
A Constraint Solving Web Service
for Recognizing Historical Japanese KANA Texts

Kazuki Sando, Tetsuya Suzuki and Akira Aiba
Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku,

Minuma-ku, 337-8570, Saitama-shi, Saitama, Japan

Keywords: Natural Language Processing, Morphological Analysis, Constraint Solving, Web Service, Reprint.

Abstract: One of the first steps for researching Japanese classical literature is reading Japanese historical manuscripts.
However the reading process is not easy, and time-consuming since a set of characters used in those
manuscripts contain different characters from those currently used. There have been several attempts to read
Japanese historical manuscripts. We proposed a framework to assist the human process for reading Japanese
historical manuscript. It formulates the process as a constraint satisfaction problem, and a constraint solver
in the whole system, was experimentally implemented as a UNIX command. In this paper, we added a Web
service layer to the solver to realize loose coupling between the solver and the other subsystems. Thanks to
the loose coupling, any programming language can be used for implementation of other parts of the whole
system. In addition, the constraint solving Web service can be public through the Internet. We experimentally
confirmed the solver as a Web service is faster than the that as a UNIX command if both the solver and a client
are connected to a same local area network.

1 INTRODUCTION

Before printing technologies became popular, all texts
were hand-written in Japan, and copied by hand.
Through a series of the copying processes, texts were
often modified accidentally or intentionally. As a re-
sult, there were several versions of the same text. For
example, Kokin waka shu which was the first anthol-
ogy edited by an imperial order in 905 AD has more
than 10 variants.

One of the first steps of researching Japanese clas-
sical literature is comparing those variants to deter-
mine the standard text. To do this, one has to read
these manuscripts, but this is time-consuming and re-
quires training since they are hand-written, and may
contain characters different from those currently used.
That is why we can not use an automatic character
recognition system for current texts.

We proposed a framework for assisting the human
process for reading Japanese historical manuscripts
by employing constraint solving (Arai et al., 2013).
A sequence of characters is constrained to form a
valid word in a dictionary for historical Japanese.
We experimentally implemented a backtrack-based
constraint solver for reading Japanese historical
manuscripts using one kind of Japanese characters

called hiragana. The solver is a part of the whole sys-
tem based on the framework. Because of the insuf-
ficient pruning, the backtrack-based constraint solver
can not suppress combinatorial explosion.

We then proposed a minimum-cost-method-based
constraint solver as a successor of the backtrack-
based solver (Watanabe et al., 2015). To suppress
combinatorial explosion, the solver uses the A∗ algo-
rithm.

In this paper, we propose a constraint solving
Web service. We added a Web service layer to the
minimum-cost-method-based constraint solver to re-
alize loose coupling between the constraint solver and
the other subsystems. Thanks to the loose coupling,
suitable programming languages can be used to im-
plement other parts of the whole system. In addition,
the constraint solving Web service can be available
to other researchers concerning reprinting of Japanese
historical text through the Internet.

In this paper, we use the word “kana” as well as
“hiragana” for the sake of convenience though hira-
gana is a part of kana in general.

In section 2, we introduce hiragana, and we sum-
marize existing research in section 3. We redefine
the constraint satisfaction problem (CSP) for reading
Japanese historical manuscripts in section 4, and ex-

Sando, K., Suzuki, T. and Aiba, A.
A Constraint Solving Web Service for Recognizing Historical Japanese KANA Texts.
DOI: 10.5220/0006709702570265
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 2, pages 257-265
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

257

plain the constraint solving process of the minimum-
cost-method-based constraint solver briefly in section
5. In section 6, we describe a constraint solving Web
service. Experimental results are summarized in sec-
tion 7. Section 8 states concluding remarks.

2 READING HISTORICAL
JAPANESE CHARACTERS

2.1 Japanese Classical Manuscripts and
Hiragana

After introducing Chinese characters to Japan in the
4th, or 5th century, a method to represent Japanese
sentences using kanji was invented by the 8th cen-
tury. This is called Man’yo-gana. They were un-
modified Chinese characters and used to represent
Japanese syllables according to their pronunciation.
In the 8th century, it is said that there were 88 syl-
lables in Japanese language different from about 50
syllables at present, and over 900 Chinese characters
were used to represent them. During the 8th and 9th
century, a new kind of character called hiragana was
invented based on a cursive form of hand-written Chi-
nese characters. Hiragana was gradually accepted by
the end of the 9th century (Frellesvig, 2010).

2.2 Reading Hiragana in Japanese
Historical Texts

Hiragana used in historical texts, which we will call
historical hiraganas hereafter, is quite different from
that currently used:

1. A set of historical hiragana contains different
characters from those currently used. There are
several characters to represent one syllable.

2. A special symbol called odori-ji is used to repre-
sent a repetition of an immediately previous char-
acter.

3. Especially in hand-written texts, each occurrence
of the identical hiragana may have a different
shape, according to each author or text.

Because of such characteristics, reading Japanese
historical text is difficult even for Japanese. The Fig.1
shows a fragment of historical Japanese text written in
hiragana taken from Tale of Ise, originally written in
1234 AD, and copied in 1547 AD (Reizei, 1994). In
this fragment, the 1st, 3rd, 5th and 6th characters are
easy to recognize for us since they are quite similar to
that hiragana currently used.

Figure 1: A fragment of historical Japanese text which reads
(mu)-(ka)-(si)-(o)-(to)-(ko).

Actually, they are (mu), (si), (to), and (ko), respec-
tively. However, the 2nd, and 4th hiraganas are diffi-
cult to read since they are not currently used.

In the following, we will briefly explain how a hu-
man tries to read them. When we focused on the 2nd
character, we may suspect that this would be (tu), or
(ka) by its shape. We can determine that the 2nd char-
acter is (ka) since (mu-ka-si) is a valid Japanese word
meaning ’the past’. By applying the similar inference,
we can determine that the 4th hiragana is (o) since (o-
to-ko) is a valid word meaning ’a male’. By observ-
ing this small example, it is clear that the knowledge
on shapes of historical hiragana is insufficient, but the
knowledge on historical Japanese words is necessary
for recognizing Japanese historical manuscripts.

3 EXISTING RESEARCH
Yamamoto and Osawa proposed an optical character
recognition (OCR) method for kana and kanji char-
acters in cursive style (Yamamoto and Osawa, 2016).
It is based on elastic pattern matching for character
recognition (Terasawa and Kawashima, 2011). Ac-
cording to the paper, the accuracy of pattern recogni-
tion is more than 80%.

Hayasaka et al. proposed a recognition method
based on a convolutional neural network (Hayasaka
et al., 2017b). Their method is demonstrated on a
website (Hayasaka et al., 2017a).

Yamada et al. proposed a system for reprint-
ing characters in historical manuscripts by a combi-
nation of OCR and character n-gram (Yamada and
Shibayama, 2003). Given unreadable characters,
OCR outputs the results. These results are associ-
ated with prepared n-gram information to output can-
didates of recognition. Even though n-gram is used, n
is 2 or 3.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

258

We proposed a framework for assisting the human
process for reading Japanese historical manuscripts
by employing constraint solving (Arai et al., 2013). A
sequence of characters is constrained to form a valid
word in a dictionary for historical Japanese. The over-
all structure of the framework is shown in Fig.2. It
consists of two major subsystems: a character recog-
nizer and a constraint solver. The character recognizer
segments an input image into characters, determines
hiragana candidates for the segmented characters, and
constructs a CSP based on the determined candidates.
Then the constraint solver solves the CSP by assign-
ing possible reading using a word dictionary. Then
the result of the constraint solving is returned to the
character recognizer to revise recognition. This feed-
back is repeated if necessary. The system finally out-
puts the assigned reading.

Technical issues of the proposal are divided into
two categories: one is image recognition, and the
other is constraint solving. In the former issues, we
have to think of extracting an image containing just
one historical Hiragana from the original image of,
for example, a page, and using the effective method
to recognize an extracted historical Hiragana. In the
latter issues, we have to think of the method of model-
ing of reprinting as a CSP, and the method of efficient
constraint solving.

We focused on the constraint solving issue and
experimentally implemented a backtrack-based con-
straint solver for Reprint-CSPs. The solver is for
reading Japanese historical manuscripts using hira-
gana, and finds maximally better solutions accord-
ing to a solution comparator called locally-predicate-
better (Borning et al., 1992). The solving process is a
kind of morphological analysis. Because of an insuf-
ficient branch-and-bound pruning, it can not suppress
combinatorial explosion.

We then implemented a minimum-cost-method-
based solver as a successor of the backtrack-based
solver (Watanabe et al., 2015). Given a CSP, a dic-
tionary and an positive integer n, it extracts better ad-
missible solutions according to the locally-predicate-
better comparator from n-best admissible solutions
according to solution cost. The solver employs the
A∗ algorithm to avoid combinatorial explosion.

Both the backtrack-based solver and the
minimum-cost-method-based solver are imple-
mented in Ruby and are invoked as commands from
character user interface.

Figure 2: System Configuration.

4 REPRINT CONSTRAINT
SATISFACTION PROBLEM

We redefine the CSP for reading historical kana text,
which we call the Reprint-CSP, because the definition
in (Watanabe et al., 2015) does not fit the CSP which
the minimum-cost-method-based solver deals with.

A Reprint-CSP consists of the following seven
components.

• a finite number of variables

• variables’ domains

• a directed acyclic graph (DAG) over the variables

• a word dictionary

• explicitly-given constraints

• a word occurrence cost function

• a connectivity cost function

Each variable corresponds to a segmented char-
acter on a historical text image which contains one
character. Because of complex shapes of historical
kana characters, the character recognizer may not be
able to determine if a segmented image corresponds to
one or more characters. In such a case, the character
recognizer enumerates possible cases. As a result, a
segmented character corresponding to a variable may
overlap segmented characters corresponding to differ-
ent variables.

Fig.3 shows an image of a Japanese historical text
consisting of five characters taken from Tale of Ise
(Reizei, 1994), and a Reprint-CSP constructed from
the text. The DAG of Fig.3 represents reading or-
der among segmented characters. A variable x1 is as-
signed to the first character. Similarly, variables x2,
x5, x6 and x7 are assigned to the 2nd, the 3rd, the 4th,
and the 5th character respectively. However, the sec-
ond character can be recognized as a combination of
two characters. For this reason, two variables x3 and
x4 are assigned to the two characters.

The domain of each variable is a finite set of pos-
sible kana for the segmented character because it is
difficult to determine a unique kana for a segmented
character.

A Constraint Solving Web Service for Recognizing Historical Japanese KANA Texts

259

Figure 3: A constraint satisfaction problem.

For example, the domain of the variable x4 in-
cludes two elements (ka) and (tu) in Fig.3 because the
segmented character corresponding to x4 can be read
as (ka) or (tu). All variables’ domains in Fig.3 include
an element “!”. We use the symbol as a special char-
acter meaning an unreadable character. Because the
segmented character corresponding to x3 can be read
as an odori-ji, the domain of x1, which is immediately
prior to x3 in the reading order, is added to the domain
of x3 so that the value of x3 can be equal to that of x1.

A constraint is a relation over the variables’ do-
mains. Constraints are labeled with priority levels for
overconstrained situations. Constraints with the high-
est priority level are constraints which must be satis-
fied. They are called required constraints. Constraints
with other priority levels are constraints which may
not be satisfied. They are called preferred constraints.

In Fig.3, constraints xi 6= “!” for i ∈
{1,2,3,4,5,6,7} are imposed not to assign the un-
readable character to the variables. A constraint x1 =
x3 is a constraint for the odori-ji.

In a Reprint-CSP, some constraints are implicitly
given by a pair of the dictionary and the DAG over
variables, and other constraints are explicitly given.
Each maximal path over the DAG represents read-
ing order of variables. The dictionary constrains lo-
cal character sequences so that each of them forms
a word in the dictionary. In addition, the DAG con-
strains combinations of the locally constrained char-
acter sequences so that each of maximal character se-
quences forms a sequence of words in the dictionary.
These implicit constraints are required constraints.
Explicitly-given constraints are required or preferred
constraints. They are, for example, used to declare
constraints of the odori-ji.

A solution for a Reprint-CSP is a partial function
from variables to their values. An admissible solution
for a Reprint-CSP is a function from variables on a
maximal path of the DAG to their values where a se-

quence of variables’ values according to the maximal
path must be a sequence of words in the dictionary
due to the implicit required constraints.

For example, in Fig.3, there are two maximal
paths p1 and p2 as follows.

p1 ≡ (x1,x2,x5,x6,x7)

p2 ≡ (x1,x3,x4,x5,x6,x7)

The following function θ is an admissible solution on
the maximal path p1.

θ ≡ {x1→ (mu),x2→ (ra),x5→ (sa),
x6→ (ki),x7→ (no)}

It is because the solution θ can be obtained by word
sequences (a noun (mu-ra-sa-ki), a particle (no)), (a
noun (mu-ra), a noun (sa-ki), a particle (no)) and so
on.

If a solution of a Reprint-CSP does not give any
value to a variable, constraints relevant to the variable
are regarded as constraints satisfied by the solution.
For example, because the solution θ does not give any
value to x3, the constraint x1 = x3 is satisfied by θ.

Better admissible solutions can be selected from
two different viewpoints: 1) solution cost and 2) pri-
ority levels of constraints.

1. An admissible solution θ is better than an admis-
sible solution ρ from a viewpoint of cost if the
cost of θ is smaller than that of ρ. The cost of an
admissible solution is the minimum cost of word
sequences which give the solution. The cost of a
word sequence is a cumulative cost of word oc-
currence costs and connectivity costs in the word
sequence. A word occurrence cost and a connec-
tivity cost between two words are given by two
cost functions of the Reprint-CSP.

2. Better admissible solutions, which satisfy pre-
ferred constraints as well as possible, can be se-
lected using solution comparators which deter-
mine partial orders over admissible solutions. For
example, locally-predicate-better is one of such
comparators (Borning et al., 1992).

5 A MINIMUM-COST-METHOD-
BASED SOLVER

We explain the constraint solving process of the
minimum-cost-method-based solver mentioned in the
section 3 briefly. It works as follows.

1. The solver constructs a reading assignment graph
with costs from a given Reprint-CSP. It is a di-
rected acyclic graph with a most upstream node

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

260

Figure 4: A fragment of historical Japanese text which reads
(si)-(no)-(hu)-(su)-(ri)-(no)-(ka)-(ri)-(ki)-(nu)-(wo).

and a most downstream node. Each node is la-
beled with a sequence of variables, an assigned
reading (a word in a dictionary of the Reprint-
CSP), a part of speech, and two costs. The two
costs are a occurrence cost of the word and the
minimum cost from the most upstream node to
the node. Each directed edge represents a read-
ing order between two nodes, and is labeled with
a connectivity cost.

2. The solver enumerates n-best solutions over the
reading assignment graph with costs from a view
point of costs, and extracts locally-predicate-
better solutions from the n-best solutions.

In the following, an example of constraint solving
process is shown using Fig.4, Fig.5, Fig.6, and Fig.7.

Fig.4 shows a fragment of historical Japanese text
(Reizei, 1994) which reads (si)-(no)-(hu)-(su)-(ri)-
(no)-(ka)-(ri)-(ki)-(nu)-(wo).

Fig.5 shows a directed acyclic graph over vari-
ables of a Reprint-CSP for the text of Fig.4. Each
node is labeled with a variable in the upper part and
its domain in the lower part. Each directed edge be-
tween two nodes represents a reading order between
the two variables.

Fig.6 shows a complete reading assignment graph
with costs constructed from the Reprint-CSP. The
most upstream node and the most downstream node
represents the beginning and the end of a fragment
of text respectively. The graph was constructed with

Figure 5: A directed acyclic graph over variables of a
Reprint-CSP for the text in Fig.4.

A Constraint Solving Web Service for Recognizing Historical Japanese KANA Texts

261

Figure 6: A complete reading assignment graph with costs.

Figure 7: A part of a reading assignment graph with costs.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

262

reference to a dictionary with 363 words, and has 81
nodes. If a dictionary with 421,896 words is used as
in our experiments in section 7, the resulting graph
has 558 nodes.

Fig.7 shows a part of the complete reading assign-
ment graph. In Fig.7, a noun which reads (si)-(no)-
(hu)-(su)-(ri) is assigned to a sequence of variables
(01, 06, 07, 11, 14). The occurrence cost of the
node is 10,985, and the minimum cost from the most
upstream node to the node is 9,600. The minimum
cost to a node can be less than the occurrence cost of
the node because connectivity costs on directed edges
can be negative as shown in Fig.7.

6 A CONSTRAINT SOLVING
WEB SERVICE

We added a Web service layer to the minimum-cost-
method-based solver using a Web application frame-
work Ruby on Rails. Thanks to the HTTP-based pro-
tocol, it realizes loose couplings between the con-
straint solver and parts of the whole system. As a
result, any programming languages can be used to
implement other subsystems in the whole system. In
addition, the constraint solving service can be public
through the Internet.

We designed an asynchronous Web API be-
cause constraint solving process is time-consuming
as shown in experimental results in section 7. For
example, it takes a few seconds for the minimum-
cost-method-based solver to solve a Reprint-CSP with
about 200 variables. If a Reprint-CSP and its so-
lutions are exchanged between a server and a client
in one round trip over HTTP, it causes blocking. It
means the client has to wait for the solution in a few
seconds.

Fig.8 shows a protocol sequence diagram of the
Web API. To avoid blocking, the Web API protocol
involves two round trips between a client and a server.
The following is a brief explanation of the protocol.

1. A client sends a Reprint-CSP, a dictionary name,
and a positive integer n in a JSON format (T. Bray,
2014) using the POST method of HTTP to a Web
server as follows.

POST /solver/csps

2. The server returns a URL with a randomly gener-
ated ID to the client, and starts constraint solving.

3. The client requests solutions for the Reprint-CSP
to the Web service using the GET method of
HTTP with the returned URL as follows.

GET /solver/solutions/ID

Because the ID in the URL is randomly generated,
it is difficult for a client to steal a look at solutions
for other users.

4. If solutions for the URL are available at that time,
the Web service provides a set of pairs of a so-
lution and unsatisfied constraints in the solution
in a JSON format. If they are not available, the
Web service provides an error message in a JSON
format. Unsatisfied constraints sent from the Web
service will be hints to revise the original Reprint-
CSP.

Figure 8: A protocol sequence diagram of the Web service.

7 EXPERIMENTAL RESULTS

In this section, we experimentally compare the
minimum-cost-method-based solver implemented as
a UNIX command and the solver implemented as a
Web service. In addition, we evaluates the design of
Web API based on the experimental results.

We built a Linux environment on a virtual ma-
chine on Mac OS X, and run our Web service on the
environment on a Mac mini with 2.3GHz Intel Core
i7 CPU and 16GB memory. We used a Mac mini with
same specification in a same local area network for a
Web client (a UNIX command curl) and the solver
implemented as a UNIX command.

The two solvers use a same dictionary called Uni-
Dic for Early Middle Japanese (Ogiso et al., 2012),
which includes 421,896 words. Every time we invoke
the solver as a UNIX command, the command reads
the dictionary, stores it as a trie tree and use the trie
tree for a constraint solving. After finishing the con-
straint solving, the trie tree is lost. On the other hand,
when we start the solver as a Web service, the Web
service reads the dictionary, stores it as a trie tree, and
keep the trie tree for constraint solvings as long as the
Web service is running.

A Constraint Solving Web Service for Recognizing Historical Japanese KANA Texts

263

Table 1: Reprint-CSPs for experiments.

of variables Average size of variables’ domains # of constraints
Reprint-CSP 1 211 1.22 220
Reprint-CSP 2 214 2.00 215
Reprint-CSP 3 303 1.23 318

Table 2: Average execution time.

UNIX command Web service
(sec) T1 (sec) T2 (sec) T3 (sec) T4 (sec) T1+T3+T4 (sec)

Reprint-CSP 1 5.538 1.258 0.044 2.576 0.002 3.836
Reprint-CSP 2 12.358 1.286 0.041 8.961 0.002 10.249
Reprint-CSP 3 7.146 1.260 0.047 3.913 0.002 5.176

We used three Reprint-CSPs shown in Table.1.
Reprint-CSP 1 and Reprint-CSP 2 are CSPs for a page
in Tale of Ise, and Reprint-CSP 3 is a CSP for two
pages in Tale of Ise.

We gave each of the three Reprint-CPSs to both
the solver as a UNIX command and the solver as a
Web service five times, and measured their average
execution time. For the solver as a Web service, we
measured four durations T1, T2, T3, and T4 in Fig.8.
• T1 is a waiting time of a client between sending a

Reprint-CSP and receiving a URL.

• T2 is an execution time in a Web service between
receiving a Reprint-CSP and sending a URL.

• T3 is an execution time for constraint solving in a
Web service.

• T4 is a waiting time of a client between requesting
solutions and receiving the solutions.

Because T1 and T3 may overlap, a waiting time of a
client between sending a Reprint-CSP and receiving
solutions is at most T1+T3+T4.

Table.2 shows the results. In the three cases, the
solver as a Web service is faster than the solver as a
UNIX command by about 2 seconds. The execution
time of a Web service (T1+T3+T4) ranges between
69% and 84% of that of a UNIX command. The rea-
son is that the solver as a Web service is ready to solve
when it receives a Reprint-CSP while the solver as
a UNIX command has to read the dictionary before
solving when it receives a Reprint-CSP.

8 CONCLUSION

We added a Web service layer to an existing constraint
solver for reprinting Japanese historical text. Thanks
to the Web service layer, we can use suitable pro-
gramming languages to implement other parts of the
whole reprint support system and will be able to pub-
lish our constraint solver on a Web site as a Web ser-

vice so that other researchers concerning reprinting of
Japanese historical text can use it. We conducted ex-
periments and confirmed the solver as a Web service
is faster than the original solver as a UNIX command
by about two seconds if we use both a client and the
Web server in a same local area network. It is because
the solver as a Web service can reuse a setup done at
startup of the Web service while the solver as a UNIX
command has to do setup every time it is invoked.

One of our future works is to publish our Web ser-
vice on a Web site. In addition, implementing other
subsystems in the whole reprint support system and
combining them into one system are also our future
works.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Number JP16K00463.

REFERENCES

Arai, Y., Suzuki, T., and Aiba, A. (2013). Recognizing
Historical KANA Texts Using Constraints, pages 151–
164. Springer Japan, Tokyo.

Borning, A., Feldman-Benson, B., and Wilson, M. (1992).
Constraint hierarchies. In Lisp and Symbolic Compu-
tation, pages 48–60.

Frellesvig, B. (2010). A History of the Japanese Language.
Cambridge University Press.

Hayasaka, T., Ohno, W., Kato, Y., and Yamamoto, K.
(2017a). Recognition of kuzushiji (hentaigana and
cursive script) by deep learning (ver.0.4.1).

Hayasaka, T., Ohno, W., Kato, Y., and Yamamoto, K.
(2017b). Trial production of application software for
machine transcription of hentaigana by deep learning.
In Proceedings of the 31st Annual Conference of the
Japanese Society for Artificial Intelligence.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

264

Ogiso, T., Komachi, M., Den, Y., and Matsumoto, Y.
(2012). Unidic for early middle japanese: a dictio-
nary for morphological analysis of classical japanese.
In Chair), N. C. C., Choukri, K., Declerck, T., Doan,
M. U., Maegaard, B., Mariani, J., Moreno, A., Odijk,
J., and Piperidis, S., editors, Proceedings of the Eight
International Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Reizei, T. (1994). Tales of Ise (photocopy). Kasama Shoin.
T. Bray, E. (2014). The javascript object notation (JSON)

data interchange format. RFC 7159.
Terasawa, K. and Kawashima, T. (2011). Word spotting

online. In Proceedings of the Computers and the Hu-
manities Symposium, volume 2011, pages 329–334.

Watanabe, S., Suzuki, T., and Aiba, A. (2015). Reducing
of the number of solutions using adjacency relation
of words in recognizing historical kana texts. IPSJ
Journal, 56(3):951–959.

Yamada, S. and Shibayama, M. (2003). An estima-
tion method of unreadable historical character for
manuscripts in fixed forms using n - gram and ocr.
IPSJ SIG Notes, 2003(59):17–24.

Yamamoto, S. and Osawa, T. (2016). Labor saving for
reprinting japanese rare classical books. Journal of In-
formation Processing and Management, 58(11):819–
827.

A Constraint Solving Web Service for Recognizing Historical Japanese KANA Texts

265

