
User Impersonation as a Service in End-to-End Testing

Boni García, Francisco Gortázar, Micael Gallego and Eduardo Jiménez
Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933 Móstoles (Spain)

Keywords: End-to-End Testing, User Impersonation, Software as a Service, WebRTC.

Abstract: Testing large distributed heterogenous systems in cloud environments is a complex task. This situation

becomes especially difficult when carrying out end-to-end tests, in which the whole system is exercised,

typically through its graphical user interface (GUI) with impersonated users. These tests are typically

expensive to write and time consuming to run. This paper contributes to the solution of this problem by

proposing an open source framework called ElasTest, which can be seen as an elastic platform to carry out

end-to-end testing for different types of applications, including web and mobile. In particular, this piece or

research puts the accent on the capability to impersonate final users, presenting a real case study in which

end-to-end tests have been carried out to assess the correctness of real-time communications among

browsers using WebRTC.

1 INTRODUCTION

Modern software systems are increasingly complex.

Nowadays, architectures involving distributed

heterogenous services, cloud native, and

microservices are more and more common. As

usual, in order to accomplish a satisfactory level of

quality for these systems, different aspects need to

be addressed. First, the expectations of final users

need to be met. Using the classical definition of

Verification and Validation (V&V) by the

distinguished professor of computer science Barry

Boehm, this part is known as validation -are we

building the right product?- (Boehm, 1979). Second,

we need to ensure that the software meets its stated

functional and non-functional requirements, i.e., its

specification. This part is commonly known as

verification -are we building the product right?-.

Finally, we need to reduce the number of software

defects (commonly known as bugs) in our system to

the minimum, ideally to zero.

V&V include a wide array of activities, mainly

divided in two groups. On the one hand, software

testing (or simply testing) consists of observing a

sample of executions (test cases), and giving a

verdict on them. Hence, testing is an execution-

based activity, and for this reason, it is sometimes

called dynamic analysis. On the other hand, static

analysis is a form of V&V that does not require

execution of the software. Static analysis can work

directly with the source code, and also with

representation of the software, such as model of the

specification of design. Common forms of static

analysis include peer review or automated software

analysis. Regarding the later, this technique is

usually delivered as commercial or open source tools

and services, commonly known as lint or linter.

This paper is focused in software testing, which

is a broad term encompassing a wide spectrum of

different concepts. Depending on the size of the

System Under Test (SUT) and the scenario in which

it is exercised, testing can be carried out at different

levels. There is no universal classification for all the

different testing levels. Nevertheless, the following

levels are broadly accepted in the literature (García,

2017):

▪ Unit: individual program units are tested. Unit

tests typically focus on the functionality of

individual objects or methods.

▪ Integration: units are combined to create

composite components. Integration tests focus

on the interaction of different units.

▪ System: all of the components are integrated

and the system is tested as a whole. There is a

special type of system testing called end-to-

end testing. In this approach, the final user is

typically impersonated, that is, simulated

using automation techniques.

▪ Acceptance: final users decide whether or not

the system is ready to be deployed in the

García, B., Gortázar, F., Gallego, M. and Jiménez, E.
User Impersonation as a Service in End-to-End Testing.
DOI: 10.5220/0006752207070714
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 707-714
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

707

consumer environment. These tests can be

seen as functional testing performed at system

level by final users or customers.

The first three levels (unit, integration, and

system) are typically carried out during the

development phases of the software life cycle. These

tests are typically performed by different roles of

software engineers, i.e. programmers, testers,

Quality Assurance (QA) team, etc. The objective of

these tests is the verification of the system. On the

other side, the fourth level (acceptance) is a type of

user testing, in which potential or real users are

usually involved (validation). As illustrated in

Figure 1, the different tests levels are commonly

depicted as a pyramid, in which the base is the unit

tests (which in in theory are more numerous), while

the number of other tests (integration, system,

acceptance) is decreasing as long as we ascend to the

top. This idea of a pyramid for the different testing

levels was first proposed by Mike Cohn (Cohn,

2009).

Figure 1: Testing levels and its relationship with V&V.

The capability to automate of the different tests

levels has a direct impact on the project costs. Thus,

user testing (acceptance) is unlikely to be fully

automated, since the evaluation of the final

consumer always comprises some kind of human

intervention, and therefore this kind of tests can be

costly. Development testing, on the other side, can

and should be automated. Regarding top-level tests

-system and end-to-end-, these tests typically drive

an application through its user-interface, checking

that the application returns the expected results. This

approach works well in simple scenarios, but at the

end of the day these tests are prone to potential

problems, such as brittle logic, expensive to write,

and time consuming to run (Fowler, 2012). This

situation leads to the ice-cream cone anti-pattern, in

which manual tests -which should be a reduced

number on the top- increases its number more and

more, while the number of down-level automated

tests (integration and unit) is reduced (Scott, 2015).

This situation can become a real pain for

software practitioners in the common case that the

SUT is increasingly large and complex, such as

distributed heterogenous, microservices, or cloud

native systems. This kind of software systems

aggregates many different distributes components,

which are typically built and run applications based

on Infrastructure as a Service (IaaS) combined with

operation tools and services such as Continuous

Integration (CI), container engines, or service

orchestrators, to name a few.

This piece of this research contributes in the

domain of end-to-end test automation (i.e. system

tests in which the user is impersonated) for large

complex distributed applications in cloud

environments. To make easier this process for

software practitioners, we have created an open

source framework ElasTest. As we will discover,

this framework provides advance test capabilities to

ease the end-to-end tests process for different kind

of applications, including web and mobile.

Moreover, ElasTest provides the capability of

impersonate final users on web and mobile devices,

by extending the standard W3C WebDriver

recommendation (Stewart, 2017). This service has

been evolved into a fully Software as a Service

(SaaS) model so that developers do not need to take

into consideration problems related to computing

resources scheduling, software provisioning or

system scaling, providing a high-level test capability

which can be referred as User Impersonation as a

Service (UIaaS).

The remainder of this paper is structured as

follows. Section 2 provides a brief overview in the

state-of-the-art on end-to-end testing and user

impersonation. Section 3 provides a description of

the ElasTest framework. Then, section 4 provides

extra details of the ElasTest’s User Impersonation

Service (called EUS in the ElasTest jargon). In order

to validate our proposal, a case study has been

performed using a videoconferencing web system

built on the top of WebRTC. The description and

results of this case study are contained in section 5.

Finally, section 6 provides the conclusions, findings,

and future work of this piece of research.

2 BACKGROUND

Testing distributed and heterogeneous software

systems, running over interconnected mobile and

cloud based platforms, is particularly challenging.

To verify these systems, developers face with

different problems, including the difficulty to test

the system as a whole due to the number and

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

708

diversity of individual components, the difficulty to

coordinate the test participants due to the distributed

nature of the system, or the difficulty to test the

components individually.

Recent research effort has tried to quantify the

current state of the practice of the testing automation

level for this kind of software systems. For instance,

Lima and Faria have conducted an exploratory

survey on testing distributed and heterogeneous

systems that was responded by 147 software testing

professionals that attended to two industry-oriented

software testing conferences (Lima, 2016). The

survey results confirm the existence of a significant

gap between the current and the desired status of test

automation for distributed heterogenous system, and

confirm and prioritize the relevance of test

automation features for these systems.

Many different contributions in the literature

aimed to improve the current state of the art in end-

to-end testing. For instance, the European

Commission funded H2020 project TRIANGLE1 is

building a framework to help app developers and

device manufacturers in the evolving 5G sector to

test and benchmark new mobile applications in

Europe. This framework evaluates Quality of

Experience (QoE) and enable certification for new

mobile applications and devices (Cattoni, 2016).

Regarding web and mobile applications, the

main mechanisms used in the current state-of-the-art

for the functional testing of these applications

consists on impersonating a user through some kind

of GUI automation technology, being Selenium2 the

most popular solution for web applications. In this

domain, Selenium WebDriver is capable of drive

automatically real browsers, such as Chrome,

Firefox, Opera, Edge, Safari, etc., using different

programming languages, such as Java, C#, Python,

Ruby, PHP, Perl, or JavaScript. To that aim,

Selenium WebDriver makes calls to the browser

using each browser’s native support for automation.

The language bindings provided by Selenium

WebDriver communicates with a browser-specific

binary which acts as a bridge with the browser. The

communication between the WebDriver script and

the driver binary is done with JSON messages over

HTTP using the so-called JSON Wire Protocol

(Bruns, 2009). This mechanism, originally proposed

by the Selenium team is being standardized in the

W3C WebDriver recommendation (Stewart, 2017).

The second major component of the Selenium

1 http://www.triangle-project.eu/
2 http://www.seleniumhq.org/

framework is called Selenium Grid. This component

allows remote execution of Selenium WebDriver on

distributed machines. The architecture of Selenium

Grid is composed by a group of nodes, each running

on different operating systems and with different

browsers. Then, a central piece called hub (also

known as Selenium Server) keeps a track of the

nodes and proxies requests to them using JSON

Wire Protocol/W3C WebDriver messages. This

capability is used by the Appium3 project to drive

mobile devices. In Appium, instead of web

browsers, mobile devices are registered in a central

component called Appium Server. As depicted in

Figure 2, following the Selenium Grid approach, the

Appium Server is remotely controlled by means of

Wire Protocol/W3C WebDriver messages, typically

used by tests of scripts implementing the WebDriver

API (Shah, 2014).

Figure 2: Selenium/Appium high-level architecture.

3 ELASTEST: AN ELASTIC

PLATFORM TO EASE END-TO-

END TESTING

ElasTest4 is an open source5 framework aimed to

ease the end-to-end testing activities for different

types of distributed applications and services,

allowing developers and testers to assess their cloud

applications in an elastic, and integrated

environment. The proposed framework manages the

full testing lifecycle, deploying and monitoring the

SUT, executing the end-to-end tests and exposing

the results to software engineers and testers.

In this paper we focus on the ElasTest capability

to impersonate browsers and mobile devices. This

service has been designed following a SaaS model in

3 http://appium.io/
4 http://elastest.io/
5 https://github.com/elastest/

User Impersonation as a Service in End-to-End Testing

709

Figure 3: ElasTest architecture.

order to make transparent for the final user potential

problems related to computing resources scheduling,

software provisioning or system scaling.

In order to understand how EUS works, first we

need to review the overall architecture of ElasTest,

depicted in Figure 3. First of all, we find the ElasTest

Test Orchestration and Recommendation Manager

(ETM), which is the access point to the framework.

It orchestrates all other components exposing

different interfaces for consumers, such as a web

GUI, a command line interface, and also an interface

with a custom Jenkins plugin.

ElasTest follows a microservices approach, and

the component which is responsible for discovering

and operating the different services that ElasTest

make available to tests is called ElasTest Service

Manager (ESM). This component is based on the

Open Service Broker API (OSBA)6 for discovering,

registering and unregistering services within the

platform. RabbitMQ7 is used as messaging queue for

the events communication among the different

services.

One of the key aspects handled out of the box by

ElasTest is related with data management. During its

operation, ElasTest gathers different sources of data

6 https://www.openservicebrokerapi.org/
7 https://www.rabbitmq.com/

from test execution, including SUT logs, different

types metrics -including SUT resource consumption,

packet-loss in the network traffic, or node failures,

among others-, or custom files issued by services -

e.g. browser/mobile session recordings carried out

by EUS-. The component responsible for the

persistence layer is called ElasTest Data Manager

(EDM), and it has been built on the top of on

MySQL8 as relational database, Elasticsearch9 as

search engine, and Alluxio10 as virtual distributed

storage system.

The ElasTest Instrumentation Manager (EIM)

provides the capability of instrumenting the SUT to

inject potential system failures like packet-loss,

network bandwidth adjustments to emulate real

conditions, CPU bursting, and node failures, to name

a few. To that aim, Beats11 agents are installed

together with the SUT.

Finally, the ElasTest Platform Manager (EPM) is

the component responsible of isolating the ElasTest

services from the underlying infrastructure. The

supported cloud infrastructures are OpenStack12,

8 https://www.mysql.com/
9 https://www.elastic.co/
10 https://www.alluxio.org/
11 https://www.elastic.co/products/beats
12 https://www.openstack.org/

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

710

Table 1: Extension to W3C WebDriver recommendation by ElasTest User Impersonation Service.

Method Path Description
POST /session/{sessionId}/element/{elementId}/event ① Subscribe to a given event

within an element
GET /session/{sessionId}/event/{subscriptionId} ② Read the value of event for a

given subscription
DELETE /session/{sessionId}/event/{subscriptionId} ③ Remove a subscription
GET /session/{sessionId}/vnc ④ Get remote session
DELETE /session/{sessionId}/vnc ⑤ Delete remote session
POST /session/{sessionId}/usermedia ⑥ Set user media for WebRTC
GET /session/{sessionId}/stats ⑦ Read the WebRTC stats
POST /session/{sessionId}/element/{elementId}/latency ⑧ Measure end-to-end latency

of a WebRTC session
POST /session/{sessionId}/element/{elementId}/quality ⑨Measure quality of a WebRTC

session

Amazon Web Services13 (AWS), Docker14 and

Kubernetes15. Moreover, Open Baton16 is used for

orchestrating the SUT and the network services

within the ElasTest platform (Carella, 2015).

4 USER IMPERSONATION AS A

SERVICE

As introduced in section 2, testers’ need for user

impersonation is more and more demanded. For that

reason, nowadays there are several companies that

are growing business models basing on exposing

these capabilities through SaaS models, such as

Saucelabs17 or BrowserStack18. However, these

solutions have relevant limitations. On the one hand,

these services have very relevant costs, which limit

their applicability for many projects. On the other

hand, these services only impersonate the user from

the perspective of its outgoing actions, but not from

the perspective of its incoming perceived QoE.

ElasTest progresses beyond the current state of

the art providing an advanced user impersonation as

a service capability that provides GUI automation

basing on open source paradigms and enables also

the evaluation of the perceived quality of users on

relevant scenarios such as real-time multimedia

applications. As introduced in the section before,

this feature has been implemented in the component

called ElasTest User Impersonation Service (EUS),

13 https://aws.amazon.com/
14 https://www.docker.com/
15 https://kubernetes.io/
16 https://openbaton.github.io/
17 https://saucelabs.com/
18 https://www.browserstack.com/

providing what we can call User Impersonation as a

Service (UIaaS). This service is devoted to provide

user impersonation for two types of user interfaces,

i.e. web browsers and mobile devices.

In order to expose this capability through an API

in a universal way, EUS has been implemented as an

extension of the W3C WebDriver API. As presented

in section 2, this recommendation is used to drive

remote browsers and mobile devices, by means of a

client-server technology implemented by Selenium

and Appium respectively. The vision of EUS is to

enhance the current support with additional advance

capabilities in a seamless and integrated solution.

To that aim, EUS exposes a REST API based on

JSON messages19 which complements the W3C

WebDriver specification. The definition to this

REST API has been defined using Open API

notation20, and it is summarized in Table 1. In this

table, the first operation allows to subscribe to

events in a given element of the user interface. Then,

second operation allows to read the value for a given

subscription, and the third one allows to unsubscribe

to that event. Operations 4 and 5 are related with the

capability of remote GUI, provided by EUS out of

the box by means of Virtual Network Computing

(VNC). Using these commands, EUS allows to

watch in real-time the use of a browser or mobile

device, typically driven by a test script using the

WebDriver API.

The last group of operations summarized in Table

1 are targeted for WebRTC applications. WebRTC is

the umbrella term for a number of emerging

technologies that extends the web browsing model to

exchange real-time media with other browsers

(Loreto, 2017). Market momentum around WebRTC

19 http://elastest.io/docs/api/eus/
20 https://www.openapis.org/

User Impersonation as a Service in End-to-End Testing

711

is growing very fast nowadays, and therefore, it is

imperative for software testers to have a strategy in

place in order to assess WebRTC applications

efficiently. Nevertheless, testing WebRTC-based

applications in a consistently automated fashion is a

challenging problem. EUS contributes to the

solution of this problem with proving advance

features aimed to asses this kind of applications.

First of all, thanks to operation 6 presented in

Table 1, the EUS is capable of faking the user media

-video and/or audio- employed in a WebRTC

communication with a custom video/audio file

chosen by the tester. Then the operation 7, allows to

read all the collection of WebRTC stats, which is a

good indicator on Quality of Service (QoS) for

WebRTC. These include traffic metrics such as

network latency, network packet loss, network jitter,

retransmissions, or consumed bandwidth.

Moreover, EUS enables to measure the end-

user's perceived quality so that testing through the

validation of the subjective perceived quality. To

that, EUS analyses the multimedia QoE for audio

and video using different full-reference algorithms,

such as PESQ (Rix, 2001) for audio or SSIM (Wang,

2004) for video. Full-reference is type of QoE

media-based algorithms, in which the degraded

signal is compared with the original signal

(Chikkerur, 2011). This, applied to EUS, means that

a couple of browsers (or mobile devices) are needed,

first one acting as media source and the other acting

as media consumer. Internally, this process reuses

the aforementioned publish-subscribe mechanism, in

which quality events - audio or video- are published

periodically.

Finally, EUS provides several extra capabilities

in conjunction with the rest of ElasTest components.

On the one hand, it records every session in a

seekable recording, stored in EDM as a video file.

This feature improves the traceability of tests,

allowing users to check the evolution of test

executions when required. On the other hand, EUS

always gathers automatically the browser logs in

every session. Again, this information is stored

together the recording on EDM, and it can be a

valuable source of information for developers and

testers to try to trace the source of faults when tests

are failing.

EUS has been implemented as a Spring Boot21

REST service listening for the enhanced version of

W3C WebDriver specification just presented. The

EUS workflow starts with the invocation of a

21 https://projects.spring.io/spring-boot/

session creation carried out in a WebDriver script.

Once the EUS controller receives this message

(POST /session), proxies the message to a

Selenium/Appium server provided on demand by

EPM. Once the browser or mobile device is

available, a unique session identifier (sessionId,

which is always available in the operations described

in Table 1) is sent as response. This parameter is used

in successive requests to interact with the

browser/mobile just created. At the end of the

session, the script will invoke the termination

command (DELETE /session) using the proper

session identifier. At this point, the infrastructure

resources are released by EPM, and the complete

recording a logging data is sent to EDM.

5 CASE STUDY: TESTING

WEBRTC APPLICATIONS

MADE WITH OPENVIDU

In order to validate our proposal, a case study

focused on WebRTC applications have been carried

out. Concretely, we have cooperated with the team

developing the project OpenVidu22, an open source

videoconferencing WebRTC framework. OpenVidu

follows a client-server architecture and therefore is

made up by two main components. On the client-

side, the OpenVidu Browser is a JavaScript/

TypeScript library which allows to create video

calls, join users to them, and send/receive media

streams. On the server-side, the OpenVidu Server

receives the operations from clients establishing and

managing the video-calls.

In order to carry out end-to-end tests of WebRTC

applications, it is mandatory to use browsers that

implements the WebRTC stack, such as Chrome or

Firefox. For that reason, in the OpenVidu project,

end-to-end tests have been implemented using

Selenium WebDriver. In the testing process carried

out by the OpenVidu team, these tests were executed

in a Jenkins Continuous Integration server. In this

server the latest versions of Chrome and Firefox

were installed, and Selenium sessions were executed

through a virtual framebuffer display server -Xvfb-.

The research question driving this case study is

the following: “Is the ElasTest user impersonation

service capable of improving the end-to-end testing

process within the OpenVidu project?”. To address

this question, first an instance of ElasTest was

22 http://openvidu.io/

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

712

Figure 4: Screenshot of ETM/EUS during the execution of a OpenVidu end-to-end test.

provided to the OpenVidu team. The idea was to

reuse the existing tests, adapting them to be executed

inside ElasTest.

Due to the fact that the existing test suite was

based on Selenium WebDriver, few changes was

required in the test logic. The existing codebase was

implemented in Java, and therefore the required

change was related to the specific objects to control

browsers -i.e. ChromDriver for Chrome and

FirefoxDriver for Firefox-, by remote browser

drivers, called RemoteDriver in Java. These

objects require the URL to connect with the

Selenium Server, which is implemented in ElasTest

by EUS. When tests are executed inside ElasTest,

this URL is available by reading the environmental

variable ET_EUS_API. The source code of these

tests is available on GitHub23.

The SUT lifecycle was managed by ElasTest

together with the test execution. In this case study, a

Docker Compose24 script was configured within the

ETM, defining the OpenVidu application under test

and its dependencies. Figure 4 provides an ETM

screenshot of the exectution of one end-to-end test

against the SUT while it is executed by the EUS. As

explained in the section before, once the test

23 https://github.com/elastest/demo-projects
24 https://docs.docker.com/compose/

finished, a recording of the session navigation,

together the the browser logs is stored persistenly in

ElasTest.

Once the tests were adapted and executed in

ElasTest, we were able to draw some conclusions

about the UIaaS. First of all, we conclude that the

fact that EUS is based on the W3C WebDriver

standard, facilitates its adoption in an existing test

codebase. Second, the capability to provide different

types of browsers and version in a semanless and

elastic manner is very valuable for testers, since it

avoids to manage directly the infrastructure reducing

the efforts required mainly in DevOps side, and

providing valuable assets to create compatibity tests

for testers. Finally, the capability for storing to the

browser session recording and logging makes a big

difference for OpenVidu testers. This feature allows

to trace and debug failed tests in a much more

realiable way than before, in which testers were

blind to trace errors of tests executions on their

Jenkins infrastructure.

6 CONCLUSIONS AND FUTURE

WORK

Software testing is the most commonly performed

activity within V&V. Modern web and mobile

applications are characterized by rapid development

User Impersonation as a Service in End-to-End Testing

713

cycles, which supposes that testers tend to pay scant

attention to automated end-to-end test suites. As a

result, this kind of tests is usually abandoned or

poorly performed.

This paper introduces ElasTest, an open source

platform aimed to ease end-to-end tests for

heterogenous large distributed systems. The mision

of ElasTest is to make easier the developers’ life. To

that aim, among other capabilities, ElasTest

implements what we can call User Impersonation as

a Service (UIaaS). This service enables the

impersonation of end-users’ in their tests through

GUI instrumentation. This service provides full

compatibility with external browser/mobile drivers,

but enhanced with extra capabilities, such as event

subscription, log gathering, or advance media

capabilities for WebRTC applications. This service

have be built extending the W3C WebDriver

specification, and therefore, popular technologies

such as Selenium and Appium are completely

compatible with ElasTest.

At the moment of this writing, ElasTest is still in

its infancy. Therefore, some features are still under

development. For instance, the measurent of the end-

users’ perceived QoE is still ongoing. Measuring

QoE is in general a complex topic and this task shall

perform the appropriate research activities for

evaluating the most suitable way of doing it, which

may involve simple mechanisms such as evaluation

of response-time from the GUI.

ACKNOWLEDGEMENTS

This work has been supported by the European

Commission under projects NUBOMEDIA (FP7-

ICT-2013-1.6, GA-610576), and ElasTest (H2020-

ICT-10-2016, GA-731535); by the Regional

Government of Madrid (CM) under project

Cloud4BigData (S2013/ICE-2894) cofunded by FSE

& FEDER; and Spanish Government under project

LERNIM (RTC-2016-4674-7) cofunded by the

Ministry of Economy and Competitiveness, FEDER

& AEI.

REFERENCES

Boehm, B.W., 1979. Software engineering: R&D trends

and defense needs. Research directions in software

technology, 1, p.977.

Bruns, A., Kornstadt, A. and Wichmann, D., 2009. Web

application tests with selenium. IEEE software, 26(5).

Carella, G.A. and Magedanz, T., 2015. Open baton: A

framework for virtual network function management

and orchestration for emerging software-based 5g

networks. Newsletter, 2016.

Cattoni, A.F., Madueño, G.C., Dieudonne, M., Merino, P.,

Zayas, A.D., Salmeron, A., Carlier, F., Saint Germain,

B., Morris, D., Figueiredo, R. and Caffrey, J., 2016,

June. An end-to-end testing ecosystem for 5G.

In Networks and Communications (EuCNC), 2016

European Conference on(pp. 307-312). IEEE.

Chikkerur, S., Sundaram, V., Reisslein, M. and Karam,

L.J., 2011. Objective video quality assessment

methods: A classification, review, and performance

comparison. IEEE transactions on

broadcasting, 57(2), pp.165-182.

Cohn, M., 2009. The forgotten layer of the test automation

pyramid. Mike Cohn’s Blog–Succeeding with Agile,

Accessed on November 2017. http://blog.

mountaingoatsoftware. com/the-forgotten-layerof-the-

test-automation-pyramid

Fowler, M., 2012. Test pyramid, Accessed on November

2017 https://martinfowler.com/bliki/TestPyramid.html

García, B., 2017. Mastering Software Testing with JUnit

5, Packt Publishing. Birmingham.

Lima, B. and Faria, J.P., 2016, July. A Survey on Testing

Distributed and Heterogeneous Systems: The State of

the Practice. In International Conference on Software

Technologies (pp. 88-107). Springer, Cham.

Loreto, S. and Romano, S.P., 2017. How Far are We from

WebRTC-1.0? An Update on Standards and a Look at

What's Next. IEEE Communications Magazine.

Rix, A.W., Beerends, J.G., Hollier, M.P. and Hekstra,

A.P., 2001. Perceptual evaluation of speech quality

(PESQ)-a new method for speech quality assessment

of telephone networks and codecs. In Acoustics,

Speech, and Signal Processing, 2001.

Proceedings.(ICASSP'01). 2001 IEEE International

Conference on (Vol. 2, pp. 749-752). IEEE.

Scott, A., 2015. Introducing the software testing ice-cream

cone (anti-pattern). Accessed on November 2017.

 https://watirmelon.blog/2012/01/31/introducing-the-

software-testing-ice-cream-cone/

Shah, G., Shah, P. and Muchhala, R., 2014. Software

testing automation using Appium. International

Journal of Current Engineering and Technology, 4(5),

pp.3528-3531.

Stewart, S. and Burns, D., 2017. WebDriver. Working

draft, W3C.

Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P.,

2004. Image quality assessment: from error visibility

to structural similarity. IEEE transactions on image

processing, 13(4), pp.600-612.

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

714

