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Abstract: Over the years, many organizations have been using cloud computing services to persist, consume and provide

data. Models such as Software as a Service (SaaS), Data as a Service (DaaS), and Database as a Service

(DBaaS) are consumed on demand to serve a specific purpose. In summary, SaaS is a delivery model for

applications, while DaaS and DBaaS are models to provide data and database management systems on de-

mand, respectively. SaaS applications require additional efforts to access those data due to their heterogeneity:

Non-structured (e.g. text), semi-structured (e.g. XML, JSON), and structured format (e.g. Relational Data-

base). Consequently, the lack of standardization from DaaS and DBaaS generates a lack of interoperability

among cloud layers. In this paper, we propose a middleware MIDAS (Middleware for DaaS and SaaS) to

provide transparent interoperability between Services (SaaS) and Data layers (DaaS and DBaaS). Our current

version of MIDAS concerns two important issues: (i) a formal description of our middleware and (ii) a joining

data from different DaaS and DBaaS. To evaluate our middleware, we provide a set of experiments to handle

functional, execution time, overhead, and interoperability issues. Our results demonstrate the effectiveness of

our approach to addressing interoperability concerns in cloud computing environments.

1 INTRODUCTION

The volume of digital data grows exponentially, with
an estimated total of 40 trillion gigabytes in 2020
(Gantz and Reinsel, 2012). Because these data need
to be stored and available both to consumers and to or-
ganizations, data management have been facing some
challenges to handle the variety and amount data. The
cloud computing paradigm has emerged to fill some
of these requirements, once it provides services with
high availability and data distribution (Mell et al.,
2011). By 2020, nearly 40% of the available data will
be managed and stored by a cloud computing provider
(Gantz and Reinsel, 2012).

Authors in (Armbrust et al., 2010) define cloud
computing as a model that enables a ubiquitous and
on-demand network of applications, platforms, and
hardware, both provided as services. These services
are organized into levels and consumed on demand
by users in a scheme of pay-per-use. Software as a
Service (SaaS), Data as a Service (DaaS), and Data-
base as a Service (DBaaS) are instances of service
types organized in cloud levels. SaaS is cloud ap-
plications made available to end users via the Inter-

net. DaaS provides data on demand through appli-
cation programming interfaces (APIs). DBaaS provi-
des database management systems (DBMS) with me-
chanisms for organizations to store, access and mani-
pulate their databases (Hacigumus et al., 2002). Alt-
hough confusing, DaaS and DBaaS are different con-
cepts.

The emergence of Internet of Things (IoT), social
networks and the use of web-enabled devices such as
smartphones, laptops, and notebooks generate a huge
volume and variety of data (Armbrust et al., 2010).
Data are stored in non-structured, semi-structured or
structured databases. Governments, Institutions, and
Companies most use DaaS as a way to make their data
(expenses, budgets, economic or census data) availa-
ble to public or private users across the Internet (Ba-
routi et al., 2013).

The access to DaaS and DBaaS in different cloud
providers by SaaS applications needs, in most of the
cases, substantial efforts. This kind of situation hand-
les a lock-in problem due to the lack of interopera-
bility among cloud levels (Loutas et al., 2011; Silva
et al., 2013). For instance, if demographic researchers
need to make studies about census data provided by
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governments in different DaaS (and/or DBaaS), they
will face the difficult to process these data due to the
lack of standards and consequently no interoperabi-
lity between SaaS and DaaS (and/or DBaaS). To ac-
complish this interoperability issue, we propose our
middleware called MIDAS (Middleware for DaaS and
SaaS).

Our current version of MIDAS (MIDAS 1.8) is re-
sponsible for mediating the communication between
different SaaS, DaaS, and DBaaS. MIDAS makes
possible that SaaS applications retrieve data seam-
lessly on various cloud data sources since our MI-
DAS mediates all communication between SaaS and
DaaS/DBaaS. Our version guarantees access to DaaS
regardless of modifications made to its API.

We propose in this paper a new enhanced ver-
sion of our middleware MIDAS to provide a trans-
parent interoperability among different cloud layers.
The current version of MIDAS (MIDAS 1.8) hand-
les two important issues: (i) a formal description of
our approach and (ii) a join clause to manipulate dif-
ferent data (DaaS and DBaaS) into a single query.
Some minor improvements were made in order to ad-
just our MIDAS, such as (i) recognization of diffe-
rent data query structures sent by SaaS, such as SQL
and NoSQL queries; (ii) manipulate different DaaS
and DBaaS from statements such as join (SQL) and
lockup (MongoDB); (iii) manipulate different data
models returned by DaaS and DBaaS, such as JSON,
XML, CSV and tables; and (iv) return the result into
the required format by SaaS, such as JSON, XML,
and CSV.

We performed some experiments to evaluate our
novel approach, considering four important issues:
Functional, execution time, overhead, and interopera-
bility. Our results demonstrated that our middleware
is effective, thus providing the desired results.

The remainder of this paper is organized as fol-
lows: Section 2 presents the most relevant related
works; Section 3 describes our current version of MI-
DAS; Section 4 formalizes our middleware; Section
5 provides a set of experiments to validate our appro-
ach; Section 6 presents some results; and Section 7
concludes with some envisioning work.

2 RELATED WORKS

Some close works were proposed to solve the lack
of interoperability. In medical field, authors in (Park
and Moon, 2015) propose a solution for heterogene-
ous DBaaS that share medical data between different
institutions. However, this approach handles data that
follows the Health Level Seven (HL7) standards, thus

minimizing efforts regarding heterogeneity.
The authors in (Igamberdiev et al., 2016) present

a framework to solve problems in Big Data systems
in the area of oil and gas. The goal is to automate the
transfer of information between projects, identifying
similarities and differences. Their framework handles
only one data source per query, not allowing to merge
data from more than one source.

Considering a non-domain-specific interoperabi-
lity solution, there are two related work: (Sellami
et al., 2014) and (Xu et al., 2016). These proposals
do not deal with different types of NoSQL, nor en-
vision to handle NewSQL approaches. Besides, they
manipulate data sources without joining, and they do
not work with data provided by DaaS. It is noteworthy
that manipulating both DaaS and DBaaS is one of the
main advantages of our proposal.

The cloud Interoperability Broker (CIB) is a solu-
tion to interoperate different SaaS (Ali et al., 2016).
This work was evaluated in a dataset through an ac-
tual application, but unlike our proposal, they do not
consider the interoperability between SaaS and DaaS.

Despite the fact that our prior approach (MIDAS
1.6) (Vieira et al., 2017), it had some limitations: (i)
Each DaaS must be manually inserted and updated;
(ii) DBaaS is not provided; and (iii) data were retur-
ned to SaaS only in JSON format.

Thus, to the best of our knowledge, this is the first
middleware that interoperates SaaS with DaaS and/or
DbaaS in cloud environments.

3 THE CURRENT MIDAS

The current MIDAS architecture is depicted in Fig.
1. This novel approach is composed of six compo-
nents. The Query Decomposer which receives a query
from SaaS and maps the statement into an internal
structure. Query Builder which receives the query de-
composed and builds a query to DaaS and/or DBaaS.
The Data Mapping component which identifies and
obtains data from different DBaaS. Dataset Informa-

tion Storage (DIS), that sets the information about
DaaS APIs. A Crawler which maintains DIS up-to-
date. Finally, the Result Formatter, which formats,
associates, and selects data before returning to SaaS.

The following components were included or mo-
dified to meet the goals of our current version: Data

Mapping, Query Builder, Result Formatter, and Cra-

wler. The other components, Query Decomposer and
DIS, both works similarly to our previous version
(Vieira et al., 2017).

The Data Mapping generates a DaaS from a
DBaaS based on a manually maintained data dicti-
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Storage

Figure 1: Our current MIDAS architecture.

onary. It identifies the DBaaS in which the data is
stored and it obtains the requested data. DBaaS can
be tables, columns, graphs, key-values or documents.
The Query Builder accesses multiple DaaS in a sin-
gle query if the query has a join statement (such as
SQL join or MongoDB aggregation). In our cur-
rent version, the Result Formatter receives either data
from DaaS and DBaaS and performs the merge of
such data, regardless the model. Finally, our Craw-

ler maintains the DIS information up-to-date, consi-
dering that DaaS providers can change the parameters
to conduct a query. Besides, the SaaS provider can
now indicate the desired format to return its result.

Our Crawler has a challenging role in keeping
DIS information up-to-date because of the DaaS.
DaaS is not standardized thus it can change fre-
quently. Moreover, they are usually distributed. Our
Crawler searches for every DaaS API information
from its web page, ensuring that the information does
not cause any harm to the applications, in the case of
updating. It was developed to run repeatedly toward
search of different information from those persisted in
DIS. When this information is found to be uneven, it
is recorded in DIS.

Fig. 2 illustrates the MIDAS execution sequence

for a SQL query with the join statement that acces-
ses one DaaS and two DBaaS. In this example, SaaS
sends a SQL query to MIDAS, which performs the de-
composition (by Query Decomposer) and forwards to
the Query Builder. Query Builder accesses the DIS
and identifies that the data is in one DaaS (daas1)
and two DBaaS (dbaas1 and dbaas2). Query Builder
builds the request to DaaS and asks the Data Map-

ping to connect to both DBaaS to get the rest of the
data. Each provider executes the request and returns
the result to the Result Formatter (daas1, dbaas1, and
dbaas2 returned in CSV, table, and document for-
mats, respectively). The Result Formatter receives the
data, performs the join, formats the requested return
(JSON), and forwards to the SaaS.

4 FORMAL MODEL OF MIDAS

The formal model of MIDAS aims to explain the com-
munication among its modules. The formalization
of MIDAS is based on canonical models (Schreiner
et al., 2015) with trees and sets of keys and values.

Definition 1 (MIDAS internal structure). The struc-

ture used internally by MIDAS (MIDASql) is a tuple
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Figure 2: MIDAS execution sequence among one DaaS and two DBaaS through a join statement.

MIDASql = (mDIS,mSaaS,mDaaS), where: mDIS

is the canonical model of DaaS presented in DIS;

mSaaS is the canonical model that maps the query

(sent by SaaS); and mDaaS is the canonical model

that maps DaaS return(s).

In the following sections, each canonical model is
detailed.

4.1 Canonical Model mDIS

Definition 2 (mDIS). The canonical model that sto-

res DIS information (mDIS) is a tuple mDIS =
(Nroot ,DAAS), where: Nroot is the name of the model;

and DAAS is a set of DaaS models (daas set).

Definition 3 (daas). The canonical model for a

specific DaaS (daas ∈ DAAS) is a tuple daas =
(Nrootdaas

,K), where: Nrootdaas
is the name of DaaS;

and K is a predefined set of keys (k) for each DaaS,

where K = {domain, search path, query, sort, limit,

dataset, records, fields, format}.

Definition 4 (k). A key k ∈ K is an information about

daas and it is defined as k = (Nrootk , i), where: Nrootk

is the name used to characterize a specific informa-

tion about daas, k.Nrootk ∈ K; and i is the information

about k, it can be empty, atomic, or multivalued.

Considering a hypothetical DIS with two DaaS
(NYC and v8), part of the canonical model mDIS can
be seen in Fig. 3: The main node stores the beginning
of subtrees, where each subtree stores the information
about a particular DaaS. Each node of level i stores in-
formation on the k level, immediately above.

4.2 Canonical Model mSaaS

Definition 5 (mSaaS). The canonical model mSaaS

converts the query (submitted by SaaS) in a set with n

DIS

nyc v8

dataset records fieldssortquery
search_

path

x6 x7 x8x4x3x2

...

mDIS

daas

k

i

domain format

x1 x9

limit

x5

Figure 3: Example of mDIS for two DaaS.

queries (to sent to DaaS), where n indicates the num-

ber of relations in the query (e.g.: n = 2 indicates

join with 2 tables), n ≥ 1. The model mSaaS is a tuple

mSaaS = (Nroot ,C1), where: Nroot is the value of n;

and C1 is a set of first-level clauses (c1) used in the

mapping to identify queries and operations.

Definition 6 (c1). A first-level clause c1 ∈ C1 sto-

res specific information about a query OR about an

operation, and it is a tuple c1 = (Nrootc1
,C2), where:

Nrootc1
is the name that identifies the query OR the

operation; and C2 is a set of second-level clauses (c2)

used in the mapping to identify the query attributes

and operations. Some important observations: (i)

Nrootc1
∈ {q1,q2, . . . ,qn, param}, where qi is an i-th

relation and param is a node for storing data about

join, order by and limit; and (ii) given n, there are

n+ 1 clauses c1.

Definition 7 (c2). A second-level clause c2 ∈ C2 sto-

res information about clauses of a query OR clauses

of an operation, and it is a tuple c2 = (Nrootc2
,V ),

where: Nrootc2
is the name that identifies the clause

of a query OR the clause of an operation; e V is

a set of values (v) for each c2. Some important

observations: (i) if c1 represents a query qi, then

Nrootc2
indicates j attributes ( j ≥ 0) of qi stored,

where Nrootc2
∈ {Pro jection,Selection,Dataset}; (ii)

Transparent Interoperability Middleware between Data and Service Cloud Layers

151



if c1 represents param, then Nrootc2
indicates j at-

tributes ( j ≥ 0) of n relations, where Nrootc2
∈

{OrderBy,Limit,TypeJoin,CondJoin,Return}; and

(iii) given n, there are 3n+ 5 clauses c2.

Definition 8 (v). A value v ∈ V is an element repre-

senting information about c2. Depending on the c2, V

may be empty, atomic, or multivalued. Thus, V = ∅

or V = {v1,v2, . . . ,vw}, where: vi is the i-th value v

for c2; and w is the number of values v in the set V of

the key c2, i.e., v ∈V .

For instance, the query of Table 1 (presented in
SQL and NoSQL) generates the canonical model pre-
sented in Fig. 4; while the query in Table 2 generates
the canonical model presented in Fig. 5.

Table 1: Example of a query in SQL and in NoSQL (Mon-
goDB) without join/aggregation.

SQL NoSQL (MongoDB)

SELECT name, w7.find( (from)
age {‘age=10’}, (where)

FROM w7 {‘name’:1, (select)
WHERE age=10 ‘age’:1})
ORDER BY name .limit(10) (limit)
LIMIT 10 .sort( (order by)

{‘name’:1});

1

q1 param

Dataset

Selection
Projection

w7
age=

10
age

mSaaS

c1

vname

CondJoin

TypeJoin

Limit

Order

By

10name

c2

Return

json

Figure 4: Example of mSaaS for query in Table 1.

2

q1 param

Dataset

Selection

Projection

age

mSaaS

c1

v

Cond

Join
TypeJoin

Limit
Order

By

3

c2

b��
queens

w7

q2

Dataset

S��ection

Projection

phone vz �eft
outer

w��b� =
v�.��

	
.�ame

Return

xm�name

Figure 5: Example of mSaaS for query in Table 2.

After mDIS and mSaaS are generated, it is neces-
sary to transform both canonical models into a set of
URLs to submit to DaaS. The data from DaaS is re-
ceived through a Uniform Resource Locator (URL),
MIDASql provides a mechanism to convert mDIS

and mSaaS into a set of URLs, the function genera-

teURLs(). Our function has the following prototype:
“URLs generateURLs(mDIS, mSaaS)”. This means
that, given a mDIS and a mSaaS, generateURLs()

must returns a set of URLs, where: each URL is
a concatenation sequence of mDIS and mSaaS ele-
ments; and the number of URLs is equal to the num-
ber of query relations (n, n ≥ 1), i.e., each qi (in
mSaaS) generates URLi. For this, we assume that:
“+” is an operator that concatenates two strings (lite-
rals or variables); and ch(p) is a function that returns
the contents of the child(ren) of p node.

Thus, considering DSname = ch(qi.dataset), URLi

is generated according to Fig. 6.

Figure 6: Concatenations that the generateURL() function
uses to generate URLi.

Considering the function generateURLs(), some
observations are important: (i) when ch(p) does
not return any element, the corresponding line p

in URLi must be disregarded; (ii) multivalued re-
sult of ch(p) is separated by commas; (iii) the last
two lines occur only for n = 1; and (iv) for n ≥ 2,
ch(qi.Pro jection) must initially include the corre-
sponding ch(param.CondJoin) if the junction attri-
bute is not part of the projection attribute set (i.e., if
ch(param.CondJoin) /∈ ch(qi.Pro jection)).

Given the mDIS of Fig. 7 and the
mSaaS shown in Fig. 4, the generateURLs()

generates the following URL: URL1 =
<http://w7.com/api/w/?dsw=w7&rcw=name,age&
q=age=10& sort=name&rows=10>.

DIS

v�

data

set
records ie�dssortquery

searc��
pat�

dsv rcv dvsvqv/�pi/�/

domain ormat

�ttp:��
v���om �m�

�imit

lv

w7

data

set
records ie�dssortquery

searc��
pat�

dsw rcw dwswqw/�pi/�/

domain �ormat

�ttp:��
w7��om json

�imit

�w

Figure 7: Example of mSaaS for query in Table 2.

On the other hand, given the same mDIS

from the previous example (Fig. 7) and the
mSaaS shown in Fig. 5, the generateURLs()

generates the following URLs: URL1 =
<http://w7.com/api/w/?dsw=x7&rcw=b1,name,age&
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Table 2: Example of a query in SQL and in NoSQL (MongoDB) with join/aggregation.

SQL NoSQL (MongoDB)

SELECT w7.name, db.w7.aggregate.([ (from)
w7.age, vz.phone {$lookup:{from:‘vz’, localField:‘b1’, (join)
FROM w7 foreignField:‘b2’}},
LEFT OUTER JOIN vz {$match:{w7.b1=‘queens’}}, (where)
ON w7.b1=vz.b2 {$project:{w7.name:1, w7.age, vz.phone:1}} (select)
WHERE w7.b1=‘queens’ {$sort:{w7.name:1}}, (order by)
ORDER BY w7.name {$limit:3} (limit)
LIMIT 3 ]);

qw=b1=’queens’>; and URL2 = <http://vz.com/api/
v/?dsv=vz&rcv=b2,phone>.

4.3 Canonical Model mDaaS

For each generated URL, the corresponding DaaS re-
turns the request dataset. Before sending the results to
SaaS, MIDAS performs some operations to make the
data “presentable”, such as join, order by, and limit,
if applicable. This treatment is carried out employing
the canonical model mDaaS.

Definition 9 (mDaaS). The canonical model mDaaS

maps the output of n DaaS. DaaS sends a re-

turn (in the format described in the mDIS) for

each URL. If n = 1, then mDaaS just converts

ch(DIS.ch(q1.dataset). f ormat) (format returned by

DaaS) into ch(param.Return) (format desired by

SaaS), and the process is finalized. On the other hand,

when n ≥ 2 (i.e., if there is a join), then the relations

are mapped two-by-two, so that mDaaS generates n

canonical mappings. In this case (n ≥ 2), mDaaS is a

tuple mDaaS = (Nroot ,CJ), where: Nroot is the name

of the DaaS model (qiD, i is the i-th relation); and CJ

is a distinct set of ch(param.CondJoin) (c j) values in

the corresponding relation.

Definition 10 (cj). An information c j ∈CJ is a value

that the condition of join ch(param.CondJoin) assu-

mes in the corresponding relation, being c j a tuple

c j = (Nrootc j
,L), where: Nrootc j

is the name that iden-

tifies the value c j; and L is a set of lists (l) with all

attributes that contain c j.

Definition 11 (l). A list l ∈ L contains all elements

of the same tuple in which c j is part, in the same or-

der of occurrence of the relation (considering from

left to right). The amount of l ∈ L is equal to the

amount of occurrences of c j in the relation, thus

l = {a1,a2, . . . ,am}, where: ai is the i-th attribute a

for each l in c j; and m is the number of attributes

a ∈ l.

Considering that the query in Table 2 (with join)
returns the two sets of data presented in Table 3, the
canonical models (mDaaS) are shown in Fig. 8.

Table 3: DaaS returns for query presented in Table 2.

w7 vz

b1 name age b2 phone
1 Andrew 14 1 p1
2 Bruce 35 1 p2
1 Carl 13 30 p3
3 Dylan 34 2 p4
2 Erik 65 5 p5

mDaaS

cj

l

q1�

1 �

CarlAndrew

14 1�

2

ErikBruce

�5 65

�ylan

�4

q2�

1 2

p2p1

�0

p� p 

5

p!

Figure 8: Example of mDaaS for query in Table 2.

Once the mDaaS has been generated, the join
can be done. The next step depends on the value
of ch(param.TypeJoin). For this, in addition to the
functions already mentioned, we assume that: lch(p)
is a function that returns the last child of a p node; and
con(p1, p2) is a function that connects the node p1 to
the node p2.

If ch(param.TypeJoin) = ‘le f t outer’, the join is
performed as follows:

a) ∀c j1 ∈ ch(q1D) e ∀c j2 ∈ ch(q2D),
con(lch(q1D.c j1), ch(q2D.c j2)), ∀c j1 = c j2;

b) case c j1 /∈ ch(q1.Pro jection), then (i) con(q1D,
ch(q1D.c j1)) is performed and (ii) c j1 is removed;

c) if there is ch(param.OrderBy), this node is sor-
ted;

d) if there is ch(param.Limit), this must be the total
of ch(q1D); and finally

e) q1D is converted to ch(param.Return) and it is
sent to SaaS.

Considering the mDaaS of Fig. 8, the execution
of the described steps should result in Fig. 9.
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mDaaS

cj

l

q1"

CarlAndrew

14 13

Bruce

35

p2p1 p2p1p4

Figure 9: Example of mDaaS for query presented in Table
2 after left outer join.

5 EVALUATION

To evaluate our middleware, we performed a set of
three experiments. These experiments delimit the re-
lationship between SaaS and DaaS/DBaaS. A query
without join (or aggregation) statement connects one
SaaS to only one DaaS or one DBaaS provider (Ex-
periments 1 and 2). Queries with join (or with ag-
gregation) statements allow SaaS level to relate more
than one DaaS and/or more than one DBaaS providers
(Experiment 3).

Firstly, we evaluate the overhead of our midd-
leware. We submitted 100 queries directly to both
DaaS and DBaaS and, we compared the results with
MIDAS access. Queries were performed to return
100, 1000, and 10000 records. Secondly, we evalu-
ate whether the query language (SQL and NoSQL)
influences the access time to different data sources
(DaaS and DBaaS). Through MIDAS, we have sub-
mitted 100 queries: (i) With MongoDB to DaaS; (ii)
SQL to DaaS; (iii) MongoDB to DBaaS; and (iv) SQL
to DBaaS. Thirdly, we evaluate the interoperability of
our proposal. In this experiment, we submit 100 que-
ries to more than one data source: (i) 2 DBaaS; (ii) 2
DaaS; and (iii) 1 DaaS and 1 DBaaS.

In experiment 1 we evaluated overhead; expe-
riment 3 we evaluated interoperability; and in all
experiments (1, 2 and 3) we evaluated function
and execution time. The average time (in ms) of
each task was registered by Apache JMeter tool
(http://jmeter.apache.org/).

5.1 Our Case Study

Our current MIDAS is based on open source
technologies that are found in any cloud with
PHP support. It was developed in Heroku cloud
(https://www.heroku.com/) because it is an open
cloud with sufficient storage space and a complete
Platform as a Service (PaaS) for our project. To si-

mulate a SaaS provider, we develop a Demographic
Statistics by NY Hospital’s web application based on
PHP. This web application is hosted in Heroku SaaS
instance, and it can be accessed at <https://midas-
saas.herokuapp.com>.

Regarding DaaS service level, three different
DaaS providers are used to perform our tests
and experiments (P1: <https://goo.gl/7sVsZB>;
P2: <https://goo.gl/E4YmYH>; and P3:
<https://goo.gl/vJomwT>):

• P1: Transportation Sites, with 13600 instances
and 18 attributes;

• P2: Hospital General Information, with 4812 in-
stances and 29 attributes; and

• P3: Demographic Statistics By Zip Code, with
236 instances and 46 attributes.

The same dataset provided by DaaS were
persisted into two DBaaS: P1 in JawsDB
(https://www.jawsdb.com/) and P2 in mLab
(https://www.mlab.com/). The DBaaS are based
on MySQL and MongoDB, respectively. The
choice for MySQL and MongoDB was motivated
by being the most widely used Relational and
NoSQL available and free (according to ranking
https://db-engines.com/en/ranking). Our application
(simulating SaaS) performs a join between P2 and P3.

5.2 Experiments

To evaluate our middleware, we performed three ex-
periments: (E1) overhead; (E2) performance of diffe-
rent queries; and (E3) data join and interoperability.

In the first experiment, we submitted 100 queries
to both data sources (DaaS and DBaaS) with and wit-
hout MIDAS. We vary the number of records returned
(100, 1000, and 10000). This allows evaluating the
influence of MIDAS on the communication between
SaaS and DaaS/DBaaS. For this, in the first experi-
ment we submit:

• 100 queries directly to DaaS provider;

• 100 queries to DaaS provider through MIDAS;

• 100 queries directly to DBaaS provider; and

• 100 queries to DBaaS provider through MIDAS.

As stated, we evaluated whether the query lan-
guage influences access time depending on the data
source. Thus, in the second experiment we submit:

• 100 MongoDB queries to the DaaS provider
through MIDAS;

• 100 SQL queries to the DaaS provider through
MIDAS;
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• 100 MongoDB queries to the DBaaS provider
through MIDAS; and

• 100 SQL queries to the DBaaS provider through
MIDAS.

Finally, our third experiment evaluates the intero-
perability of MIDAS. We estimate the average execu-
tion time required for MIDAS to relate data from dif-
ferent sources, through the join (or aggregation) sta-
tement. The association of the data was made through
a zip code field. having in dataset P1 the attribute as
Zip and in the dataset P2 the attribute as Zip Code. For
this, we submit:

• 100 queries with join statement to two DaaS pro-
viders through MIDAS;

• 100 queries with join statement to two DBaaS
providers through MIDAS; and

• 100 queries with join statement to one DaaS and
one DBaaS providers through MIDAS.

6 RESULTS

In this section, we present the results of our experi-
ments, and we discuss them.

6.1 Results from Experiment 1

The results obtained from experiment 1 were classi-
fied based on the value assigned to the query limit.
This value defines the number of records returned and
it was restricted up to 100, 1000 and 10000 data re-
cords.

Firstly, we submitted 100 queries to return 100
data records. In this case, Fig. 10 shows the average
of the execution time:

• 1267.77± 276.22 ms for queries without MIDAS
to DaaS;

• 2052.37± 2658.98 ms for queries through MI-
DAS to DaaS;

• 489.76± 367.30 ms for queries without MIDAS
to DBaaS; and

1        10       20       30       40       50       60       70       80        90     100

Figure 10: Return time (y-axis) for each of the 100 queries
submitted (x-axis) with a limit of 100 records.

• 2128.15±219.87 ms for queries through MIDAS
to DBaaS.

Secondly, we submitted 100 queries to return 1000
data records. In this case, Fig. 11 shows the average
of execution time:

• 1372.92± 275.70 ms for queries without MIDAS
to DaaS;

• 3071.09±585.30 ms for queries through MIDAS
to DaaS;

• 896.51±22.83 ms for queries without MIDAS to
DBaaS; and

• 2813.19±198.26 ms for queries through MIDAS
to DBaaS.

1        10       20       30       40       50       60       70       80        90     100

Figure 11: Return time (y-axis) for each of the 100 queries
submitted (x-axis) with a limit of 1000 records.

Finally, we submitted 100 queries to return 10000
data records. In this case, Fig. 12 shows the average
of execution time:

• 7917.02± 1045.84 ms for queries without MI-
DAS to DaaS;

• 35039.22± 1420.75 ms for queries through MI-
DAS to DaaS;

• 4260.8±61.25 ms for queries without MIDAS to
DBaaS; and

• 30023.41± 1213.57 ms for queries through MI-
DAS to DBaaS.

1       10       20       30       40       50       60       70       80       90     100

Figure 12: Return time (y-axis) for each of the 100 queries
submitted (x-axis) with a limit of 10000 records.

Regarding the overhead caused by MIDAS, we
can observe that the average differences of direct que-
ries to DaaS and DBaaS, respectively, when compa-
red to the access through MIDAS were: (i) 42.4%

Transparent Interoperability Middleware between Data and Service Cloud Layers

155



and 368.8%, for 100 data records; (ii) 123.7% and
213.8%, for 1000 data records; and (iii) 342.6% and
604.6%, for 10000 records. Time values are affected
by (i) data traffic on the Internet and (ii) MIDAS in-
frastructure. These results demonstrate that the algo-
rithms need optimizations, not being the scope of this
work.

6.2 Results from Experiment 2

In this experiment, we combine two query langua-
ges (SQL and NoSQL) with both sources (DaaS and
DBaaS).

As Fig. 13 shows, the following averages of exe-
cution time were obtained:

• 33569.03 ± 2663.39 ms for MongoDB queries
through MIDAS to DaaS;

• 35039.22± 1420.75 ms for SQL queries through
MIDAS to DaaS;

• 29415.03 ± 1065.52 ms for MongoDB queries
through MIDAS to DBaaS; and

• 30023.41± 1213.57 ms for SQL queries through
MIDAS to DBaaS.

1       10       20       30       40      50       60       70      80       90     100

Figure 13: Return time (y-axis) for each of the 100 queries
submitted (x-axis) from different languages to different data
sources.

We can observe that: (i) For access to DaaS,
SQL queries were 4.4% slower; while (ii) for DBaaS
access, SQL queries were 2% slower. The time dif-
ference between the two types of queries is minimal,
not representing losses in the choice of which to use.

6.3 Results from Experiment 3

In this experiment, we performed a query with join
statements that access two different DaaS, two diffe-
rent DBaaS and one DaaS with one DBaaS.

Figure 14 depicts the average of the execution
time.

• 12357.08± 6831.42 ms for two DaaS providers;

• 126957.46± 55870.66 ms for two DBaaS provi-
ders; and

1       10       20       30       40      50       60       70      80       90     100

Figure 14: Return time (y-axis) for each of the 100 queries
(x-axis) with join (or aggregation) statement.

• 22707.84± 9324.02 ms for one DaaS and one
DBaaS

In this experiment, we can observe that (i) the
average query time to 2 DBaaS is 459% slower than 1
DaaS and 1 DBaaS queries, and 927.4% slower than
2 DaaS queries. The average time for queries to 1
DaaS and 1 DBaaS is 83.8% slower than queries to 2
DaaS. When using DBaaS, the time values are higher
than those presented by DaaS, due to the process of
accessing and processing the data in the DBaaS.

6.4 Discussions

Our case study evaluates MIDAS through its overhead
and different languages and data sources.

Despite the fact that the execution time was pro-
portional to the submitted query, in the first experi-
ment the results show that MIDAS inputs an extra
overhead regarding direct queries. This depreciation
was expected because of the new layer introduced be-
tween SaaS and DaaS. It is noteworthy that network
bandwidth, cloud providers, and latency might also
influence those results.

Considering DbaaS, we observed that the result
from a direct access is more rapid than through MI-
DAS. In fact, MIDAS deals with DBaaS as a DaaS,
through the Data Mapping module.

The second experiment states that the language
used by a SaaS (i.e., SQL, NoSQL) does not influ-
ence the query performance or the return time with
both data (i.e., DaaS, DbaaS).

Finally, the third experiment states that DbaaS
needs to be deeply analyzed. Despite the fact that the
join clause has a complexity O(n2) (2: number of data
source), the join execution time decreases the perfor-
mance in almost 1 minute. On the other hand, results
on DaaS were less than 23 seconds. We can state that
the benefits of our approach to interoperate different
data sources by the use of join clauses outperforms
the time spent on gathering the results.

There is one threat of validity: all data sources
were public. Thus, offline data for any cause can com-
promise our approach.
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7 CONCLUSIONS AND FUTURE

WORK

In this paper, we propose a new version of MIDAS,
describing a formal model to provide interoperability
among cloud layers. We performed some experiments
to validate our results and to show the effectiveness of
our proposal.

Our middleware requires a minimum adaptation
from SaaS applications despite the complexity of de-
aling with interoperability problem between applica-
tion services and heterogeneous data in cloud envi-
ronments. As contributions, unlike the previous ver-
sion (1.6) our solution (i) even promotes the joining
of data from different DaaS and DBaaS, enabling gat-
hering data from various data sources; (ii) automati-
cally populates and maintains updated the DIS; and
(iii) considers other SaaS return formats in addition
to JSON.

As a future work, we intend to continue improving
MIDAS by adding new characteristics, such as (i) re-
cognization of SPARQL queries and other types of
NoSQL; (ii) automate the Crawler for searching no-
vel DaaS and disambiguate data from heterogeneous
data sources, and (iii) improve algorithms for better
results.
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