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Abstract: For Distributed Energy Resources to participate in the grid, and help solve the problems of unreliability and 
inefficiency, caused by weather dependent, and distributed energy resources, they must have a processing 
unit, data connection, and an ICT architecture. The aim of the paper is to describe the software components 
of the ICT architecture, thereby improving the design of scalable ICT architectures for automatically 
controlled DERs. Future plug ‘n’ play software components that improve the scalability and eases the 
development of such ICT architectures are also described in the paper. The ICT architecture should be scalable 
to many different types of DERs with minimal effort and should enable control by automated generic 
controlling entities. The ICT architecture primarily consists of three layers, the driver layer that uses native 
communication to talk to the unit hardware, the data layer that supplies historical data, real-time data, and 
future prediction to the communication layer, which is responsible for talking to the controlling entities. With 
the plug ‘n’ play extension components which adds the application launcher, automatic configuration, self-
healing and topology detection. 

1 INTRODUCTION 

With the increasing amount of Renewable Energy, 
the power grid faces challenges caused by the 
intermittent production of energy by weather 
dependent energy resources like solar panels and 
wind turbines, and by the increasing share of 
distributed energy resources. 

To handle these challenges of power grid 
reliability and power use efficiency, the Distributed 
Energy Resources (DERs), both generation and 
consumption units, must participate in the operation 
of the power grid. 

This participation can be achieved with economic 
incentives for the owners and must go beyond having 
the owners control the DERs manually to move 
production, with aggregators and local controllers 
that control the DERs automatically, either by having 
these controlling entities participate in energy and 
flexibility (Zhang, 2014) markets or by using price 
signals. 

The necessary parts to enable automatic control 
by controlling entities is a processing unit, data 
connection and an ICT architecture consisting of 
software components (figure 1). 

Figure 1: DER parts. 

The focus of the paper is not the controlling 
entities, which could be located on the DERs, but the 
software components of the ICT architecture 
necessary for automatic control. 

The aim of the paper is to describe the software 
components, in enough detail to give the reader an 
overview of what a scalable DER ICT architecture 
should contain. Not all components are necessary for 
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every use case, but they are necessary for a generic 
architecture. 

The plug ‘n’ play section describes the application 
launcher and possible extensions to the ICT 
architecture. 

The state of the art for this area is a collection of 
scientific articles defining and aggregating the 
requirements of ICT architectures for the Smart Grid 
or Smart Homes, whereas this paper is specific to the 
ICT architecture for DERs, and proposes scalable 
solutions to fulfill the requirements for a DER ICT 
architecture (Rohjans, 2012) (Zaballos, 2011) (Kok, 
2009). 

The hypothesis of the paper is that with the right 
components a scalable DER ICT architecture can be 
constructed that works for all DERs, with a minimal 
amount of work for each different DER in the form of 
configuration files, and enables automated generic 
controlling entities. 

This is a conceptual paper with ideas and concept 
for building a DER ICT architecture. A prototype was 
created including many of the software components 
of the paper, not including the plug ‘n’ play section 
components, except for the application launcher. The 
paper does not follow the IMRaD structure but the 
“Big Book” paper structure (Best Custom Writing, 
2017), as the paper does not present experimental 
results, and this structure, therefore, more accurately 
presents the content of the paper. 

2 MODEL 

The ICT architecture model consists of three layers, 
the driver, data and communication layers (figure 2). 
While only one instance of the data layer and 
communication layer is necessary, multiple drivers 
are needed to talk through multiple types of native 
communication to the unit hardware. It could also be 
the case that one driver talks to the unit hardware of 
multiple units, e.g. one inverter for multiple solar 
panels. 

Figure 2: ICT architecture layers. 

The ICT architecture, therefore, keeps the data 
separated into multiple virtual devices, that each 
represents a logical unit. 

The driver layer is responsible for native 
communication with the unit hardware, converting 

measurements into a generic format, and supplying it 
to the data layer, while also receiving control 
commands from the data layer, and sending them to 
the unit hardware. 

The data layer gets measurements from the driver 
layer, stores it, provides the past, current and 
predicted future measurements to the communication 
layer and relays control commands to the driver layer. 

The communication layer supplies measurements 
from the data layer to controlling entities through 
external network communication and receives control 
commands from the controlling entities and relays 
them to the data layer. It also converts the 
measurements and control commands to 
communication standards.  

3 DRIVER LAYER 

The driver layer is the hardest layer to make generic 
and will always be partially specific to the unit 
hardware. 

The basic idea is to create drivers that are specific 
to the types of native communication required to talk 
to different unit hardware, like Modbus over ethernet, 
and then implement a common interface that talks to 
the data layer, pushing new measurements and 
receiving control commands (figure 3).  

 

Figure 3: Driver hierarchy. 

The native communication specific driver is then 
combined with a configuration file that has a unit 
hardware specific map, which maps the native 
communication addresses to generic value types, 
names, and paths for communication standards. The 
paths are not used by the driver layer, but by the 
communication layer to map the measurements and 
control commands to communication standards.  

The configuration file with the unit hardware 
specific mappings should be in a format which is 
human-readable and can be deserialized, like XML, 
JSON or YAML (Listing 1).  
The configuration file should also contain native 
communication information, like the serial port 
number and baud rate, unit hardware information like 
the maximum polling interval and maximum current, 

SMARTGREENS 2018 - 7th International Conference on Smart Cities and Green ICT Systems

200



and transformation information like the scaling and 
offset of measurements. 

Listing 1: Example of a configuration file in XML. 

Essentially the driver layer exchanges bytes with 
the unit hardware converts the bytes using the 
configuration file map, and exchanges measurements 
and control commands with the data layer (figure 4).  

Figure 4: Driver translation example.

4 DATA LAYER 

The data layer has three components for historical 
data, real-time data and data predictions, which are 
responsible for the past, current and future 
measurements respectively (figure 5).   

 

Figure 5: Data layer components. 

The historical component has a local data store 
(e.g. database) that persistently stores the 
measurements it receives from the driver, and then 
provides them to the communication layer, on 
request. 

The real-time component keeps current 
measurements from the driver available for quick 
access, by storing them in memory, and relays them 
to the communication layer, so they can be sent to 
subscribers. It also relays control commands to the 
driver layer from the communication layer. 

The predictions component uses data from the 
historical component and possible a meteorological 
station (which if it is external, requires retrieval of 
measurements through the communication layer), to 
provide predictions for future measurements. 

The prediction uses machine learning to train on 
the historical data, to predict the future measurements 
of the unit hardware, and should take the historical 
and future metrological measurements into account 
for weather dependent DERs. It should also take 
control commands in the form of schedules into 
account. 

For Smart Grid research laboratories and other 
experimental setups, the prediction could be used to 
simulate the unit hardware, if historical data is 
available.  

5 COMMUNICATION LAYER 

The communication layer consists of a standards 
translation component that converts the data to 
communication standards and passes it on to a 
serialization component that converts the data to a 
format that can be transmitted over a network, which 
is what the middleware component does.  

Additionally, a discovery service component 
provides discovery and negotiation mechanisms, and 
the administration interface component allows the 
owner and technicians to control and configure the 
DER (figure 6).  

Figure 6: Communication layer components. 

5.1 Standards Translation 

The standards translation component translates the 
data from the generic representation to the format of 
a communication standard, like the IEC 61850 
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(Machiewicz , 2006), OpenADR (McParland , 2011) 
or another future standard (figure 7). 

 

Figure 7: Standards translation hierarchy. 

The standards translation component is 
independent of the data layer to keep the data layer 
from being tied to a particular communication 
standard while enabling the DER to communicate 
with controlling entities using multiple 
communication standard formats. 

The reason multiple communication standards 
must be used is because no one of them covers all use 
cases. IEC 61850 describes the unit hardware by 
physical components which is good for diagnostics, 
while OpenADR describes it by the services it 
provides, without providing a specific data model, 
which is good for ancillary services like voltage 
control and load shifting but still lacks a specific data 
model. 

This requires future standards to describe the 
information missing from these standards. This 
includes capability and requirement descriptions, 
which are part of the ICT architecture data model. 

Figure 8 shows how the generic representation of 
the battery current is translated to an IEC 61850 
ZBAT battery description, and how an IEC 61850 
DSCH active power schedule is converted to a 
generic representation.  

Figure 8: Standards translation example.

5.2 Serialization 

The serialization component converts the data from 
the memory representation of the communication 
standard format to a string or binary format, that can 
be transmitted over a network (figure 9). 

Figure 9: Serialization example. 

The serialization format and library used, strongly 
affects the performance of the external 
communication to the controlling entities, and 
depends on the unit hardware and data connection 
(figure 10). 

 

Figure 10: Serialization hierarchy. 

The performance and characteristics of a broad 
range of serialization formats and libraries are 
covered in an earlier paper titled “Smart Grid 
Serialization Comparison” (Petersen, 2017), which 
concludes that JSON has better performance than 
XML, while being human-readable, binary serializers 
have better performance than string serializers, and 
ProtoBuf (ProtoStuff), and ProtoStuff have the best 
performance. 

It is, therefore, important to be able to choose the 
right serialization for each use case and have the 
serialization be interchangeable instead of being tied 
into the middleware.  

5.3 Discovery Service 

The discovery service uses a separate communication 
mechanism to communicate with controlling entities 
prior to the establishment of a middleware 
communication channel with better performance. 
This could be an overlay network, that makes internet 
scale network discovery possible.  

The discovery service is responsible for providing 
passive network discovery, service discovery, and 
communication negotiation (figure 11). 
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Figure 11: Discovery service subcomponents. 

The network discovery subcomponent is 
responsible for responding to network discovery 
messages, to allow controlling entities to find the 
DER. 

The service discovery subcomponent acts as a 
proxy for the middleware by being available on a 
fixed predefined port, and by providing the 
middleware ports, allowing middleware to change 
ports, and for middleware to be added. 

The communication negotiation subcomponent 
lets controlling entities pick which middleware, 
serialization, and communication standard will be 
used for the communication.  

5.4 Middleware 

The middleware component enables multiple types of 
middleware that all implement the same middleware 
interface, that enables them to be used 
interchangeably (figure 12). 

 

Figure 12: Middleware hierarchy. 

Different middleware have different throughput 
and latency performance, depending on the 
processing unit and data connection. Therefore, and 
because different controlling entities might support 
different middleware, different middleware should be 
used depending on the use case.  

The details of the differences in performance and 
characteristics for a broad range of middleware is 
covered in an earlier paper titled “Smart Grid 
Communication Middleware Comparison” (Petersen, 
2017), the performance of serialization combined 
with middleware is covered in an earlier paper titled 
“Smart Grid Communication Comparison” (Petersen, 
2017), and the performance of combinations of 
middleware and serialization, with different 
processing units and data connections, is covered in 
an earlier paper titled “Smart Grid Communication 
Infrastructure Comparison” (Petersen, 2017).  

These papers conclude that YAMI4 and ZeroMQ 
have the best combination of performance and 
characteristics, while ICE and WAMP have 
satisfactory performance and characteristics. 
Considerations for the choice of processing units and 
data connections are also covered, but there is not one 
perfect choice. 

The middleware component has four 
subcomponents that work through the middleware, 
the capability discovery, generic interface, access 
control and tracker service (figure 13).  

 

Figure 13: Middleware components. 

5.4.1 Capability Discovery 

The capability discovery subcomponent provides a 
DER component description (IEC 61850), a type 
description, service descriptions (OpenADR), and 
capabilities descriptions (which could, for instance, 
be the flexibility of the DER or how much it can 
change the power frequency).  

5.4.2 Generic Interface 

The generic interface subcomponent provides a set of 
generic interfaces for data acquisition and control, 
which are independent of DER unit hardware.  

5.4.3 Access Control 

Allowing the aggregator to control the DER, requires 
that the owner uses a password printed on the DER to 
log into the UI, and enters an aggregator key, received 
when signing a contract with the aggregator. 

Or by having a centralized system where the DER 
and aggregator register themselves, with a DER key 
being given to the aggregator when the owner signs a 
contract with the aggregator. The key is then retrieved 
by the aggregator from the centralized system and 
given to the DER to authenticate the aggregator. 

The problem gets a lot harder when DERs need to 
cooperate to solve power system issues, such as 
providing voltage control. This requires a distributed 
trust system that helps a DER to decide whether it 
should trust requests from local controllers. 

The problem of who to trust in a distributed 
system is important to solve because of cyber security 
concerns about how a few computers could trick 
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many DERs into believing that they should perform 
actions to help the power grid, while actually 
resulting in the DERs crashing the power grid.  
This is just one of the cyber security concerns that 
must be solved with the rise of the Smart Grid and the 
Internet of Things. 

5.4.4 Tracker Service 

The tracker service broadcasts DER alarm and events 
to subscribing entities, such as aggregators, local 
controllers, visualizations, and auditing entities. This 
could be a solar panel that sends an event, that it has 
now started production because the amount of sun 
irradiation has gotten large enough or a wind turbine 
that sends an alarm message because the rotation 
speed has gotten too fast, because of the wind speed. 

It also keeps a log of previous communication 
requests, in the form of control commands and 
requests for measurements, which it provides to 
external entities.  

5.5 Administration Interface 

The administration interface should provide a 
graphical interface through a browser to the owner, 
which provides statistical measurement information, 
allows the owner to manually control the DER, 
provides access control administration, and allows a 
technician to change the configuration of the DER.  

6 PLUG ‘N’ PLAY 

The aim of a plug ‘n’ play extension to the ICT 
architecture is to have little or no configuration, and 
as little maintenance as possible.  

6.1 Application Launcher 

When the ICT architecture is started, the application 
launcher launches all the fixed components but leaves 
the interchangeable components, the drivers, 
serialization, standards translation, and middleware. 

It then uses the hardware configuration file to 
determine which driver components should be 
launched and does so. 

It then provides the available interchangeable 
components to the discovery service and waits for it 
to relay the requested standards translation, 
serialization, and middleware, and launches them on 
demand, which is a result of the communication 
negotiation performed by the discovery service. 

The application launcher has fixed references to 
the fixed components and uses reflection to get 
references to the interchangeable components. It then 
uses dependency injection to glue the components 
together to the ICT architecture, by sharing the 
references with the components. 

This allows the application launcher to shut down 
components that are not being used, and launch 
components on demand when they are requested.  

6.2 Automatic Configuration 

The simple, but time-consuming way to create 
configuration files is to create them from 
documentation which for the manufacturer might be 
a small expense compared to creating the unit 
hardware, but for a company creating a device to 
connect to any type of DER might make the 
difference between the project being viable or not. 

To avoid spending the time to create a 
configuration file, a piece of software could be 
constructed that uses machine learning and 
measurements from external measurement hardware 
to reverse engineer the unit hardware specific map. 
The external measurement hardware could be a smart 
meter if the power system changes caused by the unit 
can be isolated. 

This would of cause not be capable of mapping 
measurements that cannot be measured externally 
like the temperature of the unit but could create a 
partial map that might be enough for certain power 
system ancillary services. 

This could be taken one step further by having an 
algorithm that cycles through the processing unit 
ports (e.g. serial or ethernet), to determine which are 
connected and then attempt to launch drivers with 
different configuration information, to attempt to 
establish a connection, but this would be a brute force 
approach.  

6.3 Self-Healing 

By having a separation of components, the 
controlling entities should be able to restart the 
software components and could be able to attempt to 
reset the unit hardware, in the event of a problem, by 
initiating a self-healing service. However, this would 
require, that the service mapping is defined in the 
hardware configuration file. 

Self-healing would also allow the controlling 
entities to permanently change the power scaling and 
offset of the system and configuration file. 

Determining how to change the scaling and offset 
would require the controlling entities to have a second 
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source of measurements for the DER, which could be 
a Smart Meter if the effects of the unit can be isolated.  

6.4 Topology Detection 

The idea is to provide information about the power 
system topology to controlling entities, enabling them 
to better solve local power system issues like voltage 
or frequency control. 

The topology detection could be part of the 
controlling entities by comparing measurements of 
multiple DERs to determine their power system 
distance. 

Alternatively, a more active approach could be 
used by having a DER perform slight changes to the 
power system, like changing the frequency a little bit 
and having other DERs attempt to detect the signal, 
showing which DERs are closely connected, like 
echolocation. This approach would use the same 
technology as Power Line Communication and would 
have to be part of the DERs.  

7 CONCLUSIONS 

An ICT architecture with the components described 
in the paper, along with the plug ‘n’ play extensions, 
would enable controlling entities to automatically 
control DERs, with little to no work done to scale to 
a potentially unlimited number DER with different 
unit hardware, also requiring little to no maintenance 
because software problems and hardware calibration 
problems. 

Future work should be done on network discovery 
that works over the internet and is tailored for Smart 
Grid applications, by taking unit location and 
characteristics into account. 

Current communication standards should be 
extended to describe unit capabilities, and predefined 
data models for service descriptions, as oppose to the 
current version of OpenADR. 

In addition to the many cyber security challenges 
that need to be solved for the Internet of Things, a 
mechanism for managing trust between computers in 
a distributed system is essential for the future Smart 
Grid. 
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