
On the Taut String Interpretation of the One-dimensional
Rudin–Osher–Fatemi Model

Niels Chr Overgaard
Centre for Mathematical Sciences, Lund University, Sölvegatan 18A, 221 00 Lund, Sweden

Keywords: Total Variation Minimization, Taut String, Denoising, Regression Splines, Lewy–Stampacchia Inequality,
Sub-modularity, Moreau-Yosida Approximation, Isotonic Regression.

Abstract: A new proof of the equivalence of the Taut String Algorithm and the one-dimensional Rudin–Osher–Fatemi
model is presented. Based on duality and the projection theorem in Hilbert space, the proof is strictly ele-
mentary. Existence and uniqueness of solutions (in the continuous case) to both denoising models follow as
by-products. The standard convergence properties of the denoised signal, as the regularizing parameter tends
to zero, are recalled and efficient proofs provided. Moreover, a new and fundamental estimate on the denoised
signal is derived. It implies, among other things, the strong convergence (in the space of functions of bounded
variation) of the denoised signal to the in-signal as the regularization parameter vanishes.

1 INTRODUCTION

In 2017 it was 25 years ago Leonid Rudin, Stanley
Osher and Emad Fatemi proposed their now classical
model for edge-preserving denoising of images (Ru-
din et al., 1992). The present paper will investi-
gate the properties of the one-dimensional version of
the Rudin-Osher-Fatemi (ROF) model: To a given
(noisy) signal f ∈ L2(I), defined on a bounded inter-
val I = (a,b), associate the (ROF) functional

Eλ(u) = λ
∫ b

a
|u′(x)|dx+

1
2

∫ b

a
( f (x)−u(x))2 dx ,

where λ > 0 is a parameter. Define the denoised sig-
nal as the function uλ ∈ BV (I) which minimizes this
energy, i.e.,

uλ := argmin
u∈BV (I)

Eλ(u) . (1)

The first term in the ROF-functional is λ times the
total variation

∫ b
a |u′|dx of the function u and BV (I)

denotes the set of functions on I with finite total varia-
tion. Precise definitions will be given below, in Secti-
ons 2 and 3.

The one-dimensional ROF model is compared to
the Taut string algorithm—an alternative method for
denoising of signals with applications in statistics,
non-parametric estimation, real-time communication
systems and stochastic analysis. In the continuous
setting, for analogue signals, the Taut string algorithm
can be stated in the following manner (cf. Figure 1):

Algorithm 1: The Taut String Algorithm.

INPUT: A bounded interval I = (a,b), a (noisy) signal
f ∈ L2(I) and a parameter λ > 0.
OUTPUT: The denoised signal fλ ∈ L2(I).
STEP 1. Compute the cumulative signal,

F(x) =
∫ x

a
f (t)dt , x ∈ I = [a,b] .

STEP 2. Set

Tλ =
{

W ∈ H1(I) : W (a) = F(a),W (b) = F(b),

and F−λ≤W ≤ F +λ
}
.

(The set of L2-functions with weak derivatives in L2

and graphs lying within a tube around F of width λ.)
STEP 3. Compute the unique minimizer Wλ ∈ Tλ (the
‘Taut string’) of the energy

min
W∈Tλ

E(W ) :=
1
2

∫ b

a
W ′(x)2 dx . (2)

STEP 4. Set fλ =W ′λ (distributional derivative.)
END.

The taut string algorithm has been extensively stu-
died in the discrete setting by (Mammen and van de
Geer, 1997; Davies and Kovac, 2001) and (Dümbgen
and Kovac, 2009). Very recently, using methods from
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interpolation theory (Peetre’s K-functional and the
notion of invariant K-minimal sets), Setterqvist has
investigated the limits to which taut string methods
may be extended (Setterqvist, 2016).

In its original formulation, the Taut string algo-
rithm instruct us to find the solution of the shortest
path problem

min
W∈Tλ

L(W ) :=
∫ b

a

√
1+W ′(x)2 dx , (3)

hence the epithet ‘taut string’. However, the ‘stret-
ched rubber band’-energy E in step 3 of the algorithm
is not only easier to handle analytically, it also has
precisely the same solution as (3). While this is intui-
tively clear from our everyday experience with rub-
ber bands and strings, the assertion is, mathematically
speaking, not equally self-evident so a proof is offered
in Appendix A.

The main purpose of this paper, the first of two,
is to present a new, elementary proof of the following
remarkable result:

Theorem 1. The Taut string algorithm and the ROF
model yield the same solution; fλ = uλ.

This is not new; a discrete version of this theorem
was proved in (Mammen and van de Geer, 1997) and
in (Davies and Kovac, 2001). In the continuum set-
ting, the equivalence result was explicitly stated and
proved in (Grassmair, 2007). There is also an exten-
sive treatment in (Scherzer et al., 2009, Ch. 4). In-
deed, a few years earlier (Hintermüller and Kunisch,
2004, p.7), in a brief (but inconclusive) remark, refer
to the close relation between the ROF model and the
Taut string algorithm.

The second main result of the paper, whose proof
we give in Section 6, is the following “fundamental”
estimate on the denoised signal:

Theorem 2. If the signal f belongs to BV (I) then, for
any λ > 0, the denoised signal uλ satisfies the inequa-
lity

−( f ′)− ≤ u′λ ≤ ( f ′)+ , (4)

where ( f ′)+ and ( f ′)− denote the positive and the
negative variations, respectively, of f ′ (distributional
derivative).

Just like f ′, the derivative u′λ is computed in the
distributional sense and is, in general, a signed mea-
sure. Recall that ( f ′)+ and ( f ′)− are finite positive
measures satisfying f ′ = ( f ′)+− ( f ′)−, see e.g. (Ru-
din, 1986, Sec. 6.6). As an example, compute the
derivatives of f and uλ = fλ as shown in Figure 1.
The proof of the theorem is based on (an extension of)
the Lewi–Stampacchia-inequality (Lewy and Stam-
pacchia, 1970) and uses the Taut String-interpretation
of the ROF model (Theorem 1) in an essential way.

A significant consequence of Theorem 2 is that
for an in-signal f belonging to BV (I) we get uλ→ f
strongly in BV (I) as λ→ 0+ . The usual Moreau–
Yosida approximation result, see e.g. (Ambrosio
et al., 2000, Ch. 17), only gives the weaker uλ→ f in
L2(I) and

∫
I |u′λ|dx→ ∫

I | f ′|dx as λ tends to zero.
Further contributions of the paper are: i) The re-

derivation some known properties of the ROF model
(Propositions 2) and ii) proof of some precise results
on the rate of convergence of uλ → f as λ tends to
zero Propositions 3 and 4—collecting all such result
in one place! iii) A new and slick proof of the (known)
fact that uλ is a semi-group with respect to λ (Propo-
sition 8). iv) Finally we indicated how our method of
proof can be modified and applied to the problem of
isotonic regression.

The paper is based on the author’s preprint (Over-
gaard, 2017) and is completely theoretical. All exam-
ples, including the ones in the figures, are computed
by hand using the taut string interpretation. Howe-
ver, we predict that the theory developed can be used
to construct new fast non-iterative algorithms for de-
noising using the ROF-model or, at least, can be used
to shed new light on existing such algorithms such
as (Condat, 2013).

2 OUR ANALYSIS TOOLBOX

Throughout this paper I denotes an open, bounded
interval (a,b), where a < b are real numbers, and
Ī = [a,b] is the corresponding closed interval.

C1
0(I) denotes the space of continuously differen-

tiable (test-)functions ξ : I→R with compact support
in I, and C(Ī) is the space of continuous functions on
the closure of I.

For 1≤ p≤ ∞, Lp(I) denotes the Lebesgue space
of measurable functions f : I→R with finite p-norm;
‖ f‖p :=

(∫ b
a | f (x)|p dx

)1/p
< ∞, when p is finite,

and ‖ f‖∞ = esssupx∈I | f (x)| < ∞ when p = ∞. The
space L2(I) is a Hilbert space with the inner product
〈 f ,g〉 = 〈 f ,g〉L2(I) :=

∫ b
a f (x)g(x)dx and the corre-

sponding norm ‖ f‖ :=
√
〈 f , f 〉L2(I) = ‖ f‖2.

We are going to need the Sobolev spaces over L2:

H1(I) =
{

u ∈ L2(I) : u′ ∈ L2(I)
}
,

were u′ denotes the distributional derivative of u.
This is a Hilbert space with inner product 〈u,v〉H1 :=
〈u,v〉+ 〈u′,v′〉 and norm ‖u‖H1 = (‖u′‖2

2 + ‖u‖2
2)

1/2.
Any u ∈ H1(I) can, after correction on a set of mea-
sure zero, be identified with a unique function in C(Ī).
In particular, a unique value u(x) can be assigned to u
for every x ∈ Ī.
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(d) The denoised signal fλ together with the input sig-
nal.

Figure 1: A graphical illustrations of the steps in the Taut string algorithm applied to a piecewise constant signal.

The following subspace of H1(I) plays an impor-
tant role in our analysis:

H1
0 (I) =

{
u ∈ H1(I) : u(a) = 0 and u(b) = 0

}
.

Here 〈u,v〉H1
0 (I)

:=
∫ b

a u′(x)v′(x)dx defines an inner

product on H1
0 (I) whose induced norm ‖u‖H1

0 (I)
=

‖u′‖2 is equivalent to the norm inherited from H1(I).
Finally, let H be a (general) real Hilbert space with

inner product between u,v ∈ H denoted by 〈u,v〉 and
the corresponding norm ‖u‖ =

√
〈u,u〉. The follo-

wing result is standard (Brézis, 1999, Théorème V.2):

Proposition 1 (Projection Theorem). Let K ⊂ H be
a non-empty closed convex set. Then for every ϕ ∈ H
there exists a unique point u ∈ K such that

‖ϕ−u‖= min
v∈K
‖ϕ− v‖.

Moreover, the minimizer u is characterized by the fol-
lowing property:

u ∈ K and 〈ϕ−u,v−u〉 ≤ 0, for all v ∈ K.

The point u is called the projection of ϕ onto K, and
is denoted u = PK(ϕ).

3 PRECISE DEFINITION OF THE
ROF MODEL

The expression
∫

I |u′|dx for the total variation, makes
sense for u ∈ H1(I) but is otherwise merely a conve-
nient symbol. A more general and precise definition
is needed; one which works when u′ does not exist
in the classical sense. The standard way to define the
total variation is via duality: For u ∈ L1(I) set

J(u) = sup
{∫ b

a
u(x)ξ′(x)dx :

ξ ∈C1
0(I), ‖ξ‖∞ ≤ 1

}
. (5)

If J(u) < ∞, u is said to be a function of bounded
variation on I, and J(u) is called the total variation
of u (using the same notation as (Chambolle, 2004)).
The set of all integrable functions on I of bounded
variation is denoted BV (I), that is, BV (I) =

{
u ∈

L1(I) : J(u) < ∞
}

. This becomes a Banach space
when equipped with the norm ‖u‖BV := J(u)+‖u‖L1 .
Notice that, as already mentioned, if u ∈ H1(I) then
J(u) =

∫
I |u′|dx < ∞, so u ∈ BV (I).

Let us illustrate how the definition works for a
function with a jump discontinuity:
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Example 1. Let u(x) = sign(x) on the interval I =
(−1,1). For any ξ ∈ C1

0(I), satisfying |ξ(x)| ≤ 1 for
all x ∈ I, we have

∫ 1

−1
u(x)ξ′(x)dx

=
∫ 1

0
ξ′(x)dx−

∫ 0

−1
ξ′(x)dx =−2ξ(0)≤ 2,

where equality holds for any admissible ξ which
satisfies ξ(0) = −1. So J(u) = 2 and u ∈ BV (I), as
predicted by intuition.

In this example the supremum is attained by many
choices of ξ. This is not always the case; if u(x) = x
on I = (0,1) then J(u) = 1, but the supremum is not
attained by any admissible test function.

The following lemma shows that the definition of
the total variation J and the space BV (I) can be moved
to a Hilbert space-setting involving L2 and H1

0 .

Lemma 3. Every u ∈ BV (I) belongs to L2(I) and

J(u) = sup
ξ∈K
〈u,ξ′〉L2(I) , (6)

where K = {ξ∈H1
0 (I) : ‖ξ‖∞≤ 1}, which is a closed

and convex set in H1
0 (I).

Proof. If u ∈ BV (I) then Sobolev’s lemma for functi-
ons of bounded variation, see (Ambrosio et al., 2000,
p. 152), ensures that u ∈ L∞(I). This in turn implies
u ∈ L2(I) because I is bounded. The (ordinary) So-
bolev’s lemma asserts that H1

0 (I) is continuously em-
bedded in L∞(I). Since K is the inverse image under
the embedding map of the unit ball in L∞(I), which is
both closed and convex, we draw the conclusion that
K is closed and convex in H1

0 .
It only remains to prove (6). Clearly J(u) cannot

exceed the right hand side because the set {ξ∈C1
0(I) :

‖ξ‖∞ ≤ 1} is contained in K. To verify that equality
holds it is enough to prove the inequality

〈u,ξ′〉L2(I) ≤ J(u)‖ξ‖∞, for all ξ ∈ H1
0 (I), (7)

as it implies that the right hand side of (6) cannot ex-
ceed J(u). To do this, we first notice that the ine-
quality in holds for all ζ ∈ C1

0(I). This follows by
applying homogeneity to the definition of J(u). Se-
condly, if ξ ∈ H1

0 (I) we can use that C1
0(I) is dense in

H1
0 (I) and find functions ζn ∈C1

0(I) such that ζn→ ξ
in H1

0 (I) (and in L∞(I) by the continuous embedding).
It follows that

〈u,ξ′〉L2(I) = lim
n→∞
〈u,ζ′n〉L2(I)

≤ J(u) lim
n→∞
‖ζn‖∞ = J(u)‖ξ‖∞,

which establishes (7) and the proof is complete.

The inequality (7) combined with the Riesz repre-
sentation theorem (cf. e.g. (Ambrosio et al., 2000,
Thm. 1.54)) implies that the distributional derivative
u′ of u ∈ BV (I) is a signed (Radon) measure µ on I,
and that we may write 〈u,ξ′〉L2(I) =

∫
I ξdµ. This will

be useful later on.
We can now give the precise definition of the ROF

model: For any f ∈ L2(I) and any real number λ > 0
the ROF functional is the function Eλ : BV (I)→ R
given by

Eλ(u) = λJ(u)+
1
2
‖ f −u‖2

L2(I) . (8)

Denoising according to the ROF model is the map
L2(I) 3 f 7→ uλ ∈ BV (I) defined by (1). To empha-
sise the role of the in-signal f we sometimes write
Eλ( f ;u) instead of Eλ(u). Well-posedness of the ROF
model is demonstrated in the next section.

4 EXISTENCE THEORY FOR
THE ROF MODEL

We begin with a simple observation: if u ∈ BV (I)
then J(u + c) = J(u) for any real constant c. This
property of the total variation has two important con-
sequences. First of all, Eλ( f ;u) = Eλ( f − c;u− c)
for any constant c. Taking c to be the mean value
of f shows that we may assume, as we do throug-
hout this paper, that the in-signal satisfies

∫
I f dx = 0.

This assumption implies that the cumulative signal
F(x) satisfies F(a) = F(b) = 0, hence F ∈ H1

0 (I).
This plays an important role in our analysis. Se-
condly, since f has mean value zero, it is enough to
minimize Eλ over the subspace of BV (I) consisting
of functions with mean value zero. To see this, let
P be the orthogonal projection (in L2(I)) onto this
subspace. An easy computation yields the identity
Eλ(Pu) = Eλ(u)− 1

2‖u− Pu‖2, which shows that u
can be a minimizer of Eλ only if it belongs to the
range of P.

The following theorem contains the key result of
our paper.
Theorem 4. We have the equality

min
u∈BV (I)

Eλ(u) = max
ξ∈K

1
2

{
‖ f‖2

L2(I)−‖ f −λξ′‖2
L2(I)

}
,

(9)
with the minimum achieved by a unique uλ ∈ BV (I)
and the maximum by a unique ξλ ∈K. The two functi-
ons are related by the identity

uλ = f −λξ′λ , (10a)

and satisfy
J(uλ) = 〈uλ,ξ′λ〉L2(I) . (10b)

ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods

236



Moreover, if uλ 6= 0, then ‖ξλ‖∞ = 1. Conversely, the
conditions (10a) and (10b) characterizes the solution;
if a pair of functions ū ∈ BV (I) and ξ̄ ∈ K satisfy ū =

f −λξ̄′ and J(ū)= 〈ū, ξ̄′〉L2(I), then ū= uλ and ξ̄= ξλ.

This result is a special instance of the Fenchel–
Rockafellar theorem, see e.g. (Brézis, 1999, p. 11). It
is tailored with our specific needs in mind and will be
proved with our bare hands using the projection theo-
rem. The general version is used in (Hintermüller and
Kunisch, 2004) in their analysis of the multidimensi-
onal ROF model (with the ‘Manhattan metric’). The
equality (9) has played an important role in the de-
velopment of numerical algorithms for total variation
minimization, both directly, as for instance in (Zhu
et al., 2007) or, indirectly, as in (Chambolle, 2004).

Before the proof starts, let us remind the reader of
the following general fact: If M and N are arbitrary
non-empty sets and Φ : M×N→R is any real valued
function, then it is easy to check that

inf
x∈M

sup
y∈N

Φ(x,y)≥ sup
y∈N

inf
x∈M

Φ(x,y) , (11)

is always true. The use of inf’s and sup’s are impor-
tant, as neither the greatest lower bounds nor the least
upper bounds are necessarily attained.

Proof. Since Eλ(u) = supξ∈K λ〈u,ξ′〉+ 1
2‖ f − u‖2 it

follows from (11) that

inf
u∈BV (I)

Eλ(u)≥ sup
ξ∈K

{
inf

u∈BV (I)
λ〈u,ξ′〉+ 1

2
‖u− f‖2

}
.

We first solve, for ξ ∈ K fixed, the minimization pro-
blem on the right hand-side. Expanding ‖ f −u‖2 and
completing squares with respect to u yields:

λ〈u,ξ′〉+ 1
2
‖u− f‖2

=
1
2

{
‖u− ( f −λξ′)‖2−‖ f −λξ′‖2 +‖ f‖2

}

The right hand-side is clearly minimized by the L2(I)-
function u = f −λξ′ and

inf
u∈BV (I)

Eλ(u)≥ sup
ξ∈K

1
2

{
‖ f‖2−‖ f −λξ′‖2

}
(12)

holds. The maximization problem on the right hand
side is equivalent to

inf
ξ∈K
‖ f −λξ′‖= inf

ξ∈K
‖F ′−λξ′‖

= λ inf
ξ∈K
‖λ−1F−ξ‖H1

0 (I)
. (13)

By Proposition 1, this problem has the unique solution
ξλ = PK(λ−1F) ∈ K, so the supremum is attained in
(12). Now, let the function uλ be defined by (10a) in

the theorem. A priori, uλ belongs to L2(I), but we are
going to show that uλ ∈ BV (I): The characterization
of ξλ according in the projection theorem states that
ξλ ∈ K and 〈 f −λξ′λ,λξ′−λξ′λ〉 ≤ 0 for all ξ ∈ K. If
we use the definition of uλ and divide by λ > 0 this
characterization becomes

〈uλ,ξ′〉 ≤ 〈uλ,ξ′λ〉 for all ξ ∈ K,

where the right hand-side is finite. It follows from the
definition of the total variation that uλ ∈ BV (I) with
J(uλ) = 〈uλ,ξ′λ〉, as asserted in the theorem. (This
reasoning can be reversed; if (10b) is true then ξλ is
the minimizer in (13).) Also, if uλ 6= 0 then ‖ξλ‖∞ < 1
is not consistent with the maximizing property (10b),
hence ‖ξλ‖∞ = 1, as claimed.

It remains to be verified that uλ minimizes Eλ and
that equality holds in (12). This follows from a direct
calculation:

inf
u∈BV (I)

Eλ(u)≥max
ξ∈K

1
2

{
‖ f‖2−‖ f −λξ′‖2

}

=
1
2
‖ f‖2− 1

2
‖uλ‖2

=
1
2
‖ f‖2 +

1
2
‖uλ‖2−‖uλ‖2

=
1
2
‖ f‖2 +

1
2
‖uλ‖2−〈uλ, f −λξ′λ〉

=
1
2
‖ f −uλ‖2 + 〈uλ,λξλ〉

=
1
2
‖ f −uλ‖2 +λJ(uλ)

= Eλ(uλ) .

So infEλ(u) = Eλ(uλ), the infimum is attained, and
equality holds in (12). The inequality Eλ(u) −
Eλ(uλ) ≥ 1

2‖u− uλ‖2 implies the uniqueness of uλ.
The converse statement is proved by back-tracking
the steps of the above proof.

Denoising is a non-expansive mapping:

Corollary. If f and f̃ are signals in L2(I) and the
corresponding denoised signals are denoted uλ and
ũλ, respectively, then ‖ũλ−uλ‖L2(I) ≤ ‖ f̃ − f‖L2(I).

This is a special instance of a more general result
about Moreau–Yosida approximation (or of the proxi-
mal map), see (Attouch et al., 2015, Theorem 17.2.1).
However, the result is easily verified by the reader
using the characterization of the ROF-minimzer given
in the theorem.

The equivalence of the two denoising models can
now be established:
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Proof of Theorem 1. It follows from Theorem 4 that
the minimizer uλ of the ROF functional is given by
uλ = f −λξ′λ where ξλ is the unique solution of

min
ξ∈K

1
2
‖ f −λξ′‖2

L2(I) . (14)

If we introduce the new variable W := F−λξ, where
F ∈ H1

0 (I) is the cumulative signal, then W ∈ H1
0 (I)

and the condition ‖ξ‖∞ ≤ 1 implies that W satis-
fies F(x)− λ ≤ W (x) ≤ F(x) + λ on I. Therefore
(14) is equivalent to minW∈Tλ(1/2)‖W ′‖2

L2(I), which
is the minimization problem in step 3 of the Taut
string algorithm whose solution we denoted Wλ. It
follows that Wλ = F −λξλ and differentiation yields
fλ =W ′λ = f −λξ′λ = uλ, the desired result.

It is interesting to note that Theorem 4 associates
a unique test function (or ‘dual variable’) ξλ ∈ K
with the solution uλ of the ROF model such that
J(uλ) = 〈uλ,ξ′λ〉L2 , in particular if we compare to
the situation in Example 1. A concrete case looks as
follows:

Example 2. Let f (x) = sign(x) be the step function
defined on I = (−1,1). An easy calculation, based on
the Taut string interpretation, shows that if 0 < λ < 1
then uλ = (1− λ)sign(x) and ξλ = |x| − 1 ∈ H1

0 (I).
Here ξλ is not in C1

0(I), so the extension of the space
of test functions from C1

0 to H1
0 is essential to our the-

ory. For λ≥ 1 we find uλ = 0 and ξλ = λ−1(|x|−1).
Notice that ‖ξλ‖∞ = 1 when uλ 6= 0.

Our proof of Theorem 1 is essentially a change of
variables and, as such, becomes almost a ‘derivation’
of the taut string interpretation. We also get the ex-
istence and uniqueness of solutions to both models in
one stroke. The proof given in (Grassmair, 2007) first
shows that uλ and W ′λ satisfy the same set of three ne-
cessary conditions, and that these conditions admit at
most one solution. Then it proceeds to drive home
the point by establishing existence separately for both
models. The argument assumes f ∈ L∞ and involves a
fair amount of measure theoretic considerations. The
proof of equivalence given in (Scherzer et al., 2009)
is based on a thorough functional analytic study of
Meyer’s G-norm and is not elementary.

5 CONSEQUENCES OF THE
EQUIVALENCE RESULT

We now prove some known, and some new, properties
of the ROF model.

The Taut string algorithm suggests that Wλ = 0,
and therefore uλ = 0, when λ is sufficiently large, and
that Wλ must touch the sides F±λ of the tube Tλ when
λ is small. These assertions can be made precise:

Proposition 2. (a) The denoised signal uλ = 0 if and
only if λ≥ ‖F‖∞, and
(b) if 0 < λ < ‖F‖∞ then ‖F−Wλ‖∞ = λ.
(c) ‖Wλ‖∞ = max(0,‖F‖∞−λ).

The results (a) and (b) are well-known and proofs,
valid in the multi-dimensional case, can be found in
Meyer’s treatise (Meyer, 2000). The natural estimate
in (c) seems to be stated here for the first time. Notice
that the maximum norm ‖F‖∞ of the cumulative sig-
nal F coincides, in one dimension, with the Meyer’s
G-norm ‖ f‖∗ of the signal f . Theorem 4 and the
taut string interpretation of the ROF model allow us
to give very short and direct proofs of all three pro-
perties.

Proof. (a) By Theorem 1, the denoised signal uλ is
zero if and only if the taut string Wλ is zero. We know
that Wλ = F−λξλ where, as seen from (13), ξλ is the
projection in H1

0 (I) of λ−1F onto the closed convex
set K. Therefore uλ = 0 if and only if λ−1F ∈ K, that
is, if and only if ‖F‖∞ ≤ λ, as claimed.

(b) If 0 < λ < ‖F‖∞ then uλ 6= 0 hence ‖ξλ‖∞ = 1,
by Theorem 4. The assertion now follows by taking
norms in the identity λξλ = F−Wλ.

(c) The equality clearly holds when λ≥ ‖F‖∞ be-
cause Wλ = 0 by (a). When c := ‖F‖∞− λ > 0 we
use a truncation argument: If W belongs to Tλ then
so does Ŵ := min(c,W ), in particular c > 0 ensu-
res that Ŵ (a) = Ŵ (b) = 0. Since E(Ŵ ) ≤ E(W ),
and Wλ is the (unique) minimizer of E over Tλ, we
conclude that maxI Wλ ≤ c. A similar argument gi-
ves−minI Wλ ≤ c. Thus ‖Wλ‖∞ ≤max(0,‖F‖∞−λ).
The reverse inequality follows from (b).

Now define, for λ > 0, the value function

e(λ) := inf
u∈BV (I)

Eλ(u),

that is, e(λ) = Eλ(uλ). The next two theorems con-
tains essentially well-known results.

Proposition 3. The function e : (0,+∞)→ (0,+∞)
is nondecreasing and concave, hence continuous, and
satisfies e(λ) = ‖ f‖2/2 for λ ≥ ‖F‖∞. Moreover, for
f ∈ L2(I)

lim
λ→0+

e(λ) = 0.

and if f ∈ BV (I) then e(λ) = O(λ) as λ→ 0+.

Proof. If λ2 ≥ λ1 > 0 then the inequality Eλ2(u) ≥
Eλ1(u) holds trivially for all u. Taking infimum over
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the functions in BV (I) yields e(λ2) ≥ e(λ1), so e is
nondecreasing.

For any u the right hand side of the inequality

e(λ)≤ Eλ(u) = λJ(u)+
1
2
‖u− f‖2 ,

is an affine, and therefore a concave, function of
λ. Because the infimum of any family of concave
functions is again concave, it follows that e(λ) =
infu∈BV (I) Eλ(u) is concave.

For λ≥‖F‖∞ we know from the previous theorem
that uλ = 0, so e(λ) = Eλ(0) = ‖ f‖2/2.

To prove the assertion about e(λ) as λ tends to
zero from the right, we first assume that f ∈ BV (I), in
which case it follows that 0 < e(λ)≤ Eλ( f ) = λJ( f ),
so e(λ) = O(λ) because J( f )< ∞.

If we merely have f ∈ L2(I) an approximation ar-
gument is needed: For any ε > 0 take a function fε ∈
H1

0 (I) such that ‖ f − fε‖2/2 < ε. Then fε ∈ BV (I)
and 0 ≤ e(λ) ≤ Eλ( fε) < λJ( fε)+ ε. It follows that
0≤ limsupλ→0+ e(λ)< ε. Since ε is arbitrary, we get
limλ→0+ e(λ) = 0.

The first part of next the proposition is a special
instance of a much more general result, see (Attouch
et al., 2015, Theorem 17.2.1). The second part con-
tains a quantification of the rate of convergence which
is not easily located in the literature.
Proposition 4. For any f ∈ L2(I) we have uλ→ f in
L2 as λ→ 0+. Moreover, if f ∈ BV (I) then ‖uλ−
f‖L2(I) = o(λ1/2) and J(uλ)→ J( f ) as λ→ 0+.

Proof. The obvious inequality ‖ f − uλ‖2/2 ≤ e(λ)
and the fact limλ→0+ e(λ) = 0, proved above, implies
the first assertion. When f ∈BV (I) it follows from the
inequality λJ(uλ)+

1
2‖uλ− f‖2

L2(I) = e(λ)≤ Eλ( f ) =
λJ( f ) that

‖uλ− f‖2
L2(I) ≤ 2λ(J( f )− J(uλ)) . (15)

Consequently ‖uλ− f‖2
L2(I) = O(λ) and J(uλ)≤ J( f )

for all λ > 0. But we can do slightly better than
that. Since uλ → f in L2 as λ→ 0+, we get J( f ) ≤
liminfλ→0+ J(uλ), by the lower semi-continuity of the
total variation J, cf. (Ambrosio et al., 2000). Since
J(uλ) ≤ J( f ) we also obtain an estimate from be-
low: limsupλ→0+ J(uλ) ≤ J( f ). We conclude that
limλ→0+ J(uλ) = J( f ). If this is used in (15) we find
that ‖u− f‖2

L2(I) = o(λ) as λ→ 0+.

6 PROOF AND APPLICATIONS
OF THEOREM 2

We begin with the proof of the fundemental estimate
on the derivative of the denoised signal:

Proof of Theorem 2. The estimate (4) is a conse-
quence of the extension to bilateral obstacle pro-
blems of the original Lewy–Stampacchia inequa-
lity (Lewy and Stampacchia, 1970) which we ex-
plain here. The bilateral obstacle problem, in the
one-dimensional setting, is to minimize the energy
E(u) := 1

2
∫ b

a u′(x)2 dx in (2) over the closed convex
set C = {u ∈ H1

0 (I) : φ(x)≤ u(x)≤ ψ(x) a.e. I}. The
obstacles are functions φ,ψ ∈H1(I) which satisfy the
conditions φ < ψ on I, and φ < 0 < ψ on ∂I = {a,b}.
This ensures that C is nonempty.

Suppose φ′ and ψ′ are in BV (I), such that φ′′
and ψ′′ are signed measures, then the solution u0 of
minu∈C E(u) satisfies the following inequality (as me-
asures)

−(φ′′)− ≤ u′′0 ≤ (ψ′′)+ . (16)
Here the notation µ+ and µ− is used to denote the po-
sitive and negative variation, respectively, of a signed
measure µ. This is the generalization of the Lewy–
Stampacchia inequality, proof of which can be found
in Appendix B. This proof is based on the abstract
proof, valid in a much more general setting, given
in (Gigli and Mosconi, 2015). The assumption of our
theorem, that f ∈ BV (I), implies that F ′′ = f ′ is a
signed measure. If we apply (16) with φ = F−λ and
ψ = F +λ then we find that the taut string Wλ satisfies

−(F ′′)− ≤W ′′λ ≤ (F ′′)+ .

The estimate (4) follows if we use the identities F ′ =
f and W ′λ = uλ into the above inequality.

Having established Theorem 2 we are able to
prove the following result about the strong conver-
gence in BV (I) of the ROF-minimizer as the regulari-
zation weight approaches zero.
Proposition 5. If f ∈ BV (I) then

J( f −uλ) = J( f )− J(uλ). (17)

In particular, both J( f − uλ) and ‖ f − uλ‖BV tend to
zero as λ→ 0+.

Proof. The measures ( f ′)+ and ( f ′)− are concentra-
ted on disjoint measurable sets (Hahn decomposition,
see (Rudin, 1986, Sec. 6.14)), so Proposition 2 im-
plies the pair of inequalities, 0 ≤ (u′λ)

+ ≤ ( f ′)+ and
0 ≤ (u′λ)

− ≤ ( f ′)−. A direct calculation, using the
fact that J(v) = (v′)+(I)+ (v′)−(I) for any function
v ∈ BV (I), yields

J( f−uλ) = ( f ′−u′λ)
+(I)+( f ′−u′λ)

−(I)

= ( f ′)+(I)− (u′λ)
+(I)+( f ′)−(I)− (u′λ)

−(I)

= J( f )− J(uλ),

where the right hand-side tends to zero as λ→ 0+, by
Proposition 4.

On the Taut String Interpretation of the One-dimensional Rudin–Osher–Fatemi Model

239



Theorem 2 also implies the first part of

Proposition 6. If f is piecewise constant function on
I, then so is uλ for all λ > 0. Moreover, there exists a
number λ̄ > 0 and a piecewise linear function ξ̄ ∈ K
such that ξλ = ξ̄ for all λ, 0 < λ≤ λ̄.

We only give the proof of the first part of this theo-
rem, which is simple, and omit the proof of the second
part, which is rather lengthy.

Proof. If f is piecewise constant then there exists
nodes a = x0 < x1 < .. . < xN−1 < xN = b which
partitions the interval I = (a,b] into N subintervals
Ii = (xi−1,xi] such that f equals the constant value
fi ∈ R on Ii for i = 1, . . . ,N. That is,

f =
N

∑
i=1

fiχIi ,

where, as usual, χA denotes the characteristic function
of the set A. The derivative of the signal becomes
f ′ = ∑N−1

i=1 ( fi+1 − fi)δxi , with δx denoting the Di-
rac measure supported at x, and therefore J( f ) =
∑N−1

i=1 | fi+1− fi| < ∞. Therefore f belongs to BV (I)
and Theorem 2 may be applied:

N−1

∑
i=1

min{0, fi+1− fi}δxi

=−( f ′)− ≤u′λ ≤ ( f ′)+

=
N−1

∑
i=1

max{0, fi+1− fi}δxi .

This estimate shows that u′λ = ∑N−1
i=1 ci(λ)δxi where

the real numbers ci(λ) satisfy 0 ≤ ci(λ) · ( fi+1 −
fi)
−1 ≤ 1 for i = 1, . . . ,N − 1. Since the deriva-

tive is zero except at a finite set of points we draw
the conclusion that uλ is piecewise constant uλ =
∑N

i=1(uλ)iχIi with nodes contained in the node set of
f . (The latter is the “edge-preserving” property of the
one-dimensional ROF model.) Once the ci(λ)’s are
known the N real numbers (uλ)i may be determined
from the N linear equations (uλ)i+1− (uλ)i = ci(λ),
i = 1, . . . ,N−1, and ∑N

i=1(uλ)i(xi−xi−1) =
∫

uλ dx =∫
f dx = 0.

The latter half of the above proposition can be pro-
ved by “guessing” the the dual variable ξλ—it must be
a continuous piecewise linear function with the same
nodes as f —and then use the characterization of so-
lutions from Theorem 4. This result is mentioned be-
cause it implies what is possibly the strongest imagi-
nable approximation result:

Proposition 7. If f is piecewise constant function,
then ‖ f −uλ‖L2(I) = O(λ), λ→ 0+.

Proof. We know from (15) that (1/2)‖ f −uλ‖2
L2(I) ≤

λ(J( f ) − J(uλ)) so an estimate of the difference
J( f )− J(uλ) is needed. By Theorem 4, J(uλ) =

〈uλ,ξ′λ〉L2(I). Since ξλ = ξ̄ when λ is close to zero
it follows that

J( f ) = lim
λ→0+

J(uλ) = lim
λ→0+

〈uλ, ξ̄′〉L2(I) = 〈 f , ξ̄′〉L2(I).

Moreover, the scalar product of uλ = f−λξ′λ and ξ′λ =
ξ̄′ is J(uλ) = 〈uλ, ξ̄′〉= 〈 f −λξ̄′, ξ̄′〉= J( f )−λ‖ξ̄′‖2.
Hence J( f )− J(uλ) = O(λ), λ→ 0+.

Our interest in the various limits as λ→ 0+ is mo-
tivated by the fact that λ 7→ uλ is a semi-group; state-
ments about limits at λ = 0 can be translated to limits
at any λ > 0.

Proposition 8 (Semi-group property). Let f ∈ L2(I).
With the convention (mentioned above) that u0 = f
the formula

(uλ)µ = uλ+µ

holds for all λ,µ≥ 0.

Here we have tweaked the notation slightly to
make the statement more compact: By using the let-
ter u in place of f for the in-signal, the operation of
denoising, for some λ > 0, is indicated by adding the
subscript ‘λ’ to u, thus obtaining uλ. This makes sense
even for λ = 0 if we agree to set u0 = u.

A proof of the semi-group property can be found
in (Scherzer et al., 2009). However, the fundamen-
tal estimate in Theorem 2 and the characterization of
the ROF-minimizer in Theorem 4 allow us to present
short and very direct proof of this result:

Proof. The assertion holds trivially if either λ or µ
equals zero, so we may assume that λ,µ > 0. The
idea of the proof is then to set ū = (uλ)µ and show
that there exists a function ξ̄ ∈ K such that

{
ū = f − (λ+µ)ξ̄′ and

J(ū) = 〈ū, ξ̄′〉.
.

The characterization of solutions to the ROF model
in Theorem 4 then implies that ū equals uλ+µ. Since
uλ and ū are the ROF-minimizers of Eλ( f ; ·) and
Eµ(uλ; ·), respectively, they both satisfy the conditi-
ons (10a) and (10b), that is
{

uλ = f −λξ′λ ,

J(uλ) = 〈uλ,ξ′λ〉,
and

{
ū = uλ−µξ̄′µ ,

J(ū) = 〈ū, ξ̄′µ〉,

for a uniquely determined pair of functions ξλ and ξ̄µ
in K. Now, if we set

ξ̄ =
λξλ +µξ̄µ

λ+µ
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then ξ̄ ∈ K because it is the convex combination of
two elements of K. Using what is known about uλ
and ū, the following calculation reveals why we make
this definition of ξ̄, in fact f − (λ+µ)ξ̄′ = f −λξ′λ−
µξ̄µ = uλ−µξ̄µ = ū, hence ū and ξ̄ fulfil the condition
(10a) by construction. It remains to verify that (10b)
is fulfilled as well. Since

〈ū, ξ̄′〉= λ
λ+µ

〈ū,ξ′λ〉+
µ

λ+µ
〈ū, ξ̄′µ〉

=
λ

λ+µ
〈ū,ξ′λ〉+

µ
λ+µ

J(ū) .

we see that the second condition follows if it can
show that 〈ū,ξ′λ〉 = J(ū). This essentially follows
from the identity in Proposition 5 which states that
J(ū) = J(uλ)− J(uλ− ū). In fact, using this identity
we get the inequality

J(ū)≤ J(uλ)−〈uλ− ū,ξ′λ〉

= J(uλ)− J(uλ)+ 〈ū,ξ′λ〉= 〈ū,ξ′λ〉
But J(ū)≥ 〈ū,ξ′〉 for all ξ ∈ K, so J(ū) = 〈ū,ξ′λ〉, and
the proof is complete.

The last part of the proof yields
Corollary. If λ > 0 then J(uλ) = 〈uλ,ξ′µ〉L2(I) for all
µ, 0 < µ≤ λ.

That is, the total variation of uλ can be computed
by taking inner product with any of the previous ξµ’s.

7 APPLICATION TO ISOTONIC
REGRESSION

We illustrates the usefulness of our approach by
briefly outlining (without proofs) how the theory de-
veloped earlier can be modified in order to derive the
so-called “lower convex envelope” interpretation of
the solution to the problem of isotonic regression. Iso-
tonic regression is a method from mathematical statis-
tics used for non-parametric estimation of probability
distributions, see for instance (Anevski and Soulier,
2011). It is a least-squares problem with a mono-
tonicity constraints: given f ∈ L2(I), find the non-
decreasing function u↑ ∈ L2(I) which solves the mi-
nimization problem,

min
u∈L2

↑(I)

1
2
‖u− f‖2

L2(I) , (18)

where L2
↑(I) denotes the set of all non-decreasing

functions in L2(I). The “lover convex envelope” in-
terpretation is shown for a piecewise constant signal
f in Fig. 2.

The idea is to re-formulate (18) as an unconstrai-
ned optimization problem by replacing the total va-
riation term J of the ROF functional by regulariza-
tion term J↑ which can distinguish between functions
that are non-decreasing or not. To achieve this we set
K+ =

{
ξ ∈ H1

0 (I) : ξ(x)≥ 0 for all x ∈ I
}

and define
J↑(u) = supξ∈K+

〈u,ξ′〉L2(I). It can be shown that

J↑(u) =

{
0 if u ∈ L2

↑(I) ,
+∞ otherwise.

The isotonic regression problem (18) now becomes
equivalent to finding the minimizer u↑ in L2(I) of the
functional

E↑(u) := J↑(u)+
1
2
‖u− f‖2

L2(I). (19)

Notice that there is no need for a positive weight in
this functional because the regularizer assumes only
the values zero and infinity.

Again we may assume the mean value f to be zero
so that the cumulative function F belongs to H1

0 (I).
Mimicking the proof of Theorem 4 we get:

min
u∈L2(I)

E↑(u) = max
W∈T

1
2

{
‖ f‖2− 1

2
‖W ′‖2

L2(I)

}

where W = F − ξ, ξ ∈ K+, and T = {W ∈
H1

0 (I) : W (x) ≤ F(x), x ∈ I}. The minimiza-
tion of (19) is equivalent to the obstacle pro-
blem minW∈T

1
2‖W ′‖2

L2(I) which admits a unique
solution W↑ by the Projection theorem. It fol-
lows that (19) also has the unique solution u↑ =
W ′↑ (distributional derivative) which belongs to
L2
↑(I) because E↑(u↑) is finite.

The solution W↑ of the obstacle problem satisfies
W ′′↑ ≥ 0 (this is the ‘easy’ part of the original Lewy-
Stampacchia inequality, 0≤W ′′↑ ≤ (F ′′)+) and is the-
refore automatically a convex function. In fact, by
optimality, W↑ is the maximal convex function lying
below F , i.e., it is the lower convex envelope of F .
Similar problems are considered in the multidimen-
sional case, using higer-order methods (the space of
functions with bounded Hessians), in Hinterberger
and Scherzer (Hinterberger and Scherzer, 2006).

8 CONCLUDING REMARKS

We have developed the theory for the one-
dimensional ROF model in the continuous setting for
a quite general class of signals and proved several
properties of solution of the model including a use-
ful fundamental estimate, Theorem 2, on the denoi-
sed signal. The theory may find practical applicati-
ons in signal processing and image analysis alike. In-
deed, by using the fundamental estimate we saw in
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x

y f

u↑ =W ′↑

a b

(a) The piecewise constant input signal f and the mono-
tonic solution u↑ to the isotonic regression problem.

x

y

a b

F

W↑

(b) The cumulative signal F and the corresponding
lower convex envelope (or taut string) W↑.

Figure 2: A graphical illustrations of the taut string interpretation of isotonic regression.

Proposition 6 how application of the ROF model to
a piecewise constant signal leads to a piecewise con-
stant denoised signal with the same nodes (i.e. the
model is “edge-preserving”). This observation, toget-
her with the semi-group property, immediately sug-
gests a (perhaps not so efficient) non-iterative algo-
rithm for the computation of the denoising of a piece-
wise constant signal which is different from the one
in (Condat, 2013). If very fast non-iterative schemes
for finding the solution to the one-dimensional ROF
model can be devised then, as already indicated by L.
Condat, efficient iterative algorithms for image denoi-
sing using the two-dimensional ROF model (with the
‘Manhattan metric’ as measure of the image gradient
magnitude) may be constructed as well. We hope to
return to this topic in the future.
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APPENDIX A

As promised in the introduction, we are going to
prove that the solution of the minimization problem
(2) in STEP 3 of the Taut string algorithm coincides
with the solution of the shortest path problem (3). In
fact we prove the slightly more general statement:

Proposition. Let H denote any strictly convex C1-
function defined on R and set

LH(W ) =
∫

I
H(W ′(x))dx .

Then the problem minW∈Tλ LH(W ) has precisely
the same solution as the minimization problem
minW∈Tλ E(W ) in (2).

The case we need in our analysis follows by taking
H(s) = (1+ s2)1/2.

Proof. The idea of the proof is to verify that Wλ :=
argminW∈Tλ

E(W ) solves the variational inequality:
∫

I
h(W ′λ(x))(W

′(x)−Wλ(x)
′)dx≥ 0 , for all W ∈ Tλ,

(20)
where h = H ′. This condition is both necessary and
sufficient for Wλ to be a minimizer of LH over Tλ,
and since LH is a strictly convex functional, there is
at most one such minimizer.

Being the minimizer of E over Tλ, Wλ ∈ Tλ satis-
fies the variational inequality (which is a special case
of (20) if we take H(s) = s):

∫

I
W ′λ(W

′−W ′λ)dx≥ 0, for all W ∈ Tλ. (21)

Set C+ = {x ∈ I : Wλ(x) = F(x)+λ} and C− = {x ∈
I : Wλ(x) = F(x)−λ}. These are the sets where the
solution touches the upper and the lower obstacles,
respectively. Since F and Wλ are continuous, both sets
are closed. In fact, C+ and C− are compact because
λ > 0 implies that they do not reach the boundary of
I. They are disjoint, C+ ∩C− = /0, and their union,
C =C+∪C−, is the contact set for Wλ.

For any non-negative ξ∈C1
0(I\C+) there exists an

ε > 0 such that W :=Wλ +εξ belongs to Tλ. If this W

is substituted into (21) we find that
∫

I
W ′λξ′ dx≥ 0 for all ξ ∈C1

0(I\C+) with ξ≥ 0.

It follows that −W ′′λ is a positive measure on I\C+,
hence −W ′λ is non-decreasing on each connected
component of I\C+. Similarly one proves that −W ′λ
is non-increasing on each connected component of
I\C−. This means, in particular, that W ′λ constant on
each connected component of I\C.

Since h is non-decreasing, the composite function
−h(W ′λ) has the same monotonicity properties as
−W ′λ. Therefore the distributional derivative −h(W ′λ)

′

is a positive measure µ+ on I\C+ and minus a posi-
tive measure −µ− on I\C−. Clearly suppµ+ ⊂ C−
and suppµ− ⊂C+, so −h(W ′λ)

′ is a signed measure µ
with the Jordan decomposition µ = µ+−µ−. The fol-
lowing calculation now verifies (20): For any W ∈ Tλ
we have
∫

I
h(W ′λ)(W

′−W ′λ)dx =−
∫

I
W −Wλ dµ

=−
∫

I
W −Wλ dµ++

∫

I
W −Wλ dµ− ≥ 0

which holds because W −Wλ ≥ 0 on C− and W −
Wλ ≤ 0 on C+.

APPENDIX B

We prove the inequality (16) used in the proof of The-
orem 2. With the notation introduced in this proof we
can formulate this result as follows:

Proposition (Lewy–Stampacchia inequality). Sup-
pose φ′′ and ψ′′ are signed measures. Then the mi-
nimizer u0 of E over C = {u : φ≤ u≤ ψ} satisfies

−(φ′′)− ≤ u′′0 ≤ (ψ′′)+

where µ+ and µ− denote the positive and negative va-
riations, respectively, of the signed measure µ.

Note that the functional E is defined, convex and
differentiable on H1(I) and therefore satisfies the in-
equality

E(v)−E(u)≥
∫ b

a
u′(x)(v′(x)−u′(x))dx, (22)

for all u,v ∈ H1(I), as is easily checked. We also
know that minC E has a unique solution u0 ∈ C (use
the projection theorem) which satisfies the necessary
and sufficien condition:

∫ b

a
u′0(v

′−u′0)dx≥ 0 for all v ∈C.
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Proposition 8 was first proved for the unilateral
obstacle problem (in multiple dimensions) in (Lewy
and Stampacchia, 1970) and since extended to bilate-
ral obstacle problems. Here we present a proof based
on the sub-modularity of the functional E, that is, for
all u,v ∈ H1(I),

E(u∧ v)+E(u∨ v)≤ E(u)+E(v), (23)

where u∧ v := max(u,v) and u∨ v := min(u,v) both
belong to H1(I). In fact, the functional E is so sim-
ple that equality holds for all u,v. This method of
proof was invented recently by (Gigli and Mosconi,
2015) and used to prove a very general version of the
bilateral Lewy–Stampacchia inequality. We use their
approach.

Proof. We prove the rightmost inequality, u′′0 ≤
(ψ′′)+, the leftmost one then follows by a symme-
try argument: −u0 minimizes E over the −C = {u ∈
H1

0 (I) :−ψ≤ u≤−φ}.
To simplify notation we set ψ′′ = µ. Define the

new functional Ê(u) = E(u) + 〈µ+,u〉 and consider
the minimization problem

min
u∈H1

0 (I):u≥u0

Ê(u). (24)

The goal is to prove that u0 itself solves this problem.
This will imply the desired inequality, as we shall see
below.

First the following claim is proved: For any u ∈
H1

0 (I) satisfying u≥ u0 we have

Ê(u∧ψ)≤ Ê(u). (25)

Since ψ> 0 on ∂I and u∈H1
0 (I) we get u∧ψ∈H1

0 (I)
which is therefore admissible for the min-problem
above. The claim is proved using the sub-modularity
(23) of E and the identity u∧ v+u∨ v = u+ v with v
replaced by ψ:

Ê(u)− Ê(u∧ψ)

= E(u)−E(u∧ψ)+ 〈µ+,u−u∧ψ〉
≥ E(u∨ψ)−E(ψ)+ 〈µ+,u∨ψ−ψ〉
≥ E(u∨ψ)−E(ψ)+ 〈ψ′′,u∨ψ−ψ〉
≥ E(u∨ψ)−E(ψ)−〈ψ′,(u∨ψ)′−ψ′〉 ≥ 0,

where the last inequality follows from (22).
The claim (25) shows that the minimum of Ê over

{u≥ u0} coincides with the minimum over {ψ≥ u≥
u0}. Therefore, since u−u0 ≥ 0, we find

Ê(u)− Ê(u0) = E(u)−E(u0)+ 〈µ+,u−u0〉
≥ E(u)−E(u0)≥ 0,

where the last estimate follows from the observation
that {u : u0 ≤ u ≤ ψ} ⊂ C and that u0 minimizes E
over C. That is, u0 is the solution of (24).

The necessary condition for u0 to be a minimizer
for Ê reads:

d
dα

Ê((1−α)u0 +αu)
∣∣
α=0 ≥ 0

for all u ∈ H1
0 (1) satisfying u≥ u0. That is,

∫ b

a
u′0(u

′−u′0)dx+ 〈µ+,u−u0〉 ≥ 0

for all u ∈ H1
0 (I) satisfying u ≥ u0. This implies

〈−u′′0 + µ+,ϕ〉 ≥ 0 for all ϕ ∈ C1
0(I) such that ϕ ≥ 0

on I. Therefore−u′′0 +µ+ is a positive measure, hence
u′′0 ≤ µ+, which is the desired result.
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