
Context-specific Quality Evaluation of Test Cases

Ivan Jovanovikj1, Vishwak Narasimhan2, Gregor Engels1 and Stefan Sauer1

1Software Innovation Lab, Paderborn University, Zukunftsmeile 1, Paderborn, Germany
2Department of Computer Science, Paderborn University, Warburger Str. 100, Paderborn, Germany

Keywords: Quality Plan, GQM, Metrics, Quality Model.

Abstract: Software systems are continuously changed during maintenance and evolution. To ensure their quality, they
have to be tested. But before starting testing a software system, the quality of the test cases themselves has to
be evaluated. Due to the changes of the software system, they might have become obsolete or even erroneous.
Furthermore, test cases created in an industrial setting are extensive and at some point of time, they might
have become difficult to understand, unmanageable and inefficient. Therefore, by evaluating their quality,
we can better understand, control and eventually improve the quality of test cases. We present the Test Case
Quality Plan (TCQP) approach, which is based on the GQM (Goal-Question-Metric) approach and enables a
systematic and efficient development of quality plans. They serve as a guideline for the quality evaluation of
test cases, and emphasize the context of use of test cases as a major factor of influence for the whole quality
evaluation. The TCQP approach has been applied and evaluated in an industrial case study.

1 INTRODUCTION

Nowadays, software systems rapidly evolve, i.e., they
are continuously changed. Along the process of
changing the system, its quality has to be ensured.
Software testing is one of the principal and commonly
performed activity in software quality assurance.

Similarly, quality assurance is needed for test
cases as well. But, it is a challenging task, due
to the fact that the test cases are also constantly
changed (Deursen et al., 2001; Guerra and Fernan-
des, 2007; Meszaros, 2007), e.g., due to system
changes (Fowler and Beck, 1999). These changes in-
volve updating, deleting, and creating new test cases.
Consequently, some test cases might no longer reflect
the updated behavior, i.e., they might become obso-
lete or even erroneous. Furthermore, test cases cre-
ated in an industrial setting are extensive and at some
point of time, the test cases might become difficult
to understand, unmanageable and inefficient (Sneed,
2003). Therefore, by evaluating their quality, we can
better understand, control and eventually improve the
quality of test cases.

Currently, the work regarding quality evaluation
of test cases is predominantly split into two areas.
In the first area, the focus is on providing a set
of internationally standardized and recognized test
metrics to quantify different quality aspects of test

cases (Sneed, 2004; Kaner, 2003; Bowes et al.,
2017). In the other one, the focus is on providing a
quality model based on existing quality models (e.g.
ISO/IEC 9126 (ISO/IEC, 2001)) for the domain of
test cases (Zeiss et al., 2007). However, there is no
systematic approach which considers the context of
use of the test cases, which is crucial for obtaining
a suitable insight in the quality of the test cases, and
which relies on standards like the ISO/IEC standard.
Similarly as in (Voigt et al., 2008), we derive and dis-
cuss the following set of requirements that should be
addressed by the solution:

Requirement 1 - Common Quality Under-
standing: The solution should use definitions for
qualities of test cases for a consistent and common
quality understanding. Among the stakeholders, ev-
ery team member should have the same understand-
ing of quality related to the test case domain. False
interpretations can lead to misunderstandings and in-
correct results.

Requirement 2 - Context Characterization:
The solution should be able to provide a minimum set
of context factors. The quality of test cases strongly
depends on the context of use, in which they are cre-
ated, managed, and applied. This means that differ-
ent factors like the available artifacts, the environ-
ment of the test, test case type (code-based or natural
language-based), etc. should be considered.

594
Jovanovikj, I., Narasimhan, V., Engels, G. and Sauer, S.
Context-specific Quality Evaluation of Test Cases.
DOI: 10.5220/0006724405940601
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 594-601
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Requirement 3 - Definition of Measurements:
The solution should distinguish between objective and
subjective measurements. The evaluation of test cases
requires measurements to ensure the attainment of nu-
merical quality goals. For this reason, metrics are in-
troduced to quantify different quality aspects of test
cases or software artifacts in general.

Requirement 4 - Systematic Approach: The so-
lution must be a systematic process that guides the
stakeholders based on the context factors. Existing
evaluation approaches define a set of measurements
that applies to test cases. But, according to the con-
text and information needs, this set of measurements
might be reduced or extended. Hence, a systematic
process is required that guides the stakeholders based
on the test case’s context factors.

We address the previously defined requirements
by developing the Test Case Quality Plan (TCQP)
approach. The solution provides a systematic pro-
cess which considers the context information and in-
tegrates a standardized quality model. It builds upon
Model Quality Plan (MQP) (Voigt and Engels, 2008),
an approach specialized for the domain of software
models, and the new ISO/IEC 25010 quality stan-
dard (ISO/IEC, 2011). Our solution provides a practi-
cal guideline for the stakeholders (developers, testers
and managers) for planning, implementing and using
goal-oriented measurement for gaining an insight into
the quality of test cases. Thus, the quality of test cases
for a constantly changed software can be systemati-
cally and continuously evaluated.

The paper is structured as follows: Section 2 gives
a brief overview of the related work. Then, in Sec-
tion 3, we introduce the Test Case Quality Plan
(TCQP) approach. In Section 4, we present our in-
dustrial case study. Section 5 presents the tooling and
at the end, Section 6 concludes the work and gives an
outlook on future work.

2 RELATED WORK

The work in test case quality assessment area is cur-
rently split in two main areas: approaches that iden-
tify and provide a set or a catalogs of metrics and
approaches that provide a general and a standardized
quality model which is applicable in any setting. The
existing work which is done regarding the metrics, is
predominantly considering test effectiveness (Staats
et al., 2011; Mockus et al., 2009; Gopinath et al.,
2014; Ellims et al., 2006; Chernak, 2001). However,
there are other quality aspects for test cases besides
effectiveness.

The introduction of metrics to quantify different

quality aspects of test cases is considered in (Sneed,
2003). The intention of Sneed (Sneed, 2003) is to
provide a set of internationally standardized and rec-
ognized test metrics from which the software devel-
opment teams can select to plan their test projects and
evaluate their test operation. However, these metrics
do not consider the context of use of test cases. More-
over, a common definition for the quality characteris-
tics is also missing.

Bowes et al. (Bowes et al., 2017), provide a list of
15 testing principles that represent the basis of testing
goals and best practices and how they can be quanti-
fied as indicators for test case quality. However, their
main focus is not on relation to an existing quality
standard and consideration of the context of use.

Kaner argues in (Kaner, 2003) that it depends on
the purpose how good given test cases are. According
to Kaner, test cases can be ”good” in different ways
but it is impossible that is good at all of them. As test
cases are created according different styles in differ-
ent domains, a good test case in one domain is dif-
ferent from a good test in another domain. Thereby,
Kaner clearly emphasize the importance of context of
use of test cases. But, neither a relation to a qual-
ity standard, nor a systematic quality assessment ap-
proach is presented.

In general, quality models divide the term quality
into its essential quality characteristics. Each of these
characteristics can be subdivided into more detailed
quality sub-characteristics and finally into quality at-
tributes. In (Zeiss et al., 2007), an adaptation of the
ISO/IEC 9126 quality model (ISO/IEC, 2001) to test
specifications is presented. The definition for most of
the characteristics are generously re-interpreted from
the ISO/IEC 9126 (ISO/IEC, 2001) and applied for
test specification. However, quality models do not
document their assumptions about the context and it
it remains unclear to which degree a quality model is
applicable to a given set of test cases. Moreover, the
ISO/IEC 9126 (ISO/IEC, 2001) was replaced by the
ISO/IEC 25010 (ISO/IEC, 2011) standard in 2011.

A well-known methodology to find appropriate
metrics for an explicitly stated purpose is the GQM
approach (Basili et al., 1994). GQM considers the
characterization of context factors for the organiza-
tion and development projects. The Model Quality
Plan (MQP) approach (Voigt and Engels, 2008) spe-
cializes GQM to describe a procedure for building a
quality plan for quality assessment of software mod-
els, both static and dynamic models. It combines the
advantages of both GQM and quality models (Voigt
et al., 2008). However, MQP does not explicitly focus
on test cases and does not provide all required context
factors.

Context-specific Quality Evaluation of Test Cases

595



3 TEST CASE QUALITY PLAN

In this section, we introduce our approach for quality
evaluation of test cases, called Test Case Quality Plan
(TCQP). TCQP builds upon the MQP approach (Voigt
and Engels, 2008) which is relevant to the domain of
software models. To apply conceptually the MQP ap-
proach in the domain of test cases, we adopted MQP
by providing a new meta-model relevant to the do-
main of test cases. The TCQP approach consists of
a top-down process, called TCQP Process (Figure 1),
and a related meta-model, called TCQP meta-model
(Figure 2).

The TCQP process serves as a guideline for es-
tablishing a quality plan for the quality evaluation of
test cases. The TCQP meta-model contains all rel-
evant information with respect to the quality plan.
The contents of the TCQP meta-model are structured
into packages which are closely linked to a respective
phase of the TCQP process. In the following, we give
an overview of the TCQP process.

Firstly, the Characterization of Context phase in-
volves identifying the context information specific to
a given set of test cases. Context factors are essen-
tial elements that may affect the outcome of the eval-
uation. Test cases are usually derived from require-
ment specifications, directly from the structure of a
component or system or they can be also based on
tester’s experience and intuition. Identifying the rel-
evant test case context factors which include the en-
vironment, domain, and the associated artifacts, as-
sists in selecting suitable measures for evaluating the
test cases (Pfaller et al., 2008). The test case relevant
context factors are defined by the Context Description
Meta-model.

Secondly, any successful evaluation is performed
towards an explicitly stated purpose. In the Identifi-
cation of Information Needs phase, the quality goals

for the evaluation of test cases are documented. By
documenting the information needs, an insight neces-
sary to manage the objectives, goals, risks and prob-
lems related to a specific quality goal of the test cases
is identified and documented. As identifying the in-
formation needs is a creative process and requires a
significant human resource, the context factors de-
termined in the previous phase are used as an addi-
tional input. The Goal-Question-Metric (Basili et al.,
1994) approach is used to select the insights men-
tioned above targeting a specific quality goal. More
specifically, we utilize the goal template (Briand et al.,
1996) to document the goal dimensions (object of
study, purpose, quality focus, viewpoint, context) of
our goals. Further, the documented goals are refined
into questions. The goals and questions are speci-
fied through interviews and structured brainstorming
sessions with the stakeholders. The corresponding
meta-model for this step is the Information Need Meta
Model and an excerpt of it is shown in Figure 3.

Third, the quality goals and their related qual-
ity focus had to be described in common terms, so
that everyone who is involved in the evaluation has
the same perception of the term quality. In the Def-
inition of a Common Understanding phase, we uti-
lize the Quality Model for Test Specification (Zeiss
et al., 2007) for establishing a common quality un-
derstanding. With this general quality understanding
team members would not understand quality charac-
teristics like Usability or Test Effectivity differently.
Further, the goals defined with a quality focus are
mapped to quality characteristics. For the corre-
sponding questions, quality attributes are identified
and documented. As the quality model for test spec-
ifications presented in (Zeiss et al., 2007) relies on
the ISO/IEC 9126 (ISO/IEC, 2001) quality standard,
which was replaced in 2011 by the new ISO/IEC

Te
st

 C
as

e 
Q

ua
lit

y 
Pl

an
 (

TC
Q

P
)

P
h

as
e 

1
P

h
as

e 
2

P
h

as
e 

3
P

ha
se

 4

Characterization of 
Context

Start quality planning

Identification of 
Information Needs

Definition of Quality 
Understanding

Quality planning completed

Definition of 
Measurements

Context 
factors of 
test cases

Goals and 
questions

Defined quality 
characteristics and 
quality attributes

Defined 
measurements

Figure 1: Test Case Quality Plan Process based upon MQP (Voigt and Engels, 2008).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

596



25010 (ISO/IEC, 2011), we have compared the dif-
ferences and extended the quality model for test spec-
ifications (Zeiss et al., 2007). Doing so, this thus mak-
ing it compatible with the new ISO/IEC 25010 quality
standard. For example, Test Confidence was added as
a new quality sub-characteristic for the Test Effectivity
quality characteristic and Consistency is a new sub-
characteristic for the quality characteristic Usability.
Furthermore, Efficiency was renamed to Performance
Efficiency. Last but not least, Security is now a sepa-
rate characteristic and represents the degree to which
the specified test cases have information and data that
are protected and are only available depending upon
the levels of authorization.

TCQP Meta-model

ContextDescription
Meta-model

InformationNeed
Meta-model

Quality
Meta-model

Measurement
Meta-model

«import»

ContextElement

«import»

«import»

Goal, Question

QualityAttribute

Figure 2: TCQP Meta-model based upon MQP (Voigt et al.,
2008).

Fourth, in the Definition of Measurement phase,
suitable measures are documented for the quality at-
tributes identified in the previous phase. The mea-
sures are specified according to the ISO/IEC 15939
standard (ISO/IEC, 2002). This standard provides the
Measurement Information Model (MIM) that helps in
determining what has to be defined during measure-
ment planning and evaluation (ISO/IEC, 2002). The
standard distinguishes: base measures, derived mea-
sures, and indicators. The description of a measure
is structured as follows: A Name and an Acronym are

used to refer to a measure. The Measurement Method
specifies how to compute the measure. We differen-
tiate the two measurement types: subjective and ob-
jective. A measurement is subjective, if the quantifi-
cation involves human judgment and objective, if it
may be quantified automatically. The Scale and its
Scale Type define possible measurement values. Base
measures are computed functionally independent of
other measures. In contrast, derived measures are
computed as functions of two or more values of base
measures. Indicators are the calculation of combining
one or more base or derived measures with an associ-
ated decision criteria determined through interviews.

The TCQP meta-model, as shown in Figure 2,
groups the classes in four different packages. Each
of the packages contains classes specific for each of
the previously introduced steps of the TCQP process.
The classes from different packages are strongly in-
terrelated witch each other, thus enabling seamless
transition between the process steps. For example,
the imported class QualityAttribute shows transition
between the last two steps. The excerpt of the Infor-
mation Need Meta Model shown in Figure 3, shows
the interrelation of the Information Need Meta-model
with the Context Description Meta-model as well as
the Quality Meta-model. In the step Characteriza-
tion of Context, the ContextFactors, TestCaseType and
TestItem are documented. These two context factors
are used in the Identification of Information Need step
for the analysis of the object of study TestSuite. Goals
and Questions are used to document the information
needs which are further described with respect to a
quality focus. Once documented, they are used in the
Definition of Quality Understanding.

The excerpt shown in Figure 3 shows just part of
the meta-model. We mentioned just two ContextFac-
tors, but there are some other relevant context factors
for the domain of test cases. In the following sec-
tion, we provide a concrete example, where in a tab-
ular form we provide some additional context factors,

ContextDescription 
Meta-model::
TestCaseType

ContextDescription 
Meta-model::
ContextFactor

ContextDescription 
Meta-model::

TestItem

InformationNeed
Meta-model::

Goal

InformationNeed
Meta-model::

Question

refines

indicates0..*

0..*

1..*

1..*

Quality Meta-model::
QualityCharacteristic

Quality Meta-model::
QualityAttribute

1..*

1

1..*
1ContextDescription 

Meta-model::
TestSuite

1

objectOfStudy
with respect to

with respect to

analys
es

1..*

context qualityFocus

qualityFocus

Figure 3: Excerpt of the Information Need Meta-model.

Context-specific Quality Evaluation of Test Cases

597



e.g., TestPhase, TestObject, and DevelopmentPhase.

4 INDUSTRIAL CASE STUDY

In this section, we present a case study where we
have applied and evaluated our approach. In an in-
dustrial context, due to a change of a test case man-
agement tool, test cases had to be migrated. How-
ever, the test cases created in the project were vo-
luminous and were, unmanageable. Over the time,
some of these test cases became hard to understand
and inefficient to execute. Hence, the team decided to
evaluate and also continuously monitor the quality of
the existing test cases. The main goal was to evalu-
ate quality of natural-language test cases. Beside this
requirement, the solution should also provide a mech-
anism that gives quality improvement suggestions for
the problematic test case. Last but not least, a tooling
which would support and ideally automate the evalu-
ation process was required. To address these require-
ments, we have applied our TCQP approach. Due to
space constraints, we use tables for the representation
of the TCQP models, i.e., the concrete syntax, instead
of using abstract syntax, the object diagrams.

Characterization of Context: We started with
the characterization of the context according to the
context factors specified in Context Description Meta-
model. Using this meta-model, one can describe in
which context the test cases are measured. The con-
text factors include the environment, the domain, and
the associated artifacts and they assist later in select-
ing suitable measures for the test cases. Table 1 shows
the analyzed context factors along with the respective
values. For example, the Test Object ContextFactor,
contains the information about what is tested, whereas
Test Case Type contains the information about the
type of the test cases, either natural language-based
or code-based test cases.

Table 1: Context Description Model.

System Design DocumentSoftware Development Artifact

Test Case Type Natural Language (English)

Context Factor Value

Test Suite Printer Functional Tests

Printer ModuleTest Item

Automated Teller MachineTest Object

Test Phase System Testing

System Requirement SpecificationDevelopment Phase

Identification of Information Needs: Then,
through series of interviews with two quality man-

agers and few testers, we have specified the goal as
follows: Analyze the test suite for the purpose of eval-
uation with respect to Usability and the context fac-
tors defined in the previous phase. Further, this goal
was refined by questions in a brainstorming session
with testers. For example, one specific question was
regarding the completeness of the test cases, i.e., ”Has
every test case its test target specified?”. At the end,
each question is related to an appropriate quality at-
tribute (Table 2). The above mentioned question was
related to the quality attribute Specified Test Target.

Table 2: Questions and Quality Attributes.

Are there test cases without ambiguous words? Ambiguous Tests

Questions Quality Attributes

Are there test cases without conditional logic? Conditional Logic Tests

German CharacterAre there test cases without German Characters?

Specified Expected 
ResultsHas every test case its expected results specified?

Has every test case its procedure specified? Specified Procedure

Specified Test TargetHas every test case its test target specified?

Common Quality Understanding: In the third
step, the goal’s quality focus Usability is fur-
ther refined using quality characteristics and sub-
characteristics defined in the extended quality model
for test specifications consistent with the ISO/IEC
25010 (ISO/IEC, 2011) quality model, thus enabling
common quality understanding.

Table 3: Definition of Quality Characteristics of Test Spec-
ifications (Zeiss et al., 2007).

 Fault-Revealing 
Capability

The capability of the test cases to reveal faults (e.g. 
mutation coverage as an indicator).

 Test Effectivity The degree to which the specified test cases fulfil a given 
test purpose.

 Comprehensibility
The degree to which the test cases are unambiguous 
and might not contain any conditional logic the specified 
test cases could be reused for different test types.

The degree to which the specified test cases could be 
reused for different test types.Reusability

The degree to which the test cases can be diagnosed for 
deficiencies. For example, test cases should be well 
structured to allow code reviews.

 Analysability

Quality Definition

The degree to which the specified test cases could be 
modified with ease due to changes in the software.Maintainability

 Understandability
The degree to which the test cases are understandable 
for a particular need. Documentation and description of 
the overall purpose of the test specification are important 
factors and guides in finding the suitable test cases.

The degree to which the specified test cases could be 
used with ease.Usability

The light gray rows in Table 3 represent the defi-
nitions of the selected quality characteristics: Usabil-
ity, Maintainability, Reusability, and Test Effectivity,
whereas the white rows are the associated quality sub-
characteristic. For example, for the quality charac-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

598



teristic Usability, Understandability is the associated
sub-characteristic.

At the end of this step, each selected qual-
ity characteristic is related via corresponding sub-
characteristics to the quality attributes defined in the
previous step. For example, the quality characteristic
Usability is related to the Understandability, which is
further related to the quality attribute German Char-
acter.

Definition of Measurements: In the last step,
measurements that quantify each quality attribute are
defined and documented. We differentiate between
two types of measurements, objective and subjective
measurements. The measurement in Table 4 is an ex-
ample of an objective measurement and it represents
the number of test cases in a test suite. The formal-
ization of the measurement done with the help of the
Object Constraint Language (OCL)1 is necessary in
order to enable automatic computation.

Table 4: Description of Objective Base Measure.

Scale (Type of scale) Integer from Zero to Infinity (Absolute)

ObjectiveType of Measurement

context Class::NTCts():Integer = 
testCasedb.size()Formal Definition (OCL)

Informal Definition Count the number of test cases in a test suite

Number of Test Cases in a Test Suite (NTCts)Name (Acronym)

Base Measure

The measurement in Table 5 on the other hand, is
an example of subjective measurement. It is subjec-
tive as a human judgment is required to check if a test
case is really ambiguous or not.

Table 5: Description of Subjective Base Measure (Haupt-
mann et al., 2013).

Scale (Type of scale) Integer from Zero to Infinity (Absolute)

SubjectiveType of Measurement

context Class::NATCts():Integer = 
fn:count(testProcedure[fn:matches(.,"^(" similar 
"," whether '', " depending '', " in case '')))

Formal Definition (OCL)

Informal Definition

Count the number of test case procedure 
having ambiguous words like similar, better, 
similarly, worse, having in mind, take into 
account, take into consideration, clear, easy, 
strong, good, bad, useful, significant, adequate, 
fast, recent

Number of Ambiguous Test Cases in a Test 
Suite (NATCts)Name (Acronym)

Base Measure

The definition of measurements concludes the cre-
ation of the quality plan for the particular context and

1http://www.omg.org/spec/OCL/2.4/

it is ready to be applied and evaluate the quality of the
natural language-based system test cases.

5 TOOL IMPLEMENTATION

In this section, we present Test Case Quality Eval-
uator (TCQEval), a tool that we have developed for
continuous monitoring of test case quality.

This tool supports the quality evaluation process
by providing an environment for setup and execution
of an already developed quality plan. After a quality
plan is executed, the results are displayed on a dash-
board as shown in Figure 4.

The tool provides insight in the quality of the test
cases on three different levels of granularity: a gen-
eral quality of all test cases, quality of a specific test
suite and quality of a single test case. This enables
the user to easily locate a test case or a group of test
cases that need quality improvement, i.e., to locate
those test cases with a lower score regarding specific
characteristic or sub-characteristic.

The user interface of the tool, as shown in Fig-
ure 4, is split in several tabs: the first one, the
Overview tab, gives a general overview of the test
case quality and each of the following tabs gives an
overview of a particular quality characteristic, eg.,
Usability, Maintainability etc.

The Overview tab, as it names suggest, gives an
general overview of the test case quality regarding all
characteristics. On the left-hand side, using charts,
the quality level of each quality characteristics and
sub-characteristics is displayed. This graphical rep-
resentation should ease the result interpretation. The
Quality Assessment Summary section gives more pre-
cise information by providing the measured values of
quality attributes for each respective quality charac-
teristic and sub-characteristic. The Insights section,
informs the user regarding various KPIs, defined by
the quality managers in the measurement definition
phase, by using different spotlight indicators like red,
yellow, or green colors. This provides at-a-glance
view of a particular measure’s performance. The Ex-
ecution Summary informs the user about the current
executions of the test cases.

For more detailed information about the quality of
each separate test case regarding specific quality char-
acteristic, e.g., usability, the respective tab should be
visited, in this case the Usability tab. The test cases
with some quality issues, e.g., missing test target, pro-
cedure or expected result, are properly marked. This
indicates to the user what should be done to improve
the quality of the test cases.

Seen from technological perspective, the tool is

Context-specific Quality Evaluation of Test Cases

599



a Windows Presentation Foundation (WPF)2 appli-
cation. The technology selection was influenced by
the industrial partner, as they had already a Microsoft
technology stack in place and the existing test cases
were stored in a Microsoft Access database.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have introduced our approach for
quality evaluation of test cases called Test Case Qual-
ity Plan (TCQP) which enables a systematic and effi-
cient development of quality plans. We have also pre-
sented an industrial case study where we have demon-
strated how a quality plan can be systematically cre-
ated for evaluating usability of test cases with an ap-
propriate tool support.

TCQP builds upon Model Quality Plan and con-
sists of a process and a corresponding meta-model.
The process has the role of guiding in developing a
test case quality plan, whereas the meta-model defines
how a quality plan may look like. To make the basic
idea applicable to the domain of test cases, we have
adopted this approach to the domain of test cases by
introducing a suitable meta-model. Firstly, we have
introduced a new set of context factors and new ques-
tions for the information needs part. Then, we have
adapted the ISO/IEC 25010 quality model to the do-
main of test cases and integrated it. Furthermore, we
have derived appropriate measurements and metrics
for test cases. Last but not least, a tool, called TCQE-

val, that supports the evaluation process was imple-
mented. Therefrom, all four requirements specified at
the beginning were addressed by our work.

Regarding future work, we have defined several
research directions. Firstly, the minimum set of con-
text factors should be revisited and eventually ex-
tended. There could be other context factors that
might influence the quality evaluation in a particu-
lar context. Secondly, the completeness of the qual-
ity model should be also considered. By using our
approach, one can systematically extend the quality
model with additional quality attributes that could be
used to measure any type of test cases. The case study
discussed in this paper was done in a particular in a
particular context in which system test cases specified
in a natural language were evaluated. However, our
evaluation method provides a general solution for the
development of quality plans for any test level (unit,
integration and acceptance level) and not just for sys-
tem level. An eventual application of our method for
quality evaluation of unit test cases (e.g., jUnit test
cases) would eventually mean an extension regarding
the quality attributes and derivation of a proper mea-
surements. Hence, when initially applying our ap-
proach, an initial effort due to the documentation of
the required information must be expected. However,
we believe that by developing a quality plan for a spe-
cific context, this initial effort will pay off by reuse for
the same or a similar context. For this reason, a rule-
based mechanism which will enable reuse of existing
quality plans is foreseen. The basic idea is to provide
rules which describe a particular context and which
should help by selecting and reusing an existing qual-

Quality Characteristics

Quality 
Subcharacteristics

Insights

Quality Assessment
Summary

Execution 
Summary

Figure 4: TCQEval Dashboard.

2https://docs.microsoft.com/enus/dotnet/framework/wpf/

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

600



ity plan. By doing so, one can significantly reduce the
initial effort needed to create a quality plan.

REFERENCES

Basili, V. R., Caldiera, G., and Rombach, D. H. (1994).
{T}he {G}oal {Q}uestion {M}etric {A}pproach. In
Encyclopedia of Software Engineering, volume I.
John Wiley & Sons.

Bowes, D., Hall, T., Petrić, J., Shippey, T., and Turhan, B.
(2017). How Good Are My Tests? International
Workshop on Emerging Trends in Software Metrics,
WETSoM, pages 9–14.

Briand, L. C., Briand, L. C., Differding, C. M., and
Rombach, H. D. (1996). Practical Guidelines for
Measurement-Based Process Improvement.

Chernak, Y. (2001). Validating and improving test-case ef-
fectiveness. IEEE Software, 18(1):81–86.

Deursen, A., Moonen, L. M., Bergh, A., and Kok, G.
(2001). Refactoring test code. Technical report.

Ellims, M., Bridges, J., and Ince, D. C. (2006). The Eco-
nomics of Unit Testing. Empirical Software Engineer-
ing, 11(1):5–31.

Fowler, M. and Beck, K. (1999). Refactoring : improving
the design of existing code. Addison-Wesley.

Gopinath, R., Jensen, C., and Groce, A. (2014). Code cover-
age for suite evaluation by developers. In Proceedings
of the 36th International Conference on Software En-
gineering - ICSE 2014, pages 72–82, New York, New
York, USA. ACM Press.

Guerra, E. M. and Fernandes, C. T. (2007). Refactoring Test
Code Safely. In International Conference on Software
Engineering Advances (ICSEA 2007), pages 44–44.
IEEE.

Hauptmann, B., Heinemann, L., Vaas, R., and Braun, P.
(2013). Hunting for smells in natural language tests.
In 2013 35th International Conference on Software
Engineering (ICSE), pages 1217–1220. IEEE.

ISO/IEC (2001). 9126:2001: Software engineering - Prod-
uct quality - Part 1: Quality model. International Or-
ganization for Standardization (ISO) / International
Electrotechnical Commision (IEC).

ISO/IEC (2002). 15939:2002: Software engineering - Soft-
ware measurement process. International Organiza-
tion for Standardization (ISO) / International Elec-
trotechnical Commision (IEC).

ISO/IEC (2011). 25010:2011 - Systems and software en-
gineering – Systems and software Quality Require-
ments and Evaluation (SQuaRE) – System and soft-
ware quality models. International Organization for
Standardization (ISO) / International Electrotechnical
Commision (IEC.

Kaner, C. (2003). What Is a Good Test Case? Software
Testing Analysis & Review Conference (STAR East).

Meszaros, G. (2007). XUnit test patterns : refactoring test
code. Addison-Wesley.

Mockus, A., Nagappan, N., and Dinh-Trong, T. T. (2009).
Test coverage and post-verification defects: A mul-
tiple case study. In 2009 3rd International Sympo-
sium on Empirical Software Engineering and Mea-
surement, pages 291–301. IEEE.

Pfaller, C., Wagner, S., Gericke, J., and Wiemann, M.
(2008). Multi-Dimensional Measures for Test Case
Quality. In 2008 IEEE International Conference on
Software Testing Verification and Validation Work-
shop, pages 364–368. IEEE.

Sneed, H. M. (2003). Software Testmetriken für die Kalku-
lation der Testkosten und die Bewertung der Testleis-
tung. GI Softwaretechnik Trends, 4(23):11.

Sneed, H. M. (2004). Measuring the Effectiveness of Soft-
ware Testing. In Testing of Component-Based Systems
and Software Quality, Proceedings of {SOQUA} 2004
(First International Workshop on Software Quality)
and {TECOS} 2004 (Workshop Testing Component-
Based Systems), page 109.

Staats, M., Whalen, M. W., and Heimdahl, M. P. (2011).
Programs, tests, and oracles. In Proceeding of the
33rd international conference on Software engineer-
ing - ICSE ’11, page 391, New York, New York, USA.
ACM Press.

Voigt, H. and Engels, G. (2008). Kontextsensitive Qualitäts-
planung für Software-Modelle. In Kühne, T., Reisig,
W., and Steimann, F., editors, Modellierung 2008, 12.-
14. März 2008, Berlin, volume 127 of LNI, pages
165–180. GI.

Voigt, H., Güldali, B., and Engels, G. (2008). Quality
Plans for Measuring the Testability of Models. In
Proceedings of the 11th International Conference on
Quality Engineering in Software Technology (CON-
QUEST 2008), Potsdam (Germany), pages 353–370.
dpunkt.verlag.

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., and
Grabowski, J. (2007). Applying the ISO 9126 quality
model to test specifications - exemplified for TTCN-3
test specifications. In Software Engineering.

Context-specific Quality Evaluation of Test Cases

601


