or the (Industrial) Internet of Things, these systems
get increasingly connected with each other, exposing
possible network vulnerabilities. Because many of
these systems were not intended for this connected
world, security testing was formerly neglected.

Fuzzing is successfully used in the blackhat com-
munity for finding zero-day-vulnerabilities in code
(BlackHat, 2017). In contrast to penetration testing,
using randomly altered data to test an interface of a
test subject does not need a deep technical understan-
ding of vulnerabilities and how to exploit them.

To provide robust and secure IACS for the future,
security testing needs to be performed throughout the
development life cycle, as standards like IEC 62443
are already demanding. To improve and simplify such
testing, highly optimized testing platforms and frame-
works are developed, that are able to carry out prede-
fined tests. But they are still lacking the possibility of

incorporating fuzzing into the test cycles, partly be-
cause the availability of fuzzers for IACS is limited.
Therefore, this work aims at providing an easily ap-
plicable and effective fuzzer to enable developers and
implementers of IACS to test their systems using fuz-
zing techniques.

This paper is organized as follows: Starting with
an introduction to IACS and security testing in section
2, the ISuTest framework is introduced as host for the
newly integrated fuzzing technology. In section 3,
a broad overview of fuzzing characteristics is given.
A comparative study of available network fuzzers re-
sults in a compilation of requirements for our develo-
ped solution. The design of the newly integrated fuz-
zing functionality is being described in section 4. The
evaluation in section 5 is split into two parts: Starting
with a functional requirement evaluation, the section
continues with a practical test of the developed solu-
tion in a test bed revealing several vulnerabilities in
IACS.
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2 BACKGROUND & RELATED
WORK

This section gives a short introduction on the topics
addressed in this paper. It briefly describes the current
state of industrial automation and security testing of
industrial systems. It also describes requirements for
industrial security testing, as well as an example for a
testing framework fulfilling these requirements. The
background is concluded by presenting the basics of
fuzzing in security research.

2.1 Industrial Automation and Control
Systems

The modern industry landscape shows a high degree
of automation enabled by industrial automation and
control systems. Nowadays, they are connected via
network technology to enable the exchange of cont-
rol and production data to increase the efficiency of
the automation processes. This increasing intercon-
nectivity is made possible by the introduction of stan-
dard IT network technology in the industrial domain.
The old, proprietary bus systems are replaced by com-
munication protocols based on Ethernet. But, as the
industrial domain still has special requirements, spe-
cialized protocols need to be used, that are able to,
for example, provide real-time communication. Ex-
amples for such protocols are Profinet (PNIO) or Et-
herCAT. All of these established industrial Ethernet
protocols have in common that they were designed
with no security considerations in mind. This makes
networks built on these protocols vulnerable and puts
importance on the security properties of the individual
devices used in these networks.

2.2 Security Testing for IACS

Security testing is used to reveal vulnerabilities of a
system. For this, the Device under Test (DuT) is ex-
amined in a test bed. The DuT is provided with in-
put by a testing system and its reaction and behavior
(output) is evaluated. When an unexpected reaction
is registered, further examination is used to determine
which kind of problem was encountered and if this
problem is caused by a vulnerability.

When security testing is performed without kno-
wledge about the inner state or function of the DuT,
this is called black box testing. The testing can be furt-
her classified into positive, providing the system with
input that should lead to an expected reaction, and
negative testing, where the system is provided with
unexpected input and is expected to maintain normal
functionality.

Vulnerabilities can be classified by their origin as
elaborated in (Pfrang et al., 2017): Vulnerabilities
that originate from the design, the implementation and
from the configuration of a system.

Based on the IEC 62443 standard on industrial se-
curity, the ISASecure EDSA (Embedded Device Se-
curity Assurance) certification program (ISA Security
Compliance Institute (ISCI), 2016) is a well-known
standard in the industry and intended for the testing of
IACS. It includes multiple areas of requirements, in-
cluding secure development (SDA-E), functional se-
curity (FSA-E) and device robustness testing (ERT).
For the device robustness testing, the Communication
Robustness Testing (CRT) defines test cases for mul-
tiple network protocols.

The special requirements and conditions of the in-
dustrial domain, as described in the previous section,
need to be thoroughly considered in the security tes-
ting of IACS, as well as requirements originating
from security standards like the ISASecure EDSA. In
(Pfrang et al., 2017), we gave an overview of multi-
ple security testing frameworks intended for the ap-
plication in the IACS domain, formulated key requi-
rements and, finally, introduced ISuTest, a new and
modular security testing framework for IACS that is
intended to fulfill these requirements.

2.2.1 Industrial Security Testing Requirements

Following a review of existing security testing sys-
tems and test specification from standards like the IEC
62443, we formulated key requirements for an indus-
trial security testing system. Such a system needs to
be able to test arbitrary IACS for vulnerabilities (I),
independent from type, manufacturer or technologies
used in the IACS. The system also needs to be modu-
lar and extensible (II) to account for future application
within these evolving technologies. The modularity
includes the possibility to test different network pro-
tocols in different layers (IIa) and to test the different
possibilities of input and output of data an IACS has
(IIb). The results of such tests need to be evaluated
with suitable methods (IIc). Another important re-
quirement is a precise way to describe security tests
through declarative test scripts (IIIa) that allow for
an arbitrary combination of input and output hand-
ling (IIIb), as well the evaluation of the result against
an expected behavior (IIIc). As there is the necessity
to execute a high number of individual tests, the sy-
stem needs to support the fully automated execution
of tests (IIId) that also need to be reproducible (IIIe).



2.2.2 ISuTest Framework

The ISuTest framework is a novel security testing fra-
mework for IACS that is intended to fullfill the re-
quirements presented in the previous section. ISuTest
is a highly modular security testing framework that
is adaptable to different test environments and scena-
rios. It is able to incorporate different technologies
and therefore able to test systems of very different
forms.

Figure 1: Architecture of the ISuTest framework.

As shown in figure 1, the core of the framework
is formed by the scanner, handling the whole testing
logic, and the result component that is responsible for
the creation of final test results. The extensible part
of the framework is consisting of test scripts, modu-
les and evaluations. Test scripts specify individual
test cases, including preparation, execution and result
evaluation. The test scripts rely on modules to test sy-
stems and are executed by the scanner. These modules
provide the functionality to interact with a DuT, inde-
pendent of the used communication technology. For
the creation of results, different evaluators can then
interpret the reaction of the DuT to detect malfuncti-
ons and vulnerabilities. The framework is compatible
with the OpenVAS Scanner Protocol and can there-
fore be used with this vulnerability scanner.

2.3 Fuzzing

Fuzzing characterizes a negative testing methodology
driven by random alteration of inputs. The test subject
is tested by providing predominantly invalid, unex-
pected input to it. This approach is highly automata-

ble and offers a high chance of finding unknown vul-
nerabilities since it explores unexpected input. But
fuzzing can only cover a small subset of all possible
input in a feasible amount of time. Consequently, one
of the main goals is to select the fuzzed data as ef-
ficiently as possible, so that the fuzzed data covers a
subset with as high probability for detecting vulnera-
bilities.

Figure 2: The phases of a fuzzing process.

The fuzzing process, as shown in figure 2, is divi-
ded into three phases: Generation of data, transmis-
sion of data and monitoring the DuT. Data is created
and altered by the fuzzer. The alteration of the data
should ensure that the data is still processed by the
test subject, i.e. the alterations should not destroy the
format completely. Altered data is transmitted to the
test subject via arbitrary interfaces. Whilst being tes-
ted, the subject is monitored in order to detect anoma-
lies in its behaviour. Detection of crashes, unavailable
services or unexpected behaviour is an evidence for a
successful fuzzing test.

3 ANALYSIS

In this section, we provide a terminology for the clas-
sification of properties of fuzzers. We then conduct
a comparative study of available fuzzers and motivate
why there is the need of a new fuzzer for IACS.

3.1 Classification of Fuzzers

In order to compare different approaches and types of
fuzzers, it is useful to describe each of them using ort-
hogonal categories. In the following, we present four
categories to characterize fuzzers which are derived
from (Sutton et al., 2007) and (McNally et al., 2012):
Input crafting, operation mode, extensibility and or-
ganizational features.

3.1.1 Input Crafting

Crafting of fuzzed input data is realizable in many dif-
ferent ways. Depending on the scenario, data is either
generated based on knowledge about the data format
or mutated during transmission. Additionally, a fuz-
zer either generates the input data whilst testing the



DuT (online) or precomputes the fuzzed data (offline).
The main reasons for offline generation of data are ti-
ming requirements of real time components used in
IACS.

3.1.2 Operation Mode

In order to fuzz stateful protocols efficiently, the fuz-
zer must track the state of the protocol being tested.
Rearranging fuzzers are sometimes referred to as be-
havioural fuzzers. They do not fuzz data but data se-
quences which can trigger a different kind of faults
in the DuT compared to the data fuzzing. Rearran-
ging fuzzing is only relevant for stateful protocols be-
cause stateful protocols can have a wrong order of va-
lid data. Adaptive fuzzers use the reaction of the DuT
for adjusting their input in order to increase the proba-
bility of provoking an anomaly. If fuzzers are equip-
ped with special means to monitor IACS outputs other
then Ethernet-based ones, they provide IACS monito-
ring.

3.1.3 Extensibility

This category deals with the extensibility of the fuz-
zer. If a fuzzer is learning, it is able to extend its
knowledge of protocols and data structures automa-
tically by observing a given communication record.
In contrast, other fuzzers rely on Expert knowledge.
Some fuzzers are tailored to a set of specific proto-
cols. Others offer the opportunity to extend the pro-
tocol knowledge. From a technical point of view, it is
important on which network layer of the ISO/OSI mo-
del (Zimmermann, 1980) the fuzzers are based. There
are three common options for network fuzzers: Ether-
net (layer 2), IP (layer 3) or TCP/UDP (layer 4). Par-
ticularly, if protocols need to be extended or learned,
an Ethernet-based protocol cannot be implemented in
an IP-based fuzzer.

3.1.4 Organizational Features

Some organizational features are listed in this cate-
gory. They are particularly important if an existing
solution should be extended. So here is listed whet-
her the source code of the fuzzer is available online
and under which license it can be used. Additionally,
if known, the programming language and the time of
the last update of the fuzzer are registered.

3.2 Comparative Study of Fuzzers

Based on the classification provided in section 3.1, we
performed a comparative study on available fuzzers.
The results are presented in table 1 and described in

this section. The selection criteria for the studied fuz-
zers were the following: All fuzzers are either open
source or were described comprehensively in scienti-
fic papers. Additionally, all fuzzers provide the possi-
bility to create fuzzed network packets.

Two learning fuzzers, Pulsar (Gascon et al., 2015)
and AutoFuzz (Gorbunov and Rosenbloom, 2010),
use machine learning algorithms to infer the finite au-
tomaton of a stateful packet and heavily depend on
the completeness of provided data. While AutoFuzz
is not maintained since 2010, Pulsar got recent upda-
tes. Nevertheless, Pulsar crashed in our tests when
using it with other data then with the included exam-
ples. The maintainers confirmed this behaviour.

The General Purpose Fuzzer (GPF) learns proto-
col formats from recorded traffic and displays the pro-
tocol format in a human-readable way. Based on the
graphical representations, the fuzzer is configurable
to alter the displayed data.

Lzfuzz (Bratus et al., 2008) uses the General Pur-
pose Fuzzer (GPF) as its fuzzing engine. It uses a
compression algorithm to learn data structures and
fuzzes data mutatively as a man in the middle when
the data is transmitted. Lzfuzz can monitor the DuT,
but does not offer generative and rearranging fuzzing.

An example for a commercial fuzzing framework
is Peach (Peach Fuzzer Website, 2016). It is providing
the ability to define data formats and fuzzing scena-
rios in a xml format. It is available in an open-source
community edition with a reduced subset of functi-
ons. The code of Peach is written in C#.

Another unmaintained fuzzing framework using
data and protocol definitions based on xml is Snooze
(Banks et al., 2006), which is a research prototype de-
veloped in 2006.

A popular fuzzing framework, which has been ex-
tended by several research projects, is Sulley (Amini
and Portnoy, 2007). It has not been maintained since
the year 2007 but extended in various projects to
adapt it to certain test scenarios. Sulley offers sta-
teful fuzzing of network protocols, using block-based
definitions to craft data packets and applying an in-
expandable set of heuristics to alter said data. The
Sulley framework only offers TCP and UDP as trans-
port protocols, whereas IACS often use Ethernet-
based protocols. Monitoring of the DuT is supported
by Sulley with automated logging of network traffic
and storing it. After every fuzzing step, Sulley re-
sets the connection and iterates through its monitors
before continuing fuzzing the DuT in order to ensure
a well-defined state of the DuT before sending fuzzed
data. This feature is not configurable and causes a low
testing rate of one fuzzed data packet per second. Sul-
ley uses an outdated data format to illustrate the proto-



Table 1: Network fuzzer comparison.
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Input crafting

Generative X X X X X X X X
Mutative X X X X
Online X X X X X X X X X X
Offline X X X X

Operation mode

Stateful X X X X X X
Rearranging X X X X
Adaptive X X X X
IACS monitoring X X

Extensibility

Learning X X X X X X (X)

Expert Knowl. X X X X X
Protocol extens. X2 X X X X X X
ISO/OSI layer 3 4 3 3 2 4 4 2 4 4 2

Organizational

Source code X X X1 – X – X X – – X
License BSD n/a GPL – MIT – GPL GPL – – Open

Language Pyth./R Java Pyth. n/a C# Pyth. Pyth. Pyth. Pyth. Pyth. –

Last updates 20172 2010 2007 2008 20163 2006 20154 2012 2016 2017 –

1 via archive.org, 2 known bugs, see text, 3 Community Edition, 4 officially unmaintained

col state machine which cannot be opened easily, im-
peding development of individual fuzzers within the
framework.

ProFuzz (HS Augsburg, 2012) and Modbus/TCP
Fuzzer (MTF) (Voyiatzis et al., 2015) are fuzzers dis-
tinctly developed for fuzzing automation protocols.
They are targeted to one specific protocol, Profinet
and respectively Modbus, and are not extendible for
usage with other data formats.

PropFuzz (Niedermaier et al., 2017) is a fra-
mework using statistical computation to analyze the
structure of proprietary protocols during the DuT’s
communication with the vendor’s integrated develop-
ment environment (IDE). It is able to fuzz such com-
munication, which has to be based on TCP. This ge-
nerates a limited range of fuzzed data since the input
is limited to only the valid communication with the

IDE.
Concluding, none of the considered fuzzers and

fuzzing frameworks shown in table 1 fit our scenario
perfectly and include the properties required for pro-
viding an efficient and extendable fuzzing framework.

3.3 IACS Fuzzer Requirements

Following the comparative study of different fuzzers
presented in the previous section and based on the re-
quirements for security testing of IACS described in
section 2.2.1, the following requirements for an ideal
fuzzer of IACS can be formulated.

(A) The fuzzer must be able to use existing protocol
definitions and therefore be generative. This ena-
bles the integration of expert knowledge into the
fuzzing process for enabling the test of arbitrary



systems based on varying technologies.

(B) The fuzzer must be able to craft the desired input
online and offline. Online input crafting is needed
to be able to exercise adaptive fuzzing, whereas
offline crafting might be needed to prepare input
to achieve high transmission rates.

(C) The fuzzer must be able to be aware of the state
of the network protocols. There are many state-
ful industrial protocols and the fuzzer needs these
states to be able to achieve a high coverage of pos-
sible device conditions.

(D) The fuzzer must be able to use knowledge of the
protocol procedures to create invalid protocol se-
quences, enabling fuzzing by rearranging (beha-
vioral). This increases the effectiveness in the tes-
ting of network protocol implementations.

(E) The fuzzer must be adaptive in its interaction
with the examined DuT. This enables the fuzzer
to react on the responses of the device and is nee-
ded to reach certain states in stateful protocols.

(F) The fuzzer must be able to monitor the DuT as
thoroughly as possible, i.e. on all available inter-
faces. Especially IACS can exhibit multiple inter-
faces of different nature, like network or electrical
I/O.

(G) The fuzzer must be extensible to enable the adap-
tion to different test scenarios and different net-
work technologies. The extensibility includes
simple ways for adding new protocols by expert
knowledge, and optionally by automated learning.
Source code availability and suitable, open licen-
sing is also part of the extensibility properties of a
fuzzer.

(H) The fuzzer must be able to craft network pac-
kets on the Ethernet-Layer (ISO/OSI layer 2), to
enable the fuzzing of industrial Ethernet protocols
that are often used in the IACS domain.

(I) The fuzzer shall create reproducible test cases and
data. This is important for the availability of repe-
ated testing in order to localize found vulnerabili-
ties and test mitigations.

An ideal fuzzer for IACS needs to meet all these
requirements. Its properties, resulting from the requi-
rements, are also depicted in table 1. The results in
the table also show, that the examined existing fuzzers
cover only a subset of the presented requirements. In
order to offer an improved and extendable solution,
this work aims at providing a fuzzer more suitable to
the IACS domain.

4 DESIGN

Based on the identified requirements, we present in
this section a generic fuzzer which meets the require-
ments as well as allows the exchanging of its compo-
nents in order to extend or replace functionality of the
framework. Integrated in the ISuTest framework, the
fuzzing framework is composed of different ISuTest
modules: data generation, protocols, data transmis-
sion and monitoring modules. The modules and their
interaction are shown in figure 3.

Figure 3: Architecture of the fuzzing framework.

The ISuTest scanner interprets a test script which
defines a fuzzing test. It initializes the fuzzer accor-
dingly to the specified testing functionality. On the
one hand, the fuzzer makes use of the heuristics to ge-
nerate the requested input data and puts resulting fuz-
zing instructions into the queue. On the other hand,
the fuzzer instructs the monitor. Once the fuzzing test
is being started, the protocol instance pulls fuzzing
instructions from the queue and crafts network pac-
kets by using scapy/automata (Biondi, 2010) definiti-
ons. Concurrently, the protocol sends the packets to
the DuT while the monitor observes the DuT’s reacti-
ons.

All tests conducted with the fuzzing framework
must be reproduceable. Therefore, a pseudo random
number generator is used, which provides determinis-
tic values depending on a provided seed.

In the next subsections, the design is being explai-
ned following the phases of a fuzzing process.



4.1 Data Generation

The packet formats for the protocols, which are to be
fuzzed, are encoded in packet definitions. Modelling
of stateful protocols is done with a finite automaton.
The automaton must enable state transitions without
sending and receiving the packets which are normally
necessary for state transitions in order to realize re-
arranging fuzzing. For generative fuzzing, the state
transitions must enforce sending and receiving data
according to the protocol. This enables a targeted
fuzzing of protocol states which have to be reached
before fuzzed data is sent.

The data generation itself is twofold: Fuzzing in-
structions are generated in the fuzzer module with the
help of heuristics, and alteration of valid data in the
protocol module within the finite automaton. The fuz-
zing instructions contain information which field is to
be fuzzed and in which manner, i.e. it contains the
value the given field is to be applied by the protocol
module. The protocol module uses a packet defini-
tion to craft a data packet containing the altered va-
lue. Lose coupling between fuzzer and protocol with
well defined interfaces in-between makes the frame-
work highly flexible. The fuzzer is also logging seed
values for every generation of pseudo-random values,
enabling to recreation of the same values again.

4.1.1 Heuristics

The fuzzer component uses heuristics to determine
how a field of a given data type is to be fuzzed, whe-
reas the protocol module crafts the altered data. The
need for using heuristics results from the impossibi-
lity to test every possible value in a reasonable time.

Therefore, promising values have to be chosen.
The used heuristics rely on experience from previous
projects, e.g. Sulley, and are extendable. Expert kno-
wledge should additionally be used to tailor the heu-
ristics to a given test scenario in order to maximize
the chance for finding a vulnerability.

The fuzzing framework currently makes use of
four different heuristics. The Integer heuristic pro-
duces numbers like 0, the minimum and the maxi-
mum value as well as boundary cases at power of 2
minus 1. The String heuristic provides, for example,
escape sequences, terminal commands and SQL sta-
tements. The MAC heuristic creates randomized Mac
addresses while the UUID heuristic chooses randomi-
zed Universally Unique Identifiers.

4.2 Transmission of Data

The finite state machine, modeling the protocol to
be tested, alters fields of given data packets crafted

from the packet definition according to the instructi-
ons received from the fuzzer. Instructions are trans-
mitted between the fuzzer and the protocol instance
via a queue. This enables the fuzzer and the proto-
col modules to be separate entities within the ISu-
Test framework. The execution of the two entities is
loosely decoupled to enable running them asynchro-
nously and increase overall performance of the tes-
ting framework. Furthermore, the fuzzer and protocol
modules are reusable for other kinds of security tests
within the ISuTest framework.

The communication between the fuzzing frame-
work and the DuT is realized by a communication
module which provides transparent connectivity on
a certain layer. For example, a communication mo-
dule providing a TCP connection handles the esta-
blishment and maintaining of said connection. Based
on that connection layer, the protocol modules only
need to manage data based on the connection and for-
ward it to the communication module.

4.3 Monitoring of the DuT

White box fuzzers have access to the internal state of
the subject under test, e.g. by using a debugger to
observe the reactions of a program to fuzzed input.
Industrial devices however do not offer the possibi-
lity to observe internal reactions to a certain input.
Instead, the state of the DuT has to be inferred by
monitoring interfaces which it provides. This inclu-
des the Ethernet interface over which it communica-
tes with the fuzzing framework, as well as other data
buses and I/O.

By running a known program on the DuT, the ex-
pected output of the DuT can be compared with the
actual output in order to detect vulnerabilities of the
DuT. Monitoring of analogue and digital I/O requires
appropriate measurement and processing of the sig-
nals in order to be logged and used in the fuzzer. In
particular, the rate of false positives arising from me-
asurement inaccuracies must be kept to a minimum.

4.4 Fuzzing Procedure

The fuzzer operates in two modes: synchronous or
asynchronous. When operating synchronously, the
fuzzer checks the state of the DuT after each in-
struction, respectively after each sent data packet. A
more time efficient way of monitoring the DuT’s he-
alth is monitoring it asynchronously, after a bulk of
data packets has been sent. Since the fuzzer and the
protocol is decoupled, the fuzzer requests the health
information about the DuT instead of being notified
and can only map anomalies to messages which have



been sent since the last check. A tradeoff between
efficiency and accuracy is found here in order to in-
crease the number of performed tests to a reasonable
number.

After every monitoring check with a positive re-
sult, a well-defined state must be reached by the DuT.
Resetting the DuT enables the fuzzing to be targeted
to a certain state. The efficiency of fuzz testing is in-
creased by selectively fuzzing states of a stateful pro-
tocol instead of sending fuzzed data without conside-
ration of the DuTs state. Without considering the pro-
tocol state machine, a deep exploration of said state
machine is not feasible since most of the fuzzed data
resets the DuT into an initial state.

5 EVALUATION

In this evaluation, the properties of the presented fuz-
zer will be compared to the requirements, as presented
in section 3.3. For a practical evaluation, the fuzzer
was also used to test multiple IACS, which will also
be described in the following sections, including the
test results.

5.1 Requirement Evaluation

The presented fuzzer design uses protocol descripti-
ons, including structure of individual packets and lo-
gic of the protocol sequences (section 4), and is able
to generativly create the test data, satisfying require-
ment (A). The test data can be generate online, during
the the test execution, or offline, as demanded by re-
quirement (B).

The design enables the fuzzing of stateful pro-
tocols as well as behavioral fuzzing by rearran-
ging packet sequences (section 4.1) and thus satis-
fies requirements (C) and (D). Through the usage of
Scapy/Automata, as well as modules from the ISu-
Test framework, the responses of the DuT are availa-
ble to the fuzzer (section 4.2) and enable the adaption
to these reactions, fulfilling requirement (E).

As described in section 4.3, the fuzzer is able to
monitor a wide range of the output possibilities of the
DuT, ranging from network responses to digital and
analog I/O, satisfying requirement (F). This form of
protocol description format also enables the fuzzer to
adapt to new test scenarios, including additional pro-
tocols, as demanded in requirement (G).

The fuzzer is based on open source technology,
enabling open adaption to new technologies (require-
ment (G)). Based on Scapy/Automata, the fuzzer is
able to craft packets from the Ethernet layer upwards

and enabling the implementation of typical automa-
tion protocols (requirement (H)). Requirement (I) sta-
tes the reproducibility of test cases, which the presen-
ted fuzzer can satisfy by logging configuration and
seed values, as described in section 4.1.

5.2 Test Bed Evaluation

The fuzzer has been implemented in Python 3 as ISu-
Test modules. It makes use of Scapy definitions for
network and automation protocols. States of automa-
tion protocols, in particular PNIO, have been imple-
mented using Automata in Scapy.

Four PNIO bus couplers were selected as DuTs
to perform the evaluation. Bus couplers are used to
operate and control remote periphery in terms of digi-
tal and analog signals. In PNIO terminology, the bus
couplers act as PNIO devices which are managed by
a PNIO controller.

5.2.1 Testing Methodology

The test bed in which the evaluation took place, follo-
wing the ISuTest specification, consists of the devices
depicted in figure 4. Depicted in the center, the indus-
trial network Switch is providing communication.

Above the switch, the infrastructure components
are shown: The Test device, a Linux-based PC, runs
the ISuTest framework. A programmable logic con-
troller (PLC) acts as IO device which monitors the di-
gital outputs of the DuTs. Finally, the Remote control-
lable power supply (RCPS) is used to reset the DuTs
automatically. Below the switch, there are the four
bus couplers labelled as DuT 1 to 4.

Figure 4: Test bed evaluation setup.

Beside the switch, the DuT master is depicted with
a dashed connection. Initially, the DuT master is used
as PNIO controller which runs the automation process
and controls the four DuTs as PNIO devices. The au-
tomation process emits a reference signal on one digi-
tal output of every DuT. It consists of three repeating
cycles in which the first one is a 1 and the next two
ones are a 0 each. This cycle is based on the EDSA
CRT definition, as mentioned in section 2.

In the setup phase, the Test device observes the
communication setup between the DuT master and
the DuTs. During the testing phase, the Test device



spoofs both the MAC and the IP address of the DuT
master while the DuT master gets disconnected phy-
sically from the switch. The spoofing enables the Test
device to act as the legitimate PNIO controller for the
DuTs. This is important because it allows for setting
up a valid communication between the Test device
and the DuTs, which ensures that the DuTs process
the fuzzed packets as intended.

5.2.2 Essential Services Monitoring

ISuTest monitors the functionality of the DuTs while
those are being tested. In table 2, the essential servi-
ces of the DuTs 1 to 4 that are taken into account are
listed. A check mark represents the fact whether the
DuT supports the respective service.

Table 2: Essential services provided by the DuTs and chec-
ked by ISuTest.

Service DuT
1

DuT
2

DuT
3

DuT
4

Ping X X X X
Web server X – X –
Digital Output X X X X
CM Connect X X X X

Ping tests are performed by the ICMP module
from ISuTest. It sends ICMP echo requests and waits
for echo replies. Checking the availability of the web-
based management interface is performed by ISu-
Test’s HTTP module. It requests the home page of
the DuT and checks the HTTP status code.

In order to check for the digital output, the refe-
rence signal is being used. The digital output pin of
the DuT is connected to a digital input pin of the IO
device. The Digital IO module checks for both the
existence of the test signal and its jitter.

Checking for the PNIO-CM Connect functionality
is the most complex part, because it consists of more
than one single request and response packet but in-
cludes different protocols. It makes use of the PNIO
module being described in the following and checks
whether the real-time communication lasts at least
three seconds.

5.2.3 Test Execution

The fuzzing tests have been performed on each DuT
for the following four protocols: PNIO-DCP, PNIO-
CM and PNIO-RT, as an example for industrial au-
tomation protocols, and IPv4, as an example for an
internet protocol.

Table 3 represents an example for a PNIO-DCP
network packet requesting the identification of a

Table 3: Example of the fuzzing configuration of a DCP
message requesting the identification of a PNIO device
(IdentReq). Length in bit, coverage in %.

Name Len. Heur. Iter. Cover.
FrameID 16 Integer 2000 3,05
ServiceID 8 Integer 256 100
Service-Type 8 Integer 256 100
xid 32 Integer 2000 � 0,1
ResponseDel. 16 Integer 2000 3,05
DCPDataLen. 16 Integer 2000 3,05
blockType 16 Integer 2000 3,05
dcpBlockLen. 16 Integer 2000 3,05
blockInfo 16 Integer 2000 3,05
nameOfStat. 1152 String 2500 � 0,1

Sum 17012

PNIO device with the respective nameOfStation as
the identifier. Starting with the name and the length
(in bit) of a field, the following columns represent the
applied heuristics, the number of iterations performed
while testing and the resulting coverage of the search
area in percent.

As one can see, the bigger the fields, the smaller
the coverage of the overall value space. Since there
are defined multiple block types for getting and set-
ting configuration options, the number of fuzzing ite-
rations for the PNIO-DCP protocol multiplies.

Table 4: Excerpt of the fuzzing configuration of a PNIO-
CM Connect request message. Length in bit.

Name Len. Heur. Iter.
args max 32 Integer 2000
args length 32 Integer 2000
max count 32 Integer 2000
offset 32 Integer 2000
actual count 32 Integer 2000
block type 16 Integer 2000
block length 16 Integer 2000
block version high 8 Integer 256
block version low 8 Integer 256
ARType 16 Integer 2000
ARUUID 128 UUID 2000
SessionKey 16 Integer 2000
CMInitiatorMacAdd 48 MAC 2000
CMInitiatorObjectUUID 128 UUID 2000
. . .

Table 4 represents the fuzzing of PNIO-CM as an
example for a stateful network protocol. The depicted
network packet shows an excerpt of a Connect re-
quest from the DuT master to the DuT. The PNIO-
CM-related part of the packet has 80 distinctive fields
with a total length of 1,232 bit. In order to fuzz all
possible configurations, one had to fuzz 21,232 pac-



kets (≈ 7.4 ·10370). Using the heuristics, this amount
of test cases can be reduced to 106,000, which can be
conducted in a reasonable amount of time.

5.2.4 Vulnerability Discoveries

During the execution of the fuzzing tests, we disco-
vered multiple vulnerabilities in each of the DuTs.
On the one hand, there were expected vulnerabilities
which are present in the DuTs because they originate
from weaknesses in the design of PNIO. A prominent
example for this, which is also mentioned in (Pfrang
and Meier, 2017), is a DCP Set request which chan-
ges the name of the PNIO device (nameOfStation).
Since there is limited use in testing if the communica-
tion breaks if the device is renamed to a or b or c, we
limited those test cases.

On the other hand, we discovered vulnerabilities
which are located in the implementation. As an exam-
ple, we will describe a vulnerability in the PNIO-CM
protocol which two DuTs have in common. When
setting up an application relationship, both communi-
cation partners configure the frequency in which they
exchange real time data messages. The respective pa-
rameter is called SendClockFactor and defined in a 2
byte field.

When setting this parameter to the values of 8, 9,
10, 11 or 65524, two DuTs crash and reboot with all
status LEDs flashing shortly. Usually, devices loosing
a connection have to send alarm frames. This does not
work either. The monitoring also confirms that neither
are the devices pingable nor can their web server be
reached. Their digital outputs stop working and the a
CM connect is not possible for half a minute.

In real factories, it is common to fix failures of au-
tomation equipment by power cycling the respective
device. But this vulnerability cannot be fixed by this
means, because the device has lost its device name
which is indispensable in a PNIO communication.
Probably those values cause a memory corruption. In
order to cure this behaviour, one has to reset the de-
vice name using the PNIO-DCP protocol.

6 CONCLUSION

Security testing for IACS is crucial. By detecting vul-
nerabilities and fixing them before they can be abused
by attackers, manufacturers can improve the overall
security of automation systems. The ISuTest frame-
work enables developers to perform security tests on
their IACS automatically. Fuzzing is another, inte-
resting technique to discover vulnerabilities. By ad-
ding this functionality to the ISuTest framework, its

effectiveness in finding vulnerabilities could be im-
proved extraordinarily.

Within this work, first, available fuzzers and fuz-
zing frameworks have been characterized and com-
pared. Then, requirements for effective fuzzing of
IACS, based on existing security testing require-
ments, were developed. By comparing the studied
fuzzers to these requirements, it was shown that none
of the fuzzers fulfilled them completely. As a result, a
new fuzzer was developed and described in this paper,
which can be integrated into the ISuTest framework as
well as meet the requirements for an ideal IACS fuz-
zer.

During the evaluation, it was shown that the new
fuzzer is able to fulfill these requirements. The fuz-
zer was evaluated further by setting up a test bed and
conducting fuzzing test against multiple Profinet de-
vices. During this evaluation, several vulnerabilities
could be discovered. The fact that two devices suf-
fered from the same vulnerability stresses the impor-
tance of security tests not only for developers but also
for integrators of IACS. As shown, the fuzzing frame-
work proved its usefulness successfully.

6.1 Future Work

During this work, it became clear that future work
should focus on the precise description and classifica-
tion of the vulnerabilities. This is important to be able
to clearly classify detected vulnerabilities and report
them to the manufacturer of the device. This includes
formal methods taking into account the special requi-
rements for IACS.

Further work needs also to be put into the defini-
tion of new protocols following the presented fuzzer
definition. As the IACS domain consists of highly
heterogeneous technology, it is important to cover as
many technologies and protocols as possible.
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