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Abstract: We developed a framework for Physiologically Attentive User Interfaces, to reduce the interaction gap 

between humans and machines in life critical robot teleoperations. Our system utilizes emotional state 

awareness capabilities of psychophysiology and classifies three emotional states (Resting, Stress, and 

Workload) by analysing physiological data along with facial expression and eye movement analysis. This 

emotional state estimation is then used to create a dynamic interface that updates in real time with respect to 

user’s emotional state. The results of a preliminary evaluation of the developed emotional state classifier for 

robot teleoperation are presented, along with its future possibilities are discussed. 

1 INTRODUCTION 

Due to many fold increase in computing capabilities, 

we have seen tremendous evolution in Human-

Computer Interaction (HCI). And through 

technological improvements and robotics evolution; 

we are witnessing another form of interaction which 

is between Humans and Robots; and widely known 

as Human-Robot Interaction (HRI). No matter if it is 

HCI or HRI, the ways we are interacting with 

machines have evolved to such an extent that 

science is now looking for methods that help 

understand human intentions without much need of 

physical input from humans. 

From the emergence of computers to the 

development of personal computers, and then 

becoming an ubiquitous entity, the relationship 

between humans and computers shifted from many-

to-one to one-to-one, and now it is one-to-many. 

This technological shift brings in the demand for 

smarter Human-Computer Interfaces. 

To optimize HCI, Vertegaal (2003) proposed a 

framework for Attentive User Interfaces (AUI). AUI 

uses sensing, communication, augmentation, control, 

and availability of human to strategically optimize 

communication between Humans and Machines. 

AUIs designed by different authors (Vertegaal, 

2003; Siewiorek et al., 2003; Vertegaal et al., 2006) 

use sociable forms of interaction by sensing user’s 

attention levels for their surroundings and more 

preciously for the Interface itself.  

However, current AUIs depend on overt 

measurements of user's attention, such as eye 

contact, which may not always accurately indicate 

user’s availability for notifications or interruptions. 

Although overt measures of user’s attention may tell 

us that a user is performing a given task, they do not 

necessarily indicate the covert state of mind. 
Due to this one-to-many relationship between 

humans and computer systems, traditionally 

designed approaches are not capable enough to 

convey information from these devices to humans in 

a precisely uninterrupted way. On the opposite, these 

information hungry devices trigger un-timely 

notifications and information delivery, and they are 

becoming heavier and more demanding with time 

(Dirican & Gokturk, 2009). 
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Alongside, robot teleoperation also caught into 

this attention’s demand created by interface and 

robot operations. This eventually creates lots of 

workload and stress on operators, and sometimes 

operators also experience boredom, interest loss, and 

focus issues. Drones like Global Hawks from US Air 

Force have such a sophisticated system that they 

need more attention and mental presence than 

normally flying a plane. In other situations these 

drones do not require attention and mental focus 

every single time, which creates windows of 

unawareness and lack of attention which decreases 

performance and could cause problems. Secondly, 

the complexity of these systems could be very high 

in some situations, leading to very high mental 

workload and induced stress on operators.  
Fortunately, we have improved cognitive 

abilities to understand covert emotional states that 

are particularly not possible for current Graphic User 

Interfaces (GUIs) or Attentive User Interfaces 

(AUIs) (Dirican & Göktürk, 2011). 

Psychophysiological activities provide a quiet, 

hidden, and implicit way to understand cognitive 

and affective states of users with respect to their 

mind-body relationship (Dirican & Göktürk, 2011). 

Human physiology is highly affected by the activity 

of the Central Nervous System (CNS) and the 

Autonomic Nervous System (ANS), and reflects 

physiology in the form of physical signals generated 

by human body in real time (Sapa, 2011; Dirican & 

Göktürk, 2011), which could be helpful in telling 

emotional state of a person.   
We explored the field of Psychophysiology to 

understand covert states of human mind alongside 

integrated this with overt measurements of facial 

expressions and eye movements, and prepared an 

Artificially Intelligent system to precisely detect 

three Emotional states (Resting, Stress, and 

Workload).  

These emotional predictions were then used in 

real time to create a Physiologically Attentive User 

Interface (PAUI) that changes dynamically with 

respect to the emotional state of the person in real 

time.  

However, this generated PAUI developed over 

an older GUI to reduce the complexity (e.g. reducing 

the amount of information provided) and to increase 
both usability and development flexibility for a 

closed system. In which the older GUI was a frozen 

12 years old interface with very complex user 

interaction and feedback view. This new interface 

reduces the complexity of the older one by 

displaying only the more relevant information 

(reducing unnecessary user’s cognitive overload) 

and updates itself in real time with respect to the 

emotional state of the person. In addition, it will also 

communicate with the older GUI, via a picture-

driven computing approach e.g. (Silva et al., 2016), 

to eliminate the need of creating a new interactive 

system from scratch.  

Following in this paper we have discussed 

current state of physiologically driven interfaces and 

Human-Machine interactions. Then explained the 

solution we developed for PAUI creation and the 

framework designed. Then next, emotion 

classification processes, experiments, and there 

results are discussed. It is then followed by the 

conclusion and its future perspective. 

2 REVIEW 

Due to emotional state awareness capabilities of 

Psychophysiological measures, they are catching lot 

of attention these days in areas like Autonomous 

systems, Military, Medicine, among others. Few of 

them relevant to the project were studied and their 

findings are discussed below. 
Bulling (2016) provides an analytical and 

projective view on current and future aspects of User 

Interfaces, with an insight to the possibilities and 

requirements for Pervasive Attentive User 

Interfaces. User interfaces will shift their focus from 

being an attention demanding to attention managing 

systems; interfaces adapt for amount, type, and time 

of information delivery on the basis of current 

attention capacities of the users. Bulling (2016) 

defined Unobtrusiveness, Accuracy, Large scale, 

Long-lividness, Seamlessness, and Context 

awareness are  6 important categories that defines 

new Pervasive Attentive User Interfaces.  
Chen & Vertegaal (2004) used LF spectral 

components for mental workload and analyzed EEG 

for motor activity to find four distinguish states of 

user, and use them to predict the availability of the 

user for interrupts. These four states have 

interruption costs for speech and motor related 

activities. And by using user’s physiological state 

and cost of interruption (calculated by user’s 

preferences for mode of interrupt for email, IM, and 

calls in all four states), system decides if the user has 

to be interrupted or not. First state of this system 

exhibits very lower degree of attention, in which 

user is not actively engaged with any task and could 

be interrupted for having relatively very low 

interruption cost. However, this was not generalized 

with other relaxing states where interruption cost 

could be high. Second state has low interruption cost 
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for audio related interrupts but has high interruption 

cost for motor related interrupts like messaging. This 

state is associated with transit activities like walking 

or running. Third state is mental engagement while 

at rest which results into high cost for auditory 

interrupts that could interface with mental state of 

the user. And the fourth state is of higher activity 

engagement in which interrupt cost of any kind is 

high and should not be disturbed. 
A Human-Computer Interface (HCI) was 

developed by (Chapin et al., 1999; Wessberg, 2000) 

in Duke University to establish communication 

between a Monkey’s brain and a Robot arm. To 

achieve this communication they used multiple EEG 

electrodes implanted over a greater area of monkey’s 

brain. Neural activity of large population of 

monkey’s brain was recorded and then decoded the 

arm movements out of them. This information was 

then used to reproduce the movements in robot arm. 
Another example of Brain-Machine 

communication was demonstrated jointly by Honda 

Research Institute Japan, Advanced 

Telecommunications Research Institute International 

(ATR) and Shimadzu Corporation in March 2009, in 

which a Robot was controlled only by Human 

thoughts. They measured electric signals and blood 

flow changes in the brain while imagining body part 

movements and used these to predict user’s thought 

process. These predicted motions are then supplied 

to Honda’s ASIMO humanoid robot to perform 

similar movements like raising its arm. More than 

90% of accuracy rate was achieved (Zhang et al., 

2010).  
Caproni et al. (2009) has developed a 

comprehensive hemodynamic pattern classification 

framework to enhance Human-Robot Interaction 

(HCI) for medical robotics using Near-Infrared BCI. 

Caproni et al. (2009) studied different simulations 

for Motor Imagery (MI) and Non-Motor Imagery 

(NMI) frameworks. Simulation combinations 

depends on three channel combinations i.e. left, 

right, and all channels; two classifier i.e. Support 

Vector Machine (SVM) and AdaBoost; and three 

aggregation policies i.e. Majority Voting, Weighted 

Majority Voting, and Correcting Classifiers. Out of 

which they found NMI as a best performer. After 

scrutinizing all of their experiments and their results, 

Caproni et al. (2009) concluded Near InfraRed 

Spectroscopy (NIRS) based Brain Computer 

Interfaces has a huge potential to help enhance 

existing Human-Machine Interfaces. 

 

 

 

3 PAUI 

3.1 Approach 

We created a basic Physiologically Attentive User 

Interface (PAUI) to read and understand user’s 

Psychophysiology in real time with an intention to 

classify three different emotional states (Resting, 

Stress, and Workload) of a person while 

teleoperating a robot. These classification results are 

then use to change the interface in such a way that 

improves user performance in the task and ease the 

process of robot teleoperation. 

3.2 Apparatus Used and Placement 

We are using Bitalino by Plux (Bitalino, 2017) for 

reading biosignals that are Electroencephalography, 

Electrocardiogram, Electrodermal activity, and 

Electromyography. For eye tracking, we use Tobii 

4c from Tobii Technologies (Tobii Technologies, 

2017) and a normal webcam to extract facial 

emotions.  

Once the person is at the station s(he) will be 

attached with Ag/AgCl electrodes under right 

clavicula (Plus), under left musculus pectoralis 

major (Minus), and under left clavicula (Neutral) for 

ECG’s best suggested placement by (Němcová et al., 

2016); for EDA two electrodes were used on left 

palm; for EMG negative and positive electrode are 

placed at Abductor pollicis brevis muscle of left 

hand and reference electrode at left arm’s Head of 

ulna; and for EEG negative and positive electrodes 

were placed at forehead and reference electrode at 

left earlobe. 

3.3 Architecture 

PAUI application’s architecture shown in figure 1 is 

divided into three sub modules that work alongside 

to achieve overall goal of creating Physiologically 

Attentive User Interface (PAUI) for robot 

teleoperation. The three sub modules are Emotional 

State Estimator (ESE), Attentive User Interface 

(AUI), and System Integrator (SI).  

ESE interacts with external hardware modules to 

extract covert and overt data of the user and process 

that for emotion prediction. This predicted emotional 

state is then fed to AUI that makes changes to its 

interface with respect to that. And SI is helping in 

filling the communication gap between old GUI and 

new PAUI. Moreover, communication between 

Hardware layer – ESE and ESE – AUI is one way, 

but between AUI – SI and SI – Old GUI is two way.  
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3.3.1 Emotional State Estimator (ESE) 

This module is sub divided into 4 parallel 

threads: Bitalino thread extracts data at 1000 Hz for 

processing physiological signal; Camera thread 

processes camera images and extracts facial 

emotions at 15 Hz; Tobii thread extracts data at 90 

Hz for tracking eye movements; and the Classifier 

thread runs at 2000 Hz that reads data from Bitalino, 

Camera, and Tobii thread, and performs emotion 

extraction and provides predicted emotion.  
Bitalino thread processes ECG signal for Heart 

Rate (HR), Heart Rate Variability i.e. Standard 

Deviation of Normal to Normal (SDNN) and Root 

Mean Square of the Successive Differences 

(RMSSD), and Frequency components i.e. Very 

Low Frequency (VLF from 0.0033 to 0.04), Low 

Frequency (LF from 0.04 to 0.15 Hz), and High 

Frequency (HF from 0.15 to 0.4 Hz). It processes 

EEG for Delta (0.5 – 3.5 Hz), Theta (3.5 – 8 Hz), 

Alpha (8 – 13 Hz), Beta (13 – 30 Hz), Gamma (30 – 

45 Hz), and Engagement (Engagement = Beta / 

(Alpha + Theta)) suggested by McMahan et al. 

(2015). Processes EDA for Skin Conductance Level, 

Skin Conductance Response. And EMG is processed 

for Muscle Fiber Excitation (MFE). Table 1 contains 

the list of parameters extracted from each device. 

The camera thread uses common webcam and 

Emotion SDK from Affectiva (Affectiva, 2017) to 

processes image frames and extracts emotions from 

 

Figure 1: PAUI Architecture.
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faces present in the frames. In that we are extracting 

9 facial emotions, 21 facial expressions, and facial 

orientation information.  
Tobii thread is continuously monitoring eye 

movements on the screen and keeps on updating 

custom designed data set for fixations map on the 

screen. It contains comprehensive information of 

fixation map like average fixation, biggest fixation 

at, among fixation specific information like number 

of fixations at particular location, fixation coming 

from and fixation going to, and so on.  
Classifier thread works above all three threads, it 

takes data from them approximately every 500 micro 

seconds, do the average of data of 3 seconds and use 

this averaged data with trained Support Vector 

Machine (SVM) classifier for Emotion prediction 

out of three trained emotional states (i.e. Resting, 

Stress, and Workload).  

Table 1: Extracted parameters from all three sensors. 

Sensor Category Features 

Bitalino ECG 

▪ HR 

▪ SDNN  

▪ RMSSD 

▪ VLF 

▪ LF 

▪ HF 

 EEG 

▪ Delta 

▪ Theta 

▪ Alpha 

▪ Beta 

▪ Gamma  

▪ Engagement 

 EMG 

▪ Number of Peaks 

▪ Total Peak Time 

▪ Max Peak Magnitude 

▪ Current Peak Magnitude 

 EDA 
▪ SCL  

▪ SCR 

Tobii 
General Fixation 

Information 

▪ Number of Fixations 

▪ Total Time 

▪ Total Fixation Duration 

▪ Average Fixation 

Duration 

▪ Repeated Fixations 

▪ Biggest Fixation At 

▪ Maximum Visited Counts 

▪ Maximum Visited At 

 

Fixation Map 

*Containing 

information for 

each fixation 

▪ Number of Visits 

▪ Start Time 

▪ Fixation Duration 

▪ Total Fixation Duration 

▪ Total Interval Between 

Visits 

▪ List of Locations Coming 

From and its count 

▪ List of Locations Going 

To and its count 

Camera Emotions 

▪ Joy 

▪ Fear 

▪ Disgust 

▪ Sadness 

▪ Anger 

▪ Surprise 

▪ Contempt 

▪ Valence 

▪ Engagement 

 Expressions 

▪ Smile 

▪ Inner Brow Raise 

▪ Brow Raise 

▪ Brow Furrow 

▪ Nose Wrinkle 

▪ Upper Lip Raise 

▪ Lip Corner Depressor 

▪ Chin Raise 

▪ Lip Pucker 

▪ Lip Press 

▪ Lip Suck 

▪ Mouth Open 

▪ Cheek Raise 

▪ Dimplier 

▪ Eye Widen 

▪ Jaw Drop 

▪ Lip Tighten 

▪ Lip Stretch 

▪ Smirk 

▪ Eye Closure 

▪ Attention 

 Face Orientation 

▪ Pan 

▪ Tilt 

▪ Yaw 

3.3.2 Attentive User Interface (AUI) 

This is the interactive interface with which user is 

meant to interact and it changes with respect to users 

psychophysiological state predicted by Emotional 

State Estimator (ESE). It keeps on reading 

psychophysiological state predicted by ESE along 

with data provided by Tobii, and performs required 

changes in its design along with sending required 

operations to SI for old GUI. 

3.3.3 System Integrator (SI) 

System Integrator (SI) is the communication bridge 

between new Physiologically Attentive User 

Interface (PAUI) and any old GUI (used for robot 

teleoperation in our example, figure 2). It needs to 

perform two basic functionalities in between PAUI 

and old GUI. One is to extract data from old GUI in 

a reliable and continuous manner to provide working 

information to the user (Feedback Extractor sub-

layer). And secondly, it needs to take action 

commands from AUI and perform required activities 
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on old GUI using Sikuli’s task automation properties 

(Sikuli sub-layer).  

 

Figure 2: Old GUI for robot teleoperation. 

3.4 Experiment Setup 

3.4.1 Virtual Environment Experiments 

Experiments were divided into two categories: 

Virtual Environment and Robot Teleoperation. To 

get initial understanding of the data and to perform 

preliminary tests, we created a virtual setup using 

games that help generating emotional stimulus in 

subjects.  

In virtual environment experiments the subject 

were given 2 minutes of relaxing time in the 

beginning, afterwards s(he) needs to perform 

Relaxing task for 5 minutes. It was then followed by 

self-assessment in NASA-TLX and SAM. 

Afterwards, the person was either put on Workload 

or Stress task randomly.  

In the Workload task, subjects were asked to 

perform 3 tasks in Rigs of Rods (Rigsofrods.org, 

2017) for 5 minutes each, in which difficulty was 

increased linearly. These 3 sessions of workload 

were separated by 0.30 minute of break and self-

assessment on NASA-TLX.  

The Stress test is also divided into 3 sessions on 

a modified Tetris game to make it very hard for 

whole time play.  All three sessions of Stress were 

separated by 0.30 minutes of self-assessment on 

SAM and break alongside. 

After finishing first session of Workload or 

Stress task, subjects were introduced to Relaxing 

session for 5 minutes and then again put on either 

Workload or Stress task. The Workload and Stress 

sessions were pseudo randomized in such a way that 

if the first session is of Workload then the second 

should be of Stress and same should be other way 

around.  

3.4.2 Robot Teleoperation Experiments 

After conducting preliminary experiments on virtual 

environments, we performed experiments on robot 

teleoperation while imitating search and rescue 

operations of Fire fighters.  

In which Resting was performed by driving the 

robot from one end to other end in a long room for 

five minutes at minimum speed, to simulate 

inactivity and lack of mental and physical demand. 

Then in the Stress task subjects need to teleoperate 

the robot through a very difficult environment and 

have to finish this task within 5 minutes. And in the 

Workload task, subjects have to search for five items 

in the environment alongside answering basic 

arithmetic operations. 

However, to keep things unbiased we 

randomized the whole testing procedure. Each 

subject has to perform 2 sessions of each task in a 

randomly controlled way. A home like test setup 

was used for the experiments that contains a 

bedroom, living room, and a Kitchen; installed in 

our lab. Alongside, this home like test setup, we also 

used some parts of the lab for these experiments. 

And for Stress tests, 2 specially designed areas in the 

lab were used to intensify task difficulty and to 

elevate stress. 

 

Figure 3: Graph containing engagement data from resting test in virtual environment experiments, in which engagement 

value shows very less intensity. 

Physiologically Attentive User Interface for Robot Teleoperation - Real Time Emotional State Estimation and Interface Modification using
Physiology, Facial Expressions and Eye Movements

299



 

 

Figure 4: Graph containing engagement data from stress test in virtual environment experiments, in which engagement 

value shows very high intensity. 

After attaching all required electrodes and test 

them thoroughly, each subject then put onto 

realisation session, in which they introduced with 

the tests and robot controls, and let them play with 

the robot for five minutes. Then out of 6 sequential 

combinations of resting, stress, and workload test, a 

random combination was chosen and performed 

with five minutes of wash away time in between 

each session, in which they also needed to fill 

NASA-TLX questionnaire for workload and 5 scale 

Self-Assessment Manikin (SAM) containing 

Valence and Arousal for stress. After completing the 

combination of three tests, another combination was 

selected out of remaining 5 combinations. Then for 

the next subject only remaining combinations were 

used and this continued until all 6 combinations 

were used. 

As proof of concept for this project, five subjects 

participated and performed two sessions of each task 

(Resting, Stress, and Workload) by each subject. 

4 CLASSIFICATION AND 

RESULTS 

For benchmarking of our system we performed K-

Nearest Neighbour (KNN) and Support Vector 

Machine (SVM) classification on data from both 

Virtual Environment Experiments (VEE) and Robot 

Teleoperation Experiments (RTE). And out of all 

extracted features we used 46 features (without 

normalization or scaling) for each vector space  

As the physiological data is dependent on task 

and varies from person to person, we try to evaluate 

both the conditions. The data from VEE and RTE 

were arranged into three different categories: Task 

Specific (Gaming and Teleoperation) and Person 

Specific, which then classified and evaluated. 

In Task Specific, data from VEE and RTE were 

trained and tested separately with SVM and KNN. In 

which, 70% of VEE data was used for training SVM 

and KNN and remaining 30% of VEE data was used 

for testing, similar training and testing percentage 

was used with RTE data. Thus the classification 

results of SVM outperformed KNN in both the tasks. 

With VEE data SVM gave 80.00% of accuracy and 

KNN gave 77.63% of accuracy. And with RTE data 

SVM gave 84.75% of accuracy and KNN gave 

79.84% of accuracy.   

In Person Specific, data of single subject from 

RTE was used. In which, both SVM and KNN were 

trained with 70% data and tested with remaining 

30% of data. As the data represent only one single 

person, classifiers performed relatively better than 

Task Specific, and gave 88.37% of accuracy by 

SVM and 82.95% of accuracy by KNN. Please refer 

table 2 for classification results.  

Table 2: Classification Results. 

DATA SVM KNN 

Task Specific 

(VEE) 
80.00% 77.63% 

Task Specific 

(RTE) 
84.75% 79.84% 

Person Specific 88.37% 82.95% 

As we conducted a validatory research, to 

support the framework for Physiologically Attentive 

User Interface, small amount of training data was 

used which may have interfered with the 

classification accuracy. Nevertheless, SVM gave 

expectedly good results to support the framework for 

real time emotional state processing.  

Alongside, the engagement data from resting and 

stress tests conducted in virtual environment 

experiments shows clear differences in the patters 

and intensity in both the measurements. Intensity of 

engagement value in stress test is relatively very 
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high as compared to resting, and it also stayed high 

in whole stress session, shown in figure 3 and 4.  

5 CONCLUSIONS AND FUTURE 

PERSPECTIVE 

User’s psychophysiological state was measured and 

predicted in real time and autonomy is provided to 

the system to improve its interface dynamically with 

respect to the mental workload and stress level on 

the user. A PAUI was created, that performs 

dynamic updations to its interface and helps in 

decelerating the effects of workload and stress. 
Moreover, the classification findings are quite 

impressive. We have explored different aspects of 

psychophysiology and combined them with external 

emotional and attentional clues. Getting 88.37% of 

accuracy in Person specific data and 84.75% 

accuracy in Task specific data with this small 

amount of training samples gives a valid indication 

of having huge potential of improvement.  

Current findings clearly suggest that the use of 

Deep learning techniques could be a promising 

measure to achieve higher degree of accuracy in 

emotion classification.   

Future aspects of this research are with the 

improvements in emotion classification techniques 

with current state of the art classifiers. One 

important field to scrutinize is with Recurrent Neural 

Networks that could be helpful in understanding the 

changing patterns of the data and make prediction on 

them. And to introduce more emotional states for 

classification which helps in bring more dynamicity 

and understandability to PAUI. 
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