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Abstract: The functional and taxonomic analysis is the critical step in understanding the interspecies interaction within

the microbial communities. Currently, these types of analysis are run independently, which makes interpreta-

tion of the results hard and error-prone. Here we present ASAR (Advanced metagenomic Sequence Analysis

in R) Database, the interactive tool and the databases for storage and exploratory analysis of the metagenomic

sequencing data along three dimensions: taxonomy, function, and environmental conditions.

1 INTRODUCTION

It is known that 99% of prokaryotic species are not

culturable (Schloss and Handelsman, 2005) either at

all or culture conditions are not known. In that ci-

rcumstances, the metagenomic analysis becomes an

essential experimental technique for our understan-

ding of composition and functional properties of mi-

crobial communities. In addition to that, decrea-

sing the cost of sequencing and increasing throug-

hput of sequencing machinery cause rapid growth in

availability of the metagenomic data, which makes

the development of tools for functional, taxonomic

and metabolic analyses of metagenomes extremely

important (Hugenholtz and Tyson, 2008; Lindgreen

et al., 2016). Recently the whole genome sequencing

(WGS) become more and more popular in compari-

son with 16S, Ribosomal Intergenic Spacer Analysis

(RISA), which compares the sizes of the intergenic re-

gion between the 16 S rRNA (rrs) and 23 S rDNA (rrl)

genes, and other amplicon sequencing techniques as

it not only provides information about the taxonomi-

cal composition of the biome but highlight its functi-

onal abilities via mapping DNA reads on to protein

function database. However, even most promising

current metagenomic analysis tools usually provide

either only taxonomic (Menzel et al., 2016) or just

functional (Westbrook et al., 2017) analysis. Some

tools implement both types of analysis but indepen-

dently (Keegan et al., 2016). That renders data analy-

sis incomplete and leaves a lot of information contai-

ned in the metagenomic datasets undiscovered. Re-

cently we have developed the ASAR (Advanced met-

agenomic Sequence Analysis in R) application (Ora-

kov et al., 2017) to fill that gap.

Simultaneous analysis of taxonomic and functio-

nal annotations at the reading level could help answer

many important questions, such as, which taxonomic

group in a sample is the main contributor to a parti-

cular function or metabolic pathway. Moreover, abi-

lity to analyze changes in microbiomes in the context

of the metabolic network is the critical requirements

for understanding biochemical processes in the com-

munity and the presence of competition or symbio-

sis between species. Discovering the most important

metabolic pathways would also considerably improve

the understanding of microbial community evolution.

The core advantage of ASAR is the ability to perform

taxonomic and functional analyses simultaneously, by

interactive subsetting and aggregating abundance data

at various levels of taxonomical and functional hier-

archy. It is designed to let researchers drill down to-

wards the most meaningful view of their data in a con-

venient way. It is also possible to perform the compa-
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rative analysis of the KEGG metabolic pathways (Ka-

nehisa et al., 2016), by exploring the pathways enri-

chment and visualizing the pathways themselves.

Original ASAR application was designed to deal

with data in memory. It is not uncommon in metage-

nomics to have the repetitive collection of samples as

a time series. In this case, application sometimes has

to deal with datasets of hundreds of samples, which

do not fit into the memory of regular workstation. To

handle large datasets, we augmented the ASAR appli-

cation with the database to store raw data and perform

the aggregation and selection.

2 METHODS

The application was written in R programming lan-

guage (R Core Team, 2017) and Shiny platform

(Chang et al., 2017) was used to make it web-

based and user-interactive. Thanks to R and Shiny,

the application can both be used locally at machi-

nes with installed R and as web-service. MonetDB

(https://www.monetdb.org/) was used as DBMS and

MonetDB.R (Muehleisen et al., 2017) package was

used for connection between R application and

DBMS. The application requires following R packa-

ges: dplyr (Wickham et al., 2017) and data.table (Do-

wle and Srinivasan, 2017) for efficient data mani-

pulation; ggplot2 (Wickham, 2016), gplots (Warnes

et al., 2016), RColorBrewer (Neuwirth, 2014) and

d3heatmap (Cheng and Galili, 2016) for visualiza-

tion; pathview (Luo et al., 2013) and png (Urbanek,

2013) for exporting the results.

Two datasets were used for development of the

application. The small dataset contains 11 metage-

nomes (total size 45 GB) from swine waste microbial

fuel cell (MFC) performance analysis project (Khi-

lyas et al., 2017). The moderate dataset consists of

172 metagenomes (total size 195 GB) from longitu-

dinal monitoring of the MFC wastewater treatment of

Spent Wash (Dimou et al., 2014). Both datasets were

loaded into the database separately. The small dataset

was used for the performance comparison with the in-

memory application. The moderate dataset does not

fit into memory, so it was used for demonstration of

the performance of the database version of the app.

3 RESULTS

3.1 The WGS Data

Sequencing data usually comes as a set of short DNA

reads, which are mapped to genomic and functional

databases for annotation by tools like Kaiju (Menzel

et al., 2016), Paladin (Westbrook et al., 2017), and

MG-RAST (Keegan et al., 2016). After joining of

taxonomical and functional annotation, the data form

2D matrix with species in rows and functions in co-

lumns. In that matrix, each cell contains the abun-

dances of reads mapped to the particular function in

particular species. Analysis of single metagenome is

quite rare, usually, metagenomes obtained at several

sets of environmental conditions, time points and per-

turbations are analyzed. That set of samples forms the

third dimension of the dataset.

The analysis of multidimensional datasets is a

tricky task; this is one reason why people usually

analyze taxonomy and functional data separately: ag-

gregation along functional or taxonomic dimension

forms the 2D matrix from the data, which is more

straightforward for visualization and interpretation.

The similar type of task was solved in business ana-

lytics in the middle of 80s by development concept

of the data cube (Kimball and Ross, 2011). In our

case, the data cube is the 3D array with taxonomy,

function, and metagenome as dimensions and read

counts as cell content. Elements of two of dimensi-

ons form hierarchies: taxonomic and functional. The

components of metagenome dimension usually orga-

nized into kind of design matrix either explicitly by

planning experiment upfront, or implicitly by explo-

ring the spatial and temporal variability of a microbial

community under investigation.

We designed ASAR (Orakov et al., 2017) appli-

cation for interactive analysis of the whole dataset by

application aggregation and selection operations dyn-

amically and exploration of the obtained 2D matrices

visually. At the moment we are using the annotation

files generated by MG-RAST pipeline, but any other

annotation pipeline, which assigns annotation at the

DNA read level, such as Kaiju, Paladin, QIIME, etc.,

would give similar results. The MG-RAST was cho-

sen because its annotation is based on the common

database and so self-consistent. The procedure of im-

port other types of data is the same, but mismatches

caused by use different references during DNA read

annotation won’t be fixed.

3.1.1 Selection and Aggregation

Interactive application of Selection and Aggregation

is the essential steps of dynamic exploration of the

3D data cube. Selection operation allows the user

to navigate through hierarchy by selecting element at

some higher level of the tree and analyze the subset

of the cube underneath part chosen. For example, the

user can choose Deltaproteobacteria at the class level

of taxonomy and restrict consideration to species and
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Figure 1: The database structure diagram. The fact table is shown in blue, functional annotation shown in yellow, taxonomic
annotation shown in green. ‘U’ icon indicates the columns with the unique constraint. ‘N’ icon indicates the nullable columns.
Columns included in the primary key are marked by the key symbol.

functions in that class only. Aggregation operation al-

lows the user to summarize the data at some level of

the hierarchy, by summing up the content of cells cor-

responding to the same element at selected Aggrega-

tion level. For example, the reliability of data at strain

level is usually low, so it is common to Aggregate the

data up to the genus level.

The application of Selection and Aggregation to

the metagenome axis, by choosing the particular field

in the metadata and use it as a hierarchy level for se-

lection and aggregation. For example, analysis of mi-

crobial fuel cell (MFC) microbiome usually consider

anodic biofilm separately from the planktonic com-

munity, so we can choose “Part of MFC” field from

metadata and Select “Anode” value to study the com-

position of anodic biofilm only. We can also aggre-

gate all planktonic communities into one matrix and

explore their dependence on time or initial commu-

nity composition.

3.1.2 SEED Annotation Analysis

Shiny Application has five tabs, four of which are he-

atmaps and last is the KEGG pathway diagram (Fi-

gure 2).

First three heatmaps are three different projecti-

ons of the 3D dataset: function vs. taxonomy (F/T),

function vs. metagenome (F/M) and taxonomy vs.

metagenome (T/M). So, in the first heatmap, you

can see the abundance of each intersection between

function and taxon in a single metagenome sample.

The next two heatmaps represent traditional functio-

nal and taxonomic analysis and allow to compare en-

richments of functions or taxons among selected met-

agenomes. For both functions and taxons user can

choose particular level and value to work with and

the level at which all data will be aggregated. The

taxonomic hierarchy levels are taken from MG-RAST

(Keegan et al., 2016) and SEED hierarchy (Overbeek

et al., 2013) is used for functions.

3.1.3 KEGG Annotation Analysis

In the fourth heatmap one can compare KEGG

pathway (Kanehisa et al., 2016) enrichments in order

of the descending value of standard deviation among

selected samples in a selected taxon. After one finds

the pathway of interest, choosing the pathway name

in the last tab will draw its KEGG diagram. In the

diagram, every enzyme will correspond to a rectangle

where samples are colored according to values of their

contribution to the abundance of that enzyme in the

community.

3.2 Database Structure

The structure of the database (Figure 1) follows stan-

dard Online analytical processing (OLAP) Snowflake

pattern (Ponniah, 2010) with asar.reads as the fact ta-

ble. The icons on the diagram follow The metage-

nome and annot tables define two main dimensions.
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Figure 2: The KEGG diagram visualization. The selection panel is on the left. It is possible to choose metagenomes of
interest, taxonomy selection level and value and the pathway to show. The “GO” button prevents unintended drawing of the
pathway, which requires access to the KEGG database and is time-consuming.

The former one for non-hierarchical sample dimen-

sion, the latter for both hierarchical taxonomic (taxo-

nomy table) and functional (function table) dimensi-

ons. The ko table, another connection of the annot

table, provides KEGG annotation for pathway analy-

sis.

All selection and aggregation operations along

taxonomy and function dimensions of the data cube

are performed in memory in the same way as in origi-

nal ASAR application, while for selection and aggre-

gation operations along metagenomic dimension the

SQL queries to the database is used. That way of in-

teraction with the database was chosen to reduce the

response time of the application, as the manipulation

along the functional and taxonomic dimensions are

much more often compare to modification of selection

and aggregation criteria along samples dimension.

The taxonomic hierarchy levels are taken from

MG-RAST (Keegan et al., 2016). It consists of eight

levels from domain to strain levels. The read could be

assigned to any level of the taxonomy, so ”least com-

mon ancestor” annotation method could be used. The

structure of functional annotation follows the SEED

hierarchy (Overbeek et al., 2013) that consists of four

levels. Level 1 of the SEED hierarchy corresponds to

individual enzyme functions, while major functional

groups like “DNA metabolism” or “Virulence” form

the level 4 of the tree. Specific kind of annotation is

KEGG orthology, which is required for mapping of

metagenomic data onto the KEGG pathway.

4 CONCLUSIONS

Our post-annotation analysis and visualization tool

uses data integration algorithm to merge taxonomic

and functional data annotated at the DNA read le-

vel. The resulting 3D dataset with axes of Functions,

Taxonomy and Metagenome samples is visualized via

three heatmaps of each axis versus two others (F/T,

F/M, T/M). Additionally, KEGG pathway enrichment

sorting/heatmap and its map visualization are imple-

mented.

We have tested the performance of the database

on Intel Core i5, 32 GB RAM workstation with small

(11 metagenomes, total size 45 GB) and moderate

(172 metagenomes, total size 195 GB) datasets. The

average response time was in a range of 10 sec for in-

memory data transformation and up to 2 min for DB

SQL query. The database upload time was 5 minu-

tes for the small dataset and 10 minutes for the mo-

derate one. The source code of ASAR is free and

accessible at GitHub (https://github.com/Askarbek-

orakov/ASAR).
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