
Model-guided Security Analysis of Interconnected Embedded Systems

Yasamin Mahmoodi, Sebastian Reiter, Alexander Viehl,
Oliver Bringmann and Wolfgang Rosenstiel

FZI Forschungszentrum Informatik, Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

Keywords: Security Analysis, Virtual Prototyping, UML Profile.

Abstract: Software-intensive and networked embedded systems implement more and more security critical tasks. The
following paper presents a framework to support security analysis along the design process using virtual pro-
totypes (VPs). VPs describe the interconnection between different system components, include actual applica-
tion codes and even integrate existing physical prototypes. These enable the user to detect structural security
flaws, implementation flaws and even hardware-based security problems. Benefits of using VPs are the early
availability in the design process and the fact that VPs are based on software, therefore established security
analysis methods for software can be applied. This paper provides a methodology and tooling support to apply
VP in the context of security analyses. Especially the integration in a model-driven design (MDD) process is
highlighted. A proposed security UML profile as well as code generation ease the VP-based analysis.

1 INTRODUCTION

Embedded systems are increasingly networked by
information and communication technologies (ICT).
This offers a high benefit in application domains such
as automotive or industrial automation. At the same
time, it creates new challenges, such as the increasing
complexity for security risk assessment. Car2X tech-
nologies are an illustrative example from the automo-
tive domain. They exchange sensor and context data
between vehicles and the traffic infrastructure to in-
crease resource efficiency, safety and comfort. How-
ever, in addition to the outstanding advantages, com-
prehensive networking also results in new security
risks. Without sufficient security measures, individ-
ual, manipulated messages are sufficient to affect the
correct behaviour of Car2X-based assistance systems,
such as demonstrated by (Charlie and Chris, 2015). In
an extreme case, critical safety-relevant system com-
ponents are manipulated, resulting in an unacceptable
threat to people or assets. Unauthorized access to
system-internal controls is possible by poorly secured
radio interfaces such as Bluetooth, Wi-Fi, keyless en-
try or tire pressure systems (Checkoway et al., 2011).
"Security by Design" is therefore required, to get the
full benefit of comprehensively networked systems.
This requires a comprehensive consideration of secu-
rity measures along the design process.

We propose an approach to enable security anal-
ysis along the design process of software intensive

and interconnected embedded systems. The approach
provides a comprehensive and executable specifica-
tion of the system architecture as well as mechanisms,
procedures and parameters of security measures in the
form of a virtual prototype (VP). A VP represents the
preliminary stage of a physical prototype in the de-
sign process and denotes the complete or partial pro-
vision of system sub-components as executable mod-
els. Different security analyses such as penetration
testing or structural analyses, including dynamic data
flow analyses, are based on the VP. Virtual Prototyp-
ing is widely used in the field of electronic system
design to analyze components and systems for their
functional and non-functional properties (Reiter et al.,
2016). The accompanying use of VPs in the develop-
ment of embedded systems makes the complexity of
the design of secure embedded systems manageable.

A tight integration of the VP in the design flow
and a comprehensive tool support, such as automated
code generation are required to foster the usage of
VPs. In this paper, we highlight a modeling approach
used to guide the security analysis with VPs thus re-
ducing manual overhead. We use the Unified Mod-
eling Language (UML) (OMG, 2011b) as modeling
language. The goal is to have a well-defined, easy-
to-handle user interface to manage the analysis and
document the system’s security features. In addition,
the model eases manual analyses, such as penetration
testing, by enhancing the documentation and high-
lighting potential design flaws.

602
Mahmoodi, Y., Reiter, S., Viehl, A., Bringmann, O. and Rosenstiel, W.
Model-guided Security Analysis of Interconnected Embedded Systems.
DOI: 10.5220/0006724606020609
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 602-609
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The paper is structured as follows. First, the envi-
sioned methodology is highlighted in Section 2. Sec-
tion 3 shortly reviews modeling approaches used for
safety analysis. Section 4 introduces the developed
security profile. In addition, a comparison of the de-
veloped profile with a state of the art UML profile
as well as an exemplary model is presented. Sec-
tion 5 highlights the used VP framework and demon-
strates the security profile integration. The paper is
concluded in Section 6.

2 METHODOLOGY

As motivated in the introduction, the VP is an exe-
cutable simulation model of the physical system. The
technique of virtual prototyping enables the evalua-
tion of hardware/software systems without the need of
physical prototypes. VPs are often used during soft-
ware development, if the target hardware is not avail-
able yet. A VP simulates the required system compo-
nents. Depending on the amount of simulated system
parts and the level of detail, different analysis goals
can be pursued. With a complete system simulation
on a very abstract level, a rough evaluation, such as a
structural analysis that analyses the data flow between
components, is possible. Integrating actual software
implementations within the VP, enables the evalua-
tion of the target software. This step often involves
a refinement of the VP, e.g. to simulate the accessed
registers. Enabling the execution of a rough evalua-
tion in an early design phase with a less detailed sys-
tem model and a continuous gain in accuracy by refin-
ing the system model. The presented approach uses
the event-driven SystemC (IEEE Computer Society,
2011) simulation language. SystemC covers differ-
ent abstraction levels of hardware and software sys-
tems and enables both the modeling of SW applica-
tions as well as digital/analog electronic components.
SystemC provides abstract Transaction Level Models
(TLM) to specify the interaction of system compo-
nents and enables a very early structural analyses of
the complete system.

As SystemC is a C++ class library it is possible
to integrate actual application code that is compati-
ble with C++. This reduces the overhead required
to create the VP and enables the analysis of the ac-
tual implementation. Flaws can be found that would
lead to security vulnerabilities. Figure 1 sketches the
proposed development flow. The overall goal is to
execute security analyses combined with risk assess-
ment. Traditional design flows often use physical pro-
totypes, i.e. when the application code and the sys-
tem hardware are available. Today’s system design

Figure 1: Design support by virtual prototyping.

already benefits from a set of models. This models in-
clude the specification of the system architecture with
SysML (OMG, 2012) as well as dedicated software
aspects or use cases with UML. Only few security
analysis approaches are based on these early models.
The Cyber Security Modeling Language (CySeMoL)
(Sommestad et al., 2013) analyzes a range of different
attack types and security measures based on structural
models. The approach is based on probabilities for the
effectiveness of security measures. These probabili-
ties are typically determined with the final system or
based on experiences with previous systems. There-
fore, it is not possible to give an analysis that can be
refined along the design process.

Our approach introduces an UML model of the
VP. The idea is to reuse already existing models
from the system design. Compatible models such
as SysML- or UML-based models can be reused by
Model-to-Model (M2M) transformations. We de-
cided to use a separate UML model, because the VP
specification may contain additional information that
should not pollute the actual system model. An exam-
ple of such pollutions are functions that model timing
in the VP or functions to read data from the test bench.
Based on this UML-based specification we generate
the structural aspects of the VP as well as the simula-
tion runtime configuration. For detailed information
about the provided automation, see Section 5.

Another aspect that is highlighted in Figure 1 is
that the VP can integrate actual application codes.
The VP is a C++ implementation, therefore source
codes are directly integrated and compiled. Binary
codes are integrated with emulators, such as QEMU
or with Instruction Set Simulators (ISS). The use of
existing software reduces the overhead to create the
VP and makes the simulation more accurate.

This paper focuses on the UML-based security
modeling based on UML models of the VP. Before
highlighting our approach, different existing security
modeling approaches are evaluated.

Model-guided Security Analysis of Interconnected Embedded Systems

603



3 EXISTING MODELING
APPROACHES

Several approaches exist for security assessment and
modeling. UMLsec is an extension to the Uni-
fied Modeling Language for integrating security re-
lated information in UML specifications. The cen-
tral idea of the UMLsec extension is to define la-
bels for UML model elements (stereotypes), that add
security-relevant information to these model elements
(Jürjens, 2010; Jürjens, 2002) when attached. The
approach is strongly influenced by networked infor-
mation systems in business infrastructures, such as
distributed information systems (Best et al., 2007) or
electronic payment services. The extension contains
for example stereotypes for «fair exchange», spec-
ifying the requirement of a fair trade exchange, or
«Internet», «LAN» to model links between partici-
pants. Some of the presented stereotypes apply for
networked embedded systems, e.g., «integrity» or
«encrypted». Others are too specialized to cover all
aspects of embedded systems, such as «Internet» or
«LAN». These two stereotypes are too specialized to
cover the different bus systems available in a vehicle.
Others are not required in the context of automotive
systems, such as «fair exchange».

SecureUML on the other hand provides an UML
extension for specifying role-based access control
(RBAC) and other access control policies (Basin
et al., 2006; Lodderstedt et al., 2002). SecureUML
mainly focuses on UML class diagrams and does not
provide stereotypes for other UML diagrams. Based
on its focus on RBAC, the profile does not provide
the required generality for security modeling, e.g., to
specify the attack surface or protection goals. In ad-
dition, only class diagrams are supported, a structural
system specification is not considered.

The Cyber Security Modeling Language
(CySeMoL) is another approach with the pur-
pose of modeling attacks and assessing the attack
impact. CySeMoL analyzes a range of attack
types and security measures. CySeMoL’s output
is probabilistic and estimates the probability that
different attacks can be accomplished against assets
in the system architecture (Sommestad et al., 2013).
The listed attacks provide a good overview but the
language do not cover all aspects that are required to
model security concepts on abstract system level.

Another examined approach is Secure Tropos. It
is an extension of Tropos used to model and ana-
lyze security requirements alongside functional re-
quirements. The methodology provides a require-
ment analysis process that supports the designer from
the acquisition of requirements to their verification

(Bresciani et al., 2004). The SI* modeling language
evolved from the I* modeling language that employs
the notation of actor, goal, task, resource and social
dependency between actors to represent the functional
design of the system (Massacci et al., 2010). While
the language offers some interesting extensions, it
was not suitable for lightweight annotation, required
for the VP specification.

Each of the examined approaches has been de-
fined for certain application areas and has its benefits
and drawbacks. However, in our view, none of them is
adequate to cover all requirements to specify the sys-
tem security concepts in detail, required to configure a
VP-based security analysis. Therefore, we were con-
vinced to define our own security modeling approach
presented in this paper.

4 SECURITY UML PROFILE

The model-based virtual prototype specification (VP-
Spec) provides models for the required system com-
ponents and their assembly to a simulation instance.
The VPSpec therefor automatically covers the secu-
rity concepts of the system, such as separation, the
inherent weak points of the system architecture or the
protection goals of the system. Additional informa-
tion such as the attack surface or the protection goals
is missing, for an security analysis. Other informa-
tion is inherently specified in the VPSpec, such as the
communication protocol implemented by a compo-
nent. Therefore, some additional information is added
that is only used for documentation of the analysis.
The center of the VP-based security analysis is the
VPSpec that is extended with this security related in-
formation. It offers the user a single point of informa-
tion and different tasks are automated thus reducing
the manual overhead. Figure 2 depicts the envisioned
structure. In the center is the UML-based VPSpec
that is derived from the actual system model (compare
Figure 1). The model is mainly used to generate and
configure the VP, both with injectors to simulate the
attack surface and monitors for the protection goals.
In addition, the model is used for static data flow anal-
ysis and for a general documentation of the system’s

Figure 2: Application of the UML security profile.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

604



security features. Both the VP and the VPSpec are
refined during the design process. UML profiles are
used to specialize the UML for the VPSpec.

Information security is defined as protection of
information and information systems against unau-
thorized users to ensure integrity, confidentiality and
availability. Integrity refers to maintenance or assur-
ance of accuracy and trustworthiness of these data
over its life cycle. Confidentiality means that unau-
thorized users do not have the chance to access the
data, processes or entities. On the other hand, avail-
ability ensures a reliable access to information in
time. We define our security profile along the trian-
gle of confidentiality, integrity and availability.

Analyzing a system from the security point of
view, weak input points and vulnerable components
of the system should be specified. Automotive sys-
tems benefit from remote connections for Remote
Key Entry Systems or internet access. Every connec-
tion can bring new opening for attackers and lead to
malicious activities.
Attack Surface
The attack surface is the total vulnerability and shows
weak points of the system, where an unauthorized
user can access, change or insert invalid data. At-
tack surfaces can be categorized as network attack
surfaces, software attack surfaces and physical attack
surfaces. Attack surfaces of the system should be
specified in the model-based VPSpec.

In our security profile, we define five stereo-
types to represent vulnerable points and to define the
amount of effort, which is needed to break down vul-
nerable objects. The effort is added as an abstract
value that is associated with the stereotype. The
stereotype, «As.DataRead», describes the possibility
of reading the data by an unauthorized user. It also
defines the level of effort, which is needed to read
the data. «AS.DataModify» is another stereotype,
which states if an attacker can change the data of a
property and how much effort is needed. The stereo-
type «AS.DataDelete» specifies how much effort is
needed for an unauthorized attacker to delete the data
of the stereotyped property. «AS.DataAdd» is another
stereotype which specifies the possibility of adding
data by an unauthorized user and the level of ef-
fort needed. At the end, «AS.ServiceUnavailable»
specifies how much effort an attacker needs to make
an operation unavailable in the system. The pre-
sented stereotypes are used to specify the attack sur-
face within the VPSpec. This information will have
positive effects on the placement of attack points, e.g.,
with injectors, in the VP.
Protection Goal
Embedded systems contain data and components with

different levels of criticality. With the focus on auto-
motive systems, an attacker may hack the head unit
and try to control the volume of the tuner chang-
ing the HVAC temperature or other malicious activ-
ities to disturb passengers. With more effort, the at-
tacker may access the critical data and be able to
send CAN packets to control the brakes, which will
lead to serious consequences. Our extended VP-
Spec enables the specification of critical parts of the
system which require protection. The model con-
tains additional information about the severity level
of these protection goals. Five stereotypes in our
meta-model are devoted to these protection goals
to show critical parts of the system. The stereo-
type «PG.DataConfidential» defines that the asso-
ciated property should be protected against reading
or predicting by an attacker. Using the tag Sever-
ity, it also determines the level of severity if the pro-
tection goal is violated. The second stereotype of
this category, «PG.DataModify» indicates that the
property should be protected against modification; it
also defines the level of severity in case of viola-
tion. «PG.DataDelete» specifies that it should not
be possible for an unauthorized user to delete this in-
formation. Similar to the other stereotypes a level
of severity is added. The stereotype «PG.DataAdd»
indicates with its severity that this property should
be protected against adding new data by an attacker.
The last stereotype «PG.ServiceAvailability» in-
dicates that the stereotyped operation must be avail-
able and should not be stopped. With this informa-
tion, the user can plan suitable attack scenarios. Ad-
ditionally, monitors can be added to evaluate if an in-
jected modification leads to a violation of the protec-
tion goal, at least for the protection goals w.r.t. modi-
fication.
Documentation
To make the documentation-related information visi-
ble to the user, different information is explicitly mod-
eled in the VPSpec. General security information
such as handshaking protocols will be provided with
the stereotype «Doc.SecurityProtocol». Encryp-
tion protocols are abstract protocols which give in-
formation about the cryptographic methods. A weak
encryption may lead to vulnerabilities and bring new
openings to attackers. Information about applied
cryptographic methods is necessary for security anal-
ysis, which in our model is provided by stereotype
«Doc.EncryptionProtocol». Security communi-
ties regularly publish known vulnerabilities, expo-
sures and related security patches. Appending more
details about the VP components such as the software
version enable finding vulnerable points based on
published vulnerabilities and exposures. The VPSpec

Model-guided Security Analysis of Interconnected Embedded Systems

605



encloses software functionality with an UML class.
Therefore such information would not be visible. We
devoted one stereotype, «Doc.SoftwareVersion»,
e.g., to specify software versions for comparison with
known security issues. Authorization is an access
control method which specifies access rights for re-
sources. Information about authentications gives a
better view about security measure of the system.
Stereotype «Doc.Authorization» indicates that a
client who requests a connection to the stereotyped
operation first needs to be authorized. Authentication
is a security mechanism for confirming the identity of
data or users. By adding authentication information in
form of the stereotype «Doc.Authorization», our
model will have a more comprehensive view. Sum-
marising, many information is inherently modeled in
the VP. By selecting a component that implements en-
cryption or decryption, the functionality is automati-
cally regarded in the VP. We added these stereotypes
to make this information more explicit in the UML
model.
Data Flow
Data flow graphs and control flow graphs of the
system make it possible to analyze data spread in
the system and detect the accessibility of critical re-
gions. Our security profile offers one stereotype
named «DP.DataFlowElement» which provides in-
formation about the data flow in the system and could
be used for static analysis. The idea is to use UML
state machines to visualize data dependencies and an-
alyze how the protection goals and the attack surface
are linked. We currently evaluate two approaches to
derive this graph: static code analysis and dynamic
taint propagation based on the VP.

We should sum up that our security profile
specifies confidentiality and integrity aspects re-
lated to the attack surface and the protection
goals. Stereotypes «AS.ServiceUnavailable» and
«PG.ServiceAvailability» on the other hand,
specifies requirements for the availability of the sys-
tem. The profile is defined using stereotypes, tag def-
initions and constraints, which are applied to specific
model elements, like Classes, Attributes, Operations,
and Activities. Table 1 indicates the stereotypes of the
proposed security profile which we described above.
The stereotypes are associated to the UML-based VP-
Spec instead of the other models. We support dif-
ferent M2M-transformation, based on QVTo (OMG,
2011a), for our approach. This way the stereotypes
are indirectly associated with the other models.

Table 1: Extract of the security profile.

Stereotype Base class Tag
AS.DataRead Property Effort

AS.DataModify Property Effort
AS.DataDelete Property Effort
AS.DataAdd Property Effort

AS.ServiceUnavailable Operation Effort
PG.DataConfidential Property Severity

PG.DataModify Property Severity
PG.DataDelete Property Severity
PG.DataAdd Property Severity

PG.ServiceAvailability Operation ResTime
Doc.EncryptionProtocol Class String

Doc.SecurityProtocol Class String
Doc.SoftwareVersion Class String
Doc.Authentication Operation
Doc.Authorization Operation

DP.DataFlowElement State

4.1 Comparison

In the following section, we compare our envisioned
profile with the exiting profile UMLsec. As the fo-
cus on UMLsec lies more on enterprise security it
contains stereotypes that are not applicable to embed-
ded systems. Nethertheless, it offers general security
stereotypes and in this section it should be evaluated
if the envisioned profile covers the essential subset of
UMLsec.

UMLsec offers stereotypes like «fair
exchange» and «provable» originating from
e-commerce scenarios. They specify the requirement
of a fair product exchange, e.g. with the help of a
trusted third party or of provable payments. Con-
sidering the focus of our model to the embedded
systems, we did not devote stereotypes for this aspect.
However, it should be mentioned that the function-
ality of these mechanisms is modeled implicitly by
the VP, e.g., by providing simulation modules that
implement a provable payment.

We broke down the role-based access
to the involved mechanisms by using the
stereotypes «Doc.Authentication» and
«Doc.Authorization» to substitute the UMLsec
stereotype «rbac».

UMLsec uses the stereotypes «Internet», «LAN»
and «wire» to model connections with different at-
tack possibilities. Our proposed profile provides
the stereotypes «AS.DataRead», «AS.DataModify»,
«AS.DataDelete» and «AS.DataAdd» to character-
ize the attack surface of different connections. Fur-
thermore, encrypted connections which are mod-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

606



eled with the stereotype «encrypted» in UMLsec
will be specified in our profile by the combina-
tion of «AS.DataRead» and «Doc.Encryption».
The stereotypes «smart card», «POS device» and
«issue node» in UMLsec are nodes with varying
protection mechanism. Our stereotypes to specify the
attack surface are used to specify the characteristics
of the different devices.

The assumption of secrecy and integrity as well
as high sensitivity is indicated with the stereo-
types «secrecy», «integrity» and «high» in
UMLsec. In our model, stereotypes for protec-
tion goals can model the secrecy, integrity and level
of sensitivity. The concepts of the stereotypes
«critical», «secure links», «data security»,
« no down-flow » and «no up-flow» are modeled
with the help of the protection goal stereotypes.

The stereotype «Doc.Authorization» specifies
a property which is protected by an authorization
mechanism. This mechanism ensures that the ob-
ject can be accessed only through authorized par-
ties. This is a proper stereotype to model guarded ob-
jects which can be accessed only through their guard.
In UMLsec, this concept is model with the stereo-
types «guarded» and «guarded access». «secure
dependencies» is a stereotype of UMLsec which en-
sures secure dependencies. Secure dependencies are
covered with the stereotypes «Doc.Authorization»
and «Doc.Authentication».

In our opinion, all relevant aspect of UMLsec
can be modeled with our stereotypes on a more fine
grained level, what is necessary for considering em-
bedded security.

4.2 Example

Hacking modern automotive embedded systems often
requires three steps. First, the attacker needs to gain
remote access to the internal network of the vehicle.
This step is usually accomplished by sending wire-
less signals and compromising the control unit in the
front line. This step leads the attacker to the next step,
which is injecting messages to the car network and di-
rectly or indirectly controlling desired electronic con-
trol units (ECUs). Here it should be considered that
in many designs, it is not possible to send a message
to the safety critical ECUs directly. Therefore, the
attacker has to bypass gateway ECUs to forward the
compromised message to the critical ECUs. The last
step will be forcing the target ECU to compromise
safety features. The whole attack needs information
on messages and structure of the automotive network.

Our security profile covers all steps of the attack
by its stereotypes. The stereotype regarding the attack

Figure 3: VPSpec of the simulation component.

surface will mark penetration possibilities. All the
attack points of the various steps should be marked.
That means, not only the first attack surface only,
but also it is assumed that an ECU is compromised,
an extended attack surface is possible. This allows
to evaluate isolated attack steps with the VP. The
next information that is specified in the model are
the protected safety critical ECUs or gateway ECUs.
This is done with the protection goal stereotypes.
Finally, documentation-related stereotypes offer
information about the applied security mechanisms
or software versions to estimate vulnerabilities and
guide the manual penetration tests.

Here we focus on an attack scenario based on the
aqLink protocol within the Gateway which controls
both voice and data cellular communication. First,
an attacker employs some flaws in the authentication
procedure. In a second attack, the attacker uploads
an exploit to the telematics system. The attacker
hacks the head unit and then sends compromised
messages to the safety critical ECUs by spoofing
messages. Before the critical ECU can be reached,
the filtering mechanism of the gateway has to be
deactivated. Figure 3 models components involved
in the attack to compromise the gateway. It shows
three components that represent the functionality of
the different ECUs. The fourth component is the
field bus used for communication. In the system
structure two instances of the CAN bus are present;
one with sensitive information (Body-CAN) and one
with non-critical signals (Comfort-CAN). The used
structure is shown in Figure 5. The chosen abstrac-
tion level is TLM, because the model is mainly used
for a structural data flow analysis. Some information
stored in the head unit is assumed readable by an
attacker. In this scenario, it is assumed an attacker

Model-guided Security Analysis of Interconnected Embedded Systems

607



Figure 4: Specification and analysis flow.

has already compromised the head unit. This infor-
mation is marked as «AS.DataRead». On the other
hand, an internal ECU that is connected to the sec-
ond bus contains information that should not be read
by an attacker. Therefore, this information is stereo-
typed as «PG.DataConfidentiality». The goal of
this abstract VP is to detect security flaws within the
gateway, such as an unauthorized flash mechanism to
change the routing table. In the original scenario,
it was possible to configure the gateway over CAN.
The configuration included the writing of a filter that
should prevent sensitive information to be forwarded
on the public CAN. The data flow analysis showed
that both the filter condition and the forwarded data
where dependent on the same input data, in this case
the CAN message payload. This dependency showed
that if the input data is compromised the filter is jim-
mied. This very basic example showed how an ex-
ecutable specification could be used to analyze the
data propagation paths between the attack surface and
the protection goals to find potential weak spots. The
analysis is not yet fully automated. It gives only hints
to the user to take into account, such as this concen-
tration point at the filter. By adding e.g., an authen-
tication mechanism for overwriting the filter, the data
flow analysis would show the same result. But the au-
thentication would prevent the attacker from changing
the routing table. Therefore, our approach highlights
a false positive, under the assumption the authentica-
tion is not corruptible.

5 VIRTUAL PROTOTYPE
FRAMEWORK

The presented approach uses a subset of the UML to
specify the VP and its security analysis related infor-
mation. In this section, the link between the modeling
and the VP should be described. An overview is given
in Figure 4.

As already highlighted, the UML-based VPSpec
is basis for the security analysis. The simulation
library is generated from this specification. The
library contains all system components required for
one simulation run. This library is compiled and for
each simulation run a configuration file is given that
determines the simulation instance. This configu-
ration file is again generated from the UML-based
VPSpec. The different security analyses, such as the
dynamic data flow analysis or the manual penetration
testing are based on the executable simulation.

Before going into detail on how the VP is linked
to the VPSpec, let highlight the general procedure
of our VP approach. The VP consists of the design
under test (DUT) and its test bench. The DUT
models software, hardware and analog system parts.
It consists of a modular, parameterizable system
simulation. One simulation instance is assembled of
parameterizable simulation entities (SEs). To facil-
itate the analysis of different DUT characteristics,
the framework uses a dynamic configuration that
is supplied during runtime. This covers the DUT
architecture as well as the SEs parameterization. This
provides a high re-usability of existing simulation
models.

The components of the VP are specified using
UML class diagrams. Each simulation component
can be specified using an UML class, attributes
and operations. Dedicated stereotypes, to specify
SystemC related declarations such as SystemC
threads (sc_thread) are added with additional pro-
files, beside the already highlighted security profile.
Based on the VPSpec automatically the structural
aspects of the C++ code are generated. This covers
all class definitions, member variables and member
methods as well as SystemC macro definitions such
as SC_HAS_PROCESS. The member methods are
only generated as empty stubs which have to be
implemented by the user. The code generation is
realized, by different Java Emitter Templates (JET).

One key element of our VP-based approach is
that the VP is assembled and configured by a file dur-
ing execution. All VP components provide a fabric
method to dynamically instantiate and configure them
as well as some methods to interconnect the created
instances. This way it is not necessary to program a
top module that assembles and configures all compo-
nents. The configuration file is an IP-XACT design
specification (SPIRIT Consortium, 2009) that lists
all the components to instantiate, how to parametrize
them and how to interconnect them. Basis for the
generation of the configuration file is an UML com-
posite structure diagram.The diagram instantiates the
already defined classes, assigns parameters and inter-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

608



Figure 5: UML model to specify the simulation structure.

connects them. Figure 5 highlights such a specifica-
tion. It instantiates the classes from Figure 3 and in-
terconnects them. With such a specification, the con-
figuration file is generated and the simulation is ex-
ecuted. The example shows the structural specifica-
tion of the previous example with a head unit an inter-
nal CAN (Body-CAN) and a public CAN (Comfort-
CAN). Both are interconnected via a gateway that is
the target of the analysed attack.

6 CONCLUSION

In this paper, we outlined our ambition towards the
modeling of security concepts in the context of VP-
based security analyses. Modeling is applied for the
specification of the attack surface, protection goals
and further documentation. With this comprehensive
information base, different security analysis based on
VPs are executed, such as a dynamic data propagation
analysis or virtual penetration testing. Currently the
available analyses are largely manual tasks e.g., the
interpretation of the data propagation analysis to see
if the attack surface is linked to the protection goals,
without security measures. In the future, we will try
to automate the tasks and reduce the manual overhead
for the user. The presented modeling approach al-
ready provides various steps of automation, but these
mainly support the user to generate the VP and plan
the attack scenarios.

ACKNOWLEDGEMENTS

The work was partially funded by the Baden-
Württemberg Stiftung gGmbH.

REFERENCES

Basin, D., Doser, J., and Lodderstedt, T. (2006). Model
driven security: From uml models to access control
infrastructures. ACM Trans. Softw. Eng. Methodol.

Best, B., Jurjens, J., and Nuseibeh, B. (2007). Model-based
security engineering of distributed information sys-
tems using umlsec. In 29th International Conference
on Software Engineering.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236.

Charlie, M. and Chris, V. (2015). Remote exploitation of an
unaltered passenger vehicle. Black Hat USA, 2015.

Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., Savage, S., Koscher, K., Czeskis, A.,
Roesner, F., and Kohno, T. (2011). Comprehensive
experimental analyses of automotive attack surfaces.
In Proceedings of the 20th USENIX Conference on
Security, SEC’11, pages 6–6, Berkeley, CA, USA.
USENIX Association.

IEEE Computer Society (2011). IEEE 1666-2011 Stan-
dard SystemC Language Reference Manual. IEEE Std
1666-2011.

Jürjens, J. (2002). Umlsec: Extending uml for secure
systems development. In Proceedings of the 5th
International Conference on The Unified Modeling
Language, UML ’02, pages 412–425, London, UK.
Springer-Verlag.

Jürjens, J. (2010). Secure Systems Development with UML.
Springer-Verlag, Berlin, Heidelberg.

Lodderstedt, T., Basin, D., and Doser, J. (2002). Se-
cureUML: A UML-Based Modeling Language for
Model-Driven Security, pages 426–441. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Massacci, F., Mylopoulos, J., and Zannone, N. (2010). Se-
curity Requirements Engineering: The SI* Modeling
Language and the Secure Tropos Methodology, pages
147–174. Springer, Berlin, Heidelberg.

OMG (2011a). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification.

OMG (2011b). Unified Modeling Language.
OMG (2012). OMG Systems Modeling Language (OMG

SysML).
Reiter, S., Viehl, A., Bringmann, O., and Rosenstiel, W.

(2016). Fault injection ecosystem for assisted safety
validation of automotive systems. In 2016 IEEE Int.
High Level Design Validation and Test Workshop.

Sommestad, T., Ekstedt, M., and Holm, H. (2013). The cy-
ber security modeling language: A tool for assessing
the vulnerability of enterprise system architectures.
IEEE Systems Journal, 7(3):363–373.

SPIRIT Consortium (2009). IEEE Standard for IP-XACT,
Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows.

Model-guided Security Analysis of Interconnected Embedded Systems

609


