
MOCCAA: A Delta-synchronized and Adaptable
Mobile Cloud Computing Framework

Harun Baraki, Corvin Schwarzbach, Malte Fax and Kurt Geihs
Distributed Systems Group, University of Kassel, Wilhelmshöher Allee 73, Kassel, Germany

Keywords: Mobile Cloud Computing, Delta Synchronization, Resource Management System.

Abstract: Mobile Cloud Computing (MCC) requires an infrastructure that is merging the capabilities of resource-
constrained but mobile and context-aware devices with that of immovable but powerful resources in the cloud.
Application execution shall be boosted and battery consumption reduced. However, a solution’s practicabi-
lity is only ensured, if the provided tools, environment and framework themselves are performant too and
if developers are able to adopt, extend and apply it easily. In this light, we introduce our comprehensive
and extendable framework MOCCAA (MObile Cloud Computing AdaptAble) and demonstrate its effective-
ness. Its performance gain is mainly achieved through minimized monitoring efforts for resource consumption
prediction, scalable and location-aware resource discovery and management, and, in particular, through our
graph-based delta synchronization of local and remote object states. This allows us to reduce synchronization
costs significantly and improve quality dimensions such as latency and bandwidth consumption.

1 INTRODUCTION

Companies utilize the computational power of cloud
resources, for example, to speed up their processing,
to compensate peaks under high loads or to reduce
costs by consumption-based billing and simplified
maintainability. Any such support by Cloud Compu-
ting would also extend the capabilities of resource-
constrained mobile devices. While mobile devices
have to avoid energy and computational intensive ap-
plications, clouds are designed for these particular use
cases.

Although at first glance both Mobile Computing
and Cloud Computing fit perfectly together, many
challenges have to be overcome to trigger a wide and
straightforward use of MCC. The core questions in
MCC are what to offload (which part of a mobile ap-
plication) and how, when and where to execute the
resource-intensive part remotely. In the last few ye-
ars, several approaches have been developed and exa-
mined in the research community. Most of them deal
with one or two aspects of MCC, but do not consi-
der the downsides and effects for the other dimensi-
ons. Approaches like (Chun et al., 2011) and (Yang
et al., 2014) relieve the developer by deciding auto-
nomously what to offload, but need synchronized Vir-
tual Machine (VM) images and adapted operating sy-
stems. Other concepts like (Kemp et al., 2012) and

(Giurgiu et al., 2009) bear on the developer’s expe-
rience and extensive code adaptations to be able to
offload application parts. The approach of Ou et al.
(Ou et al., 2006) calculates precisely what to offload
where, but does not consider the high monitoring and
synchronization costs. Further related works are dis-
cussed in detail in section 8. The key point is that a
comprehensive solution for MCC must handle all core
questions mentioned above simultaneously. Nonethe-
less, the solution has to be applicable to a wide range
of mobile applications and should neither slow down
the development of applications considerably nor af-
fect their usage by the end user. The objective of our
work is to provide a flexible but also comprehensive
and comprehensible solution where each of the follo-
wing parts can be coordinated easily by the whole fra-
mework and where each part contributes to the overall
efficiency of the system:

• DRMI: An asynchronous Remote Method Invoca-
tion that applies our performant delta synchroni-
zation to ensure state consistency between client
and server.

• InspectA: A tool that helps developers to detect
resource-intensive methods, to create prediction
functions for their resource consumption and to
minimize monitoring costs by extracting the most
relevant features for prediction.

136
Baraki, H., Schwarzbach, C., Fax, M. and Geihs, K.
MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework.
DOI: 10.5220/0006701101360147
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 136-147
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



• MOCCAA-RMS: A self-configuring, scalable and
distributed resource management and discovery
system.

• MOCCAA annotations: Android/Java annotations
that enable applications, for instance, to execute
methods through DRMI on one or more remote
resources found by MOCCAA-RMS whenever a
prediction function of InspectA recommends it.
On the one hand, straightforward mechanisms and

tools shall allow developers to apply MCC also for
small and simple scenarios. However, these mecha-
nisms can be combined to implement more complex
scenarios. On the other hand, our most basic mecha-
nism, an asynchronous RMI invocation, shall be as
fast and compact as possible, especially for typical
MCC payloads, that is, large messages that are pro-
cessed mutually on client and server side. Examples
of use illustrate the course of action and prove the
practicability of our solution. In addition, our expe-
riments show a significant reduction of latency and
message size compared to the default Java RMI.

The remainder of this paper is organized as fol-
lows. Section 2 provides first an overview of our fra-
mework and introduces each component briefly. In-
spectA, MOCCAA-RMS, the MOCCAA annotations
and DRMI are explained in Section 3 to 6. Section 7
presents our experiments and their results. Section 8
discusses relevant and related works. Section 9 will
conclude this work with a summary and ongoing and
future work.

2 FRAMEWORK OVERVIEW

A fundamental requirement in MCC is that applicati-
ons shall also be executable without a network con-
nection. In general, this implies that the whole ap-
plication is installed on the mobile device. In case
sufficient remote resources are accessible, parts of an
application are deployed and executed remotely. The
granularity of these parts varies depending on the ap-
proach. Our approach works at the level of method
and object granularity.

At design time the developer has to decide which
method and object can be offloaded. Our tool In-
spectA will help him to detect objects and methods
that are very resource consuming and that do not have
cyclic dependencies on their invoking methods. An
unfavorable constellation would be, for instance, a
method A.a1() calling a method B.b1() while B.b1()
itself would call, maybe indirectly, method A.a1(). In
that case, B.b1() should only be executed remotely
when A.a1() is offloaded too. Section 3 presents In-
spectA in detail.

Having established the candidate objects and met-
hods, the developer has to annotate them as shown
in Listing 1 and 2. The annotation @InjectOffloa-
dable is used to mark the concrete object reference.
In this way, our framework is injecting a proxy that
holds an instance of the class referred to. Dependency
Injection is well-known to most developers and does
not impose a high burden on them. As demonstrated
in Listing 1, the objects’ methods can be invoked as
usual and do not need any special treatment.

public class MyClass {

@InjectOffloadable
ComplexCalc complexCalc;

public int m1(int p1, String p2) {
complexCalc.setVar1(p2);
complexCalc.doComplexCalc(p1);
...
System.out.print(complexCalc.

getVar1());
}

}

Listing 1: Annotating the offloadable object.

The injection is implemented through bytecode
manipulation and carried out by means of the Javas-
sist library (Chiba, 1998). The injected proxy inter-
cepts all method invocations on the instantiated ob-
ject and decides whether a local or a remote execution
shall take place. The default behaviour proceeds with
a local execution. In contrast, invocations of methods,
which are labelled with the @Offload annotation, lead
to further analyses that evaluate the availability of ap-
plicable remote resources given through the @Offlo-
adServers annotation.

@Offloadable
@OffloadServers({ipAdress1, ipAdress2})
public class ComplexCalc {

String var1;

@Offload
public void doComplexCalc(int p1) {

...
}
...

}

Listing 2: Annotating the class and the method.

This behaviour can be adapted through a plugin
architecture. Adding the annotation @OffloadEva-
luator(...) to an @Offload method, a class imple-
menting our Evaluator interface can be specified. The

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

137



Evaluator will then be instantiated by the proxy and
used whenever the @Offload method is invoked. The
method parameters and the proxied object are handed
over to the Evaluator so that it is capable to decide
with the aid of the current content and size of the para-
meters and object whether a local or remote execution
are favorable.

Assuming that the server part of our framework is
installed on the addressed servers, this configuration
is already sufficient to employ basic MCC functiona-
lity. Whenever a method is called remotely, the actual
proxied object will be synchronized with the server
side. The first time, the whole object graph will be
transferred. After executing the method, the delta will
be transferred back and applied to the object graph on
client side. A second method invocation on the same
object would just transfer the delta from client to ser-
ver and subsequently call the method. Section 6 ex-
plains further details.

Although this configuration provides basic MCC
functionality, it evinces a lack of flexibility when it
comes to the distribution of workload. Servers might
be well utilized, suffer from bad communication links
or even be down so that alternative servers have to be
employed. Section 4 extends therefore our framework
with server monitoring and distributed registries. In
addition, many scenarios could benefit from a parallel
processing of the workload on one or multiple servers.
To support this, we introduce in Section 5 additional
annotations that allow developers to split tasks and
deploy them on multiple servers and aggregate the re-
sults on one server or one device. Flexibility is also
demanded when it comes to the consideration of devi-
ces with different or varying resource capacities. The
decision to offload may depend on the current perfor-
mance of the mobile device. Section 3, in particular
section 3.2, explains how the resource consumption
of methods can be estimated in advance and demon-
strates with the aid of an Evaluator example its use in
this sense.

3 InspectA

3.1 Offline Analysis

The InspectA tool helps developers in analyzing their
applications in a fine granular way. The current ver-
sion works for Java 1.8 and Android SDK versions
greater than or equal to 23 (Android 6.0). Starting In-
spectA on the developer’s computer, it will connect
with the Android Debug Bridge (adb). This allows
him to display running applications and their overall
resource consumption within a given time frame. The

Figure 1: Application information.

Figure 2: Monitor view listing all running applications and
their overall resource consumption in a given time frame.

initial views are depicted in Figure 1 and 2. Infor-
mation such as CPU and memory consumption can
be listed, but also details like obtained and demanded
permissions and package specifics.

To obtain more detailed information, the develo-
per has to include our InspectA.aar archive and our
Gradle commands into the build process. These start
an AspectJ compiler that weaves Aspects around the
applications’ methods. After each method the current
thread’s CPU time, the memory usage, the battery sta-
tus and the execution time are recorded. During the
application’s execution a dump is created on the mo-
bile device that can be imported into InspectA. Figure
3 shows the detailed view with method granularity.
The information can now be sorted in descending or-
der so that methods with high memory, CPU, battery
or time consumption can be detected easily. Indeed,
Android provides so called tracers for battery, me-
mory and CPU. However, the dumps are created se-
parately for each dimension and the analysis requires
much experience.

Sector 4 in Figure 3 displays the invocation path
of the monitored methods. All information, inclu-
ding the invocation path and frequency, are stored as a
GraphML file that can be further analyzed. Listing 3
presents an excerpt of a GraphML file that is showing
a single invocation of MainActivity.mapGUI by Mai-
nActivity.onCreate. Section 3.2 indicates how this file
can be utilized to generate prediction functions that

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

138



estimate the future resource consumption by means
of certain monitoring points. Such functions can be
applied in Evaluators as decision-making support.

<?xml version ="1.0" encoding="UTF -8"
standalone="no"?>

<graphml xmlns="..." ...>
<graph id="de.iuvosoft.android.

inspecta" edgedefault="directed">
...
<key id="battery" for="node" attr.name

="battery" attr.type="double"/>
<key id="ram" for="node" attr.name="

ram" attr.type="double"/>
<key id="cpu" for="node" attr.name="

cpu" attr.type="long"/>
<graph id="0" edgedefault="directed">
<data key="name">de.iuvosoft.android.

inspecta.testapp.activity.
MainActivity</data >

<node id="1">
<data key="name">onCreate</data >
<data key="counter">1</data >
<data key="time">347366303</data >
<data key="battery">-1.0</data >
<data key="ram">5.0190162658</data >
<data key="cpu">160813228</data >
</node >
<node id="2">
<data key="name">mapGUI</data >
<data key="counter">1</data >
<data key="time">110729</data >
<data key="battery">-1.0</data >
<data key="ram">0.0</data >
<data key="cpu">102188</data >
</node >
...
</graph >
...
<edge id="4" source="1" target="2"/>
...
</graph >
</graphml >

Listing 3: GraphML file generated by InspectA.

The final step at this stage is to annotate the
resource-intensive methods and the associated ob-
jects. The developer may apply now a check for cy-
clic invocations between the invoking method and the
remote or annotated method. For this purpose, we
do not investigate the previously created GraphML
dump since it is very likely that it does not cover all
possible execution paths. Instead, a System Depen-
dence Graph is generated by means of the static code.
Using the JOANA library (Graf et al., 2013), Android
as well as Java applications can be analyzed. The JO-

Figure 3: Invocation graph and method details. Battery con-
sumption is set to -1 in case the mobile device is connected
to the power supply.

ANA API allows us to query whether the invoking
method is reachable by the invoked method. The de-
veloper will be informed in case a breach is detected.
Adapting and restructuring the code is recommended
then.

3.2 Resource Estimation

In a separate work, we develop and examine different
prediction techniques for our Evaluators. As the Eva-
luators are part of the framework and its utilization,
we discuss and present the general procedure briefly
in this section.

A straightforward method to determine the
resource-intensive parts of an application would be to
take the average or maximum resource consumption
of each method during offline tests and mark those
with a high consumption as potential candidates for
offloading. Such a pure offline profiling is used, e.g.
in (Giurgiu et al., 2009) and (Chun et al., 2011), and
was also applied in the previous section. The ab-
sence of online monitoring costs is its strength, the
lack of flexibility required for different devices and
scenarios its drawback. Other approaches ask the de-
velopers to mark the resource-intensive parts and the
parts that have to be monitored (Cuervo et al., 2010;
Kemp et al., 2012) or monitor each aspect of the run-
ning application (Ou et al., 2006). However, moni-
toring quality dimensions like CPU utilization, me-
mory consumption and battery usage requires itself a
significant amount of resources and should be avoi-
ded during runtime. In addition, operating systems
may deny or not provide such information during run-
time. This is also true for Android 7 and upper ver-
sions which refuse access to such information due to
security reasons. The following approach tries to mi-

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

139



nimize online monitoring costs and simultaneously to
retain a good estimation of the future resource de-
mands of annotated methods.

While InspectA was weaving aspects into the de-
veloper’s code to monitor, amongst others, the CPU
time and memory consumption of each method, now
the analysis during design time obtains the size of
passed parameters too. In case of primitive data ty-
pes such as Integer and Double, the value is taken
as size. In case of arrays and collections, the num-
ber of contained elements is recorded. The developer
should then run his application with various input data
so that variable execution times are measured. Since
testing should be anyway part of the application de-
velopment, this process step can also be included in
JUnit tests.

The order of method invocations is recorded for
each thread so that graphs are obtained. The edges of
a graph represent the communication between met-
hods, in particular, the frequency of invocations and
the parameters and their sizes. Methods are conside-
red as vertices annotated with their consumed time,
battery, memory and CPU time.

Subsequently, a Correlation-based Feature Se-
lection (CFS) (Hall, 1999) is applied that is intended
for finding relevant monitoring points whose featu-
res, particularly parameter sizes and execution times
of methods, correlate with the resource consumption
of an annotated resource-intensive method that is in-
voked later in the course of execution. It is possible
that a high number of methods exhibits a strong cor-
relation which would correspondingly lead to a high
number of monitoring points. However, using CFS,
features that correlate with each other, and, hence, are
redundant information, are penalized. This leads to a
reduced set of potential monitoring points.

Additionally, we identify features that are suitable
to predict the resource consumption of multiple anno-
tated methods. Figure 4 depicts a typical execution
path. Method 1 is invoking successively methods 2
to 5. The latter invokes methods 6 and 7. Assuming
that method 4 and 7 are annotated, method 2 and 3
and the parameters of method 1 (method 1 cannot be
considered completely as it is finished after method
4) come into question to predict methods 4 resource
consumption. Accordingly, method 2, 3, 4 and 6 and
the parameters of method 1 and 5 can be considered
for method 7. By combining a Wrapper feature sub-
set selection (Kohavi and John, 1997) with CFS, we
reward those monitoring points that can serve as fe-
ature for various annotated methods. In the example
of Figure 4, method 2 to 3 and the parameters of met-
hod 1 are considered preferably as they build the path
intersection for method 4 and 7.

6812.07.2017 A Framework for Code Offloading in MCC

1

3 42 5

Method

Aspect

Input parameter
6 7

Figure 4: Monitoring method 1, 2 or 3 and their inputs may
be sufficient for estimating the resource consumption of fol-
lowing methods 4 and 7.

To further reduce monitoring costs, we restrict the
feature selection by involving exclusively the met-
hods’ execution times and parameter sizes. Other di-
mensions like CPU times and memory and battery
consumption are ignored. However, during design
time we include the latter dimensions for annotated
methods. The target is to associate them with exe-
cution times and parameter sizes of previously called
methods.

Therefore, we apply finally prediction techniques
like multivariate adaptive regression splines (Fried-
man, 1991) and neural networks. Being aware of the
relevant features, for each annotated method a mo-
del is built at design time. In case of regression spli-
nes, the determined basis functions of a regression
function will retain their form during runtime. Ho-
wever, since different mobile devices may behave dif-
ferently, the weights and knots of the basis functions
are adapted during runtime if significant discrepan-
cies occur. A detailed description including an eva-
luation of different prediction techniques is part of a
parallel work.

Lastly, an Evaluator can call the prediction functi-
ons to receive the estimated resource consumption of
a given annotated method. This information cannot
only be used for deciding about the offloading step,
but also to find suitable servers. The following section
provides further details.

4 MOCCAA-RMS

Knowing the resource demands of the client, a mat-
ching server has to be searched that can process the
user request. Offloading shall not only reduce the
energy consumption of the mobile device but should
also reduce the overall response time of the applica-
tion. To achieve that, the following aspects and requi-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

140



rements have to be considered.
A fast resource discovery requires registries that

have a low time and message complexity to find suit-
able servers. What is even more important, is that
servers supporting the application’s execution are as
close as possible to the client. While the resource dis-
covery is just needed at the beginning, an intensive
communication may take place between the client and
its offloaded part on the discovered server.

A further important requirement is the ease of use
for app developers. A reliable Resource Management
System that automatically configures and monitors
servers and registries and allocates tasks is desirable.
Furthermore, it should scale well whenever more re-
sources are added to the system.

Assuming that a developer starts with one server,
mostly due to testing or during design time, he has
first to install our framework on it. In brief, the fra-
mework encompasses firstly a Java application that is
loading Java archives and invoking methods on them
received through our Delta-synchronized RMI. It is
accessible through REST interfaces for application
clients (e.g. to search servers and upload jars) and ot-
her collaborating servers (e.g. to search for nearby re-
gistries and configuration information). Furthermore,
it monitors currently running Java applications and
the available and used resources of the local system
by making use of the SIGAR library 1. JMS (Java
Messaging Service) is used to receive and send aggre-
gated monitoring data from and to other servers. De-
tailed monitoring data is stored locally in MongoDB2,
a NoSQL database.

If the developer wants to extend the system by ad-
ding a further server, he just has to install the same
framework and setting the IP address and credentials
of the first server in a configuration file. This is also
true for any further server so that a VM image can
be created and deployed to newly added servers. The
following sections explain how the overall system is
designed and how it is growing, monitoring and con-
figuring itself automatically.

The first server is also considered as the root
of our resource management and discovery system
MOCCAA-RMS. The developer can change this by
adapting a configuration file. The servers, which may
serve as working nodes as well as registries that redi-
rect to other nodes, are structured hierarchically. New
servers entering the system are asking through REST
the root node for the closest registry. This is determi-
ned through an IP to Geo localization. The selected
registry may further redirect to child registries by the
same procedure. The finally chosen registry can re-

1http://support.hyperic.com/display/SIGAR/Home
2https://www.mongodb.com

1217.02.2016 A Framework for Code Offloading in MCC

Own Approach – Step 3 – The System is growing and growing

synchronized

Figure 5: A user smartphone making use of the hierarchy
of registries. Orange nodes represent leaf registries, grey
nodes servers that are monitored.

Figure 6: Registry (System Information) with one child (Sy-
stem Information Aggregated).

ject if it cannot handle more servers due to bandwidth,
processing power or other constraints. In that case,
depending on the capacity of the upper registries, a
new level or a new sibling registry will be created.
For this purpose, a clustering will rearrange the as-
signment of nodes to their registries, taking into ac-
count the newly-added server as a registry, and adap-
ting the registries’ databases. Our current implemen-
tation is therefore using the k-medoids clustering al-
gorithm (Kaufman and Rousseeuw, 2009).

Registries have to know about the free resources
of their subsequent nodes to be able to assign a user
request to a server. However, monitoring all servers
periodically and reporting to registries could over-
strain bandwidth and upper level nodes. Message and
time complexity would rise considerably with a gro-
wing number of servers. In case of MOCCAA-RMS,

Figure 7: Server details on a map.

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

141



only the second last nodes, i.e. the parents of the leaf
nodes, are informed about the status of the servers.
These registries are highlighted in orange in Figure 5.
As soon as a leaf node is assigned to a user request,
the orange parent node is subtracting the estimated
resource consumption from the servers current status
vector available in the registries database (e.g. me-
mory, CPU). The resulting vector stands for the re-
maining free resources on the server. If the require-
ments profile is changing during the interaction of the
client with the server or when the client finished, the
server will report the modification to the parent node.
Nonetheless, servers also send through JMS every mi-
nute a heartbeat message and aggregated monitoring
data to their parent nodes to inform them about their
reachability and to correct estimated values.

The parent registries (the red node in Figure 5) of
the second last nodes (orange nodes) and upper level
registries (black nodes in Figure 5) only get an aggre-
gated summary (vector) of the free resources of their
child nodes. In the example of Figure 5 that would be
the aggregated values of the three orange nodes that
serve as registries for the grey nodes. Updates are
only sent when major changes with respect to the last
report occur. This avoids a higher number of messa-
ges at higher levels of the hierarchy and allows load
balancing.

Due to reliability reasons, sibling nodes know
each others IP addresses and the grandparents one au-
tomatically through their parent node. Whenever a
parent node is failing or removed, child nodes elect a
new parent node.

A client is usually querying the last contacted lo-
cal registry, if he did not move more than a configu-
red distance and if it is not the first request, other-
wise a close registry has to be found through upper
level registries first. The chain of registries between
root node and leaf node are also reported to the client.
Listing 4 shows the parameters that are sent by the
client to a registry’s REST interface. If a local regi-
stry does not find any suitable servers, the request is
redirected to the upper registry. This registry knows
roughly about the situation of his child registries and
their succeeding servers. It can be thought of as a
graph whose edges are annotated with flow capaci-
ties. The request will then be redirected to a registry
with servers that are underutilized.

Instead of listing potential servers with @Offlo-
adServers, the developer has to indicate the root regi-
stry’s address through @OffloadRegistries in the ap-
plication. In case redundant root registries are availa-
ble, all of them can be implied. Our framework offers
additionally a Java Web Archive that can be deployed
on an application server. It accesses the root node

and traverses step by step the child registries. It crea-
tes an overview for the developer or an administrator
and informs them about servers that are down or not
accessible anymore. Figure 6 shows a root node with
one child node. A map view is provided too (Figure
7). It should be noted, that a registry is considering its
own free resources as available for clients too.

@GET
@Path("server_search")
@Produces(MediaType.APPLICATION_JSON)
public ServerInfo getServer (
@QueryParam("app_name") String

app_name ,
@QueryParam("app_version") String

app_version ,
@QueryParam("latitude") double lat,
@QueryParam("longitude") double lon,
@QueryParam("ram") long ram,
@QueryParam("cpu") long cpu,
@QueryParam("message_size") long

message_size) {...}

Listing 4: Method signature of the registries search
method.

MOCCAA-RMS is tailored to use cases where
the consumption can be roughly estimated. This al-
lows an efficient monitoring and discovery of servers.
A configuration by the developer or administrator is
only needed when default values and thresholds shall
be changed.

5 PARALLEL EXECUTION

While a single @Offload annotation supports the re-
mote execution of a method on a server, a chain of
@Offload methods allows the server to offload the re-
ceived object again and execute the next method on
another server.

Listing 5 shows two methods doComplexCalc and
doComplexParallelCalc. While doComplexCalc is
executed on the server with the address ipAddress1,
it delegates the execution of doComplexParallelCalc
to another server. The annotation @Splittable effects
that the array is splitted into multiple arrays. Hence,
the method doComplexParallelCalc is invoked on the
servers with the addresses ipAddress2, ipAddress3,
ipAddress4, but each of them receiving another part of
the array. Each of them could store its results in anot-
her field or another part of an array. The implemen-
tation makes use of the OpenHFT Chronicle Engine 3

to distribute the tasks. Our annotation is experimental

3https://github.com/OpenHFT/Chronicle-Engine

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

142



as there is no check for side effects. The developer
should be aware of the Bernstein conditions listed in
(Bernstein, 1966) and, in specific cases, further condi-
tions mentioned in (Chaumette et al., 2002). In future,
further patterns will be worked out. Additionally, the
JOANA library shall be involved to support develo-
pers in detecting side effects.

@Offloadable
public class ComplexCalc {

String Name;
int[] resultArray;

@Offload
@OffloadServers(ipAddress1)
public void doComplexCalc(int p1,

URL[] imgURLs) {
...
doComplexParallelCalc(imgURLs , p2)

;
...

}

@Offload
@OffloadServers({ipAddress2,
ipAddress3, ipAddress4 })
public void doComplexParallelCalc(

@Splittable URL[] imgURLs , int p2)
{
...

}
}

Listing 5: Chain of @Offload and @Splittable.

6 DRMI

In the scope of this work, the problem of synchroni-
zing object graphs between clients and servers is ad-
dressed too. The related work known so far transfers
the whole state or, at least, the state that is addressed
on client and server side. Our goal is to communicate
only the differences between the object states located
at the client and the server. That means, for instance,
that after the client has sent the required state to the
server, the server will subsequently return the delta
between the new and the old state after executing a
method on it. In a following request, the client may
send itself just the delta to the server.

The first step is to extend the relevant classes with
an identification field offloadId that enables us to as-
sign objects unique IDs during runtime. Again, this
step is done through bytecode manipulation. Unique
IDs are essential since objects may, for instance, be

6812.07.2017 A Framework for Code Offloading in MCC

1

3 42 5

Method

Aspect

Input parameter
6 7

1

32

0 1

42

0

3

Figure 8: Object 3 replaced on server, but still referenced
by object 0 at client side.

deleted while at the same place a new, similar one
can be created. Figure 8 illustrates this scenario. The
white object graph is transferred to a server. The in-
voked method replaces object 3 by a new object 4.
Synchronizing back the object graph, the algorithm
has to detect whether to replace or to add object 4.
Algorithms like rsync or xdelta (Tridgell, 1999) that
work on streams and are thought for file systems can-
not detect such deltas.

During runtime, the proxy intercepts calls on
@Offload methods. If the Evaluator decides to exe-
cute remotely, the proxy serializes initially the object
graph by first numbering the unnumbered objects and
applying then the Kryo serialization library 4. The be-
nefit of Kryo is that classes do not need to implement
Java’s Serializable interface and that it works on An-
droid too. Furthermore, it compresses the serialized
file more efficiently (Zhao et al., 2016).

The method parameters are also serialized and
transferred together with the object graph and the
method name. However, parameters are passed by va-
lue, the object and its member variables behave like
passed-by-reference. In this way, the developer can
decide what shall be synchronized back and what not.

After the remote method invocation, the proxy re-
turns immediately since we apply an asynchronous
RMI. The client application can continue its execu-
tion as long as it is not invoking any further methods
on the object. In the latter case, for example after in-
voking a getter on the object, the proxy would block
until the object is synchronized back. In case a time-
out is reached or the communication link is broken,
our proxy invokes the local method.

We decided on an asynchronous RMI as we ex-
pect high workloads and long execution times. No-
netheless, the developer should take into account not
to access any objects from the transferred object graph
as long as it is not synchronized back. For this pur-
pose, he should invoke a method such as a getter on
the object so that the proxy blocks until synchroniza-
tion is finished, or access the object graph in general
through methods of the annotated object as it is prox-
ied.

4https://github.com/EsotericSoftware/kryo

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

143



Table 1: Experiment 1 - Locally executed RMI.

Message sizes in Bytes Roundtrip time in ms
Number of

objects
Submitted

(DRMI)
Received
(DRMI)

Submitted
(Java RMI)

Received
(Java RMI) DRMI Java RMI

10 78 35 241 241 5.0 2.5
100 708 35 1411 1411 6.2 4.4
1000 7009 35 13111 13111 7.0 21.4
10000 70009 35 130111 130111 30.4 62.3
20000 140010 35 260111 260111 35.2 72.3
30000 210010 35 390111 390111 52.9 343.0

On server side, the framework deserializes the ob-
ject graph and parameters and invokes through Java
Reflection the method with the given parameters. A
copy of the received original graph is kept in memory.
After method execution a depth-first search is compa-
ring the changed and the original graph and noting
down all differences by recording the concerned ob-
ject ID, the field ID (field position), the new value (ID
in case of reference), and a code that is describing the
required command, for example, resizing an array, as-
signing a value, adding or removing an element from
a collection. Due to unique IDs cyclic references do
not pose a problem during the graph comparison. Ne-
wly added objects are assigned IDs from a new range
of successive IDs that does not intersect with that of
the client. The recorded deltas and the compressed
and new objects are transferred back by invoking a
callback function on the client. On client side, the
commands are applied through reflection.

Table 2: Results of experiment 2 with a bandwidth of 10
MBit/s for upload and 42 MBit/s for download.

Number of objects
in object graph

Roundtrip time in ms
DRMI Java RMI

10 35.5 32.4
100 36.7 34.9
1000 39.3 56.0
10000 65.4 116.1
20000 71.9 154.8
30000 84.2 448.4

On client side, the previous serialization file is re-
placed by the serialization of the updated and syn-
chronized version of the object graph. This allows
the client to transfer himself only the deltas to the ser-
ver when invoking a remote method on the object a
second time.

The following section compares Java RMI and our
Delta-synchronized RMI (DRMI) and discusses their
advantages and disadvantages.

7 EVALUATION

The first experiment is carried out on a local compu-
ter. Both the client and the server are running on the
same device, a notebook with 8 GB of memory, an In-
tel i5 processor with two 2.6 GHz cores and Java 1.8.
All used libraries, including Kryo, Javassist, AspectJ
and our proxies and Evaluators can run on Java 1.8 as
well as on Android 6 and upper. This allows an appli-
cation for Cloud Computing as well as Mobile Cloud
Computing. However, since we compared our appro-
ach with Java RMI, which is not suited for Android,
we restricted the following experiments to Java VMs.

For the experiment, a class Node is implemented.
It has one Integer field and two Node references so
that a tree was created. On the root node, we invoked
a method with an Integer parameter that changed the
Integer field of a random successor node. The met-
hod was executed on the server which required first
the whole object graph. In case of DRMI, the delta
was returned then after method execution and applied
to the client’s object graph. In case of Java RMI, the
whole object graph had to be returned to stay synchro-
nized. Each value in Table 1 shows the average of 100
runs.

The local execution shows the time overhead in-
dependent of the used network and bandwidth. The
object graphs with 10 and 100 nodes are processed
and synchronized faster with Java RMI. DRMI has
first to create copies of the received object graphs and
traverses the object graph to detect the changes. At a
certain level, copying and traversing the object graph
with DRMI is faster then serializing with Java RMI.
The test with 1000 nodes shows that DRMI performs
faster than Java RMI when the graph gets more com-
plex and the changes are small. Since only one Inte-
ger is changed, the serialization costs for the delta are
negligible then.

Regarding the message size, the response of
DRMI retains its size as expected since all test sce-
narios change one Integer value. Hence, the new Inte-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

144



Table 3: Experiment 3 - Locally executed. 10% of all Integers are updated.

Message sizes in Bytes Roundtrip time in ms
Number of

objects
Number of

deltas
Submitted

(DRMI)
Received
(DRMI)

Submitted
(Java RMI)

Received
(Java RMI) DRMI Java RMI

10 1 78 35 241 241 5.3 2.4
100 10 708 116 1411 1411 6.1 4.3
1000 100 7009 963 13111 13111 8.3 21.8
10000 1000 70009 9964 130111 130111 37.0 63.5
20000 2000 140010 19964 260111 260111 46.7 74.2
30000 3000 210010 29964 390111 390111 61.3 339.3

ger value, an assign command, the field position and
the object ID and header information are returned.
Compared with Java RMI, the request message size
is smaller too due to a compression with Kryo.

Repeating the same experiment over a network
with a client upload rate of 10 MBit/s and a download
rate of 42 MBit/s, we obtain the results listed in Table
2. The message size stays the same like in experiment
1. The average ping time between client and server
were 30 ms. Compared to Java RMI, DRMI has a lo-
wer increase in roundtrip times due to small message
sizes. Restricting the bandwidth further would be in
favour of DRMI.

Experiment 3 complies with the conditions of ex-
periment 1 except that 10% of all Integer values are
changed. Thus, the number of deltas is increased. Ta-
ble 3 shows that the response message size grows and
that it almost reaches 1/10 of the Java RMI message
sizes. Each delta requires around 10 Bytes. As ex-
pected, the roundtrip time also increases slightly. Ho-
wever, the performance does not decrease much.

The experiments lead to the conclusion that an op-
tion should be provided for developers, if they want
to deactivate delta calculations and always transfer
the whole object graph. This is recommended whe-
never message sizes are a few bytes to kilobytes or
whenever most elements of the object graph are chan-
ged. In contrast, determining and transferring deltas is
highly suitable when few modifications are expected
and message sizes are a few kilobytes, megabytes or
bigger. In addition, it can also be preferred when
clients often invoke methods on the same object.

8 RELATED WORK

The different proposed methods in the area of MCC
can be distinguished firstly with respect to the gra-
nularity and structure of the partitions. Their design
affects largely the flexibility and efficiency of the of-
floading mechanism and the layout of the correspon-
ding execution environment of the cloud counterpart.

Furthermore, it may also have an impact on the requi-
rements the developer has to adhere when developing
the mobile application. In this view, we will discuss
frequently cited related works in the following and fo-
cus particularly on their partitioning approach, their
synchronization mechanism, and the overhead for de-
velopers and users.

Chun et al. (Chun et al., 2011) employ device
clones running as applications-layer virtual machines
to enable an offloading approach that does not re-
quire any preparatory work by software developers.
Hence, their CloneCloud framework supports unmo-
dified mobile applications as well. A static analysis
tool discovers first possible migration points with re-
spect to a method- and thread-level granularity. This
implies that methods accessing certain features of a
machine or methods that share their native state with
other methods, have to stick together. A dynamic pro-
filer captures then the execution and migration costs
for randomly chosen input data and creates a pro-
file tree that depicts the method invocations and their
costs, e.g. their execution time. Finally, an optimizer
selects the migration points that reduce the total exe-
cution time or the energy consumption of the mobile
device by considering the computation and migration
costs. During runtime the virtual state, the program
counter, registers, heap objects, and the stack will be
offloaded as soon as methods marked with migration
points are invoked. The downside of this approach
is that it demands for a synchronized clone. Conse-
quently, the authors presume in their evaluation that a
VM is instantiated already and that data, applications
and configurations were available in the VM. They do
not cover the additional time for the instantiation and
synchronization steps and the costs of maintenance,
bandwidth and leasing of the VM.

In (Cuervo et al., 2010) Cuervo et al. introduce
MAUI, a system that is similar to the aforementioned
framework CloneCloud. Like CloneCloud, MAUI
operates at the level of method granularity and re-
quires a VM as device clone. However, MAUI is as-
king the developer to annotate the methods that shall

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

145



be considered for offloading. During runtime, MAUI
checks the resource consumption of these methods by
serializing the required member and static variables
and by monitoring the CPU cycles and the execution
times. Using the two latter values, the energy con-
sumption can be estimated with a linear regression
model. By incorporating additionally the bandwidth,
the latency, and the size of serialized data, MAUI is
able to evaluate the costs for offloading the code and
migrating the states and to decide finally where the
method will be executed. In contrast to CloneCloud,
it offers an online profiling, however, to the detriment
of a higher resource consumption. And due to the VM
synchronization, MAUI is exposed to the same handi-
caps like CloneCloud.

ThinkAir (Kosta et al., 2012) from Kosta et al. is
a MCC framework that was derived from CloneCloud
and MAUI. Developers shall only need the @Remote
annotation for their method to execute it remotely.
However, further details for developers are not explai-
ned. Functions for resource consumption prediction
for previously unknown methods are learned online,
that is, during runtime. Learning and capturing such
monitoring data requires many resources and usually
slows down the application. Information like CPU
time, display brightness, Garbage Collector invoca-
tions and many more are provisioned. In addition, six
different Virtual Machine (VMs) types are provided.
A developer may parallelize his methods and execute
them in parallel on these VMs.

Techniques like cloudlets (Satyanarayanan et al.,
2009) and dynamic cloudlets (Gai et al., 2016) reduce
the aforementioned synchronization costs of VM-
based approaches by detecting and leveraging nearby
resources. However, such solutions are also benefi-
cial and applicable to other MCC approaches and do
not directly address the disadvantage of high synchro-
nization costs. Yang et al. (Yang et al., 2014) mi-
tigate the problem by analyzing the stack and heap
to determine possibly accessed heap objects. Com-
pared to CloneCloud, they achieve better execution
times through reduced state transfer times. Nonethe-
less, still for each user a synchronized and customized
VM is needed that runs at least the same operating sy-
stem and application.

In contrast to the fine-grained VM-based approa-
ches, the idea of Giurgiu et al. (Giurgiu et al., 2009)
relies on modularized software. The developer has
therefore to create his application by small software
bundles that offer their interfaces as services and inte-
ract via services as well. Both the smartphone and the
server have to run AlfredO (Rellermeyer et al., 2008)
and OSGi (Alliance, 2009) which support modula-
rized software written in Java. An offline profiling

determines where to run the bundles by abstracting
the resource consumption and the data flow of the
interdependent bundles as a graph and cutting it in
such a way that a given objective function is mini-
mized or maximized. According to the authors, opti-
mal cuts can be determined due to the small number
of bundles. A downside of this approach is that an
unfavourable modularization cannot even be compen-
sated by an optimal cut when there exist just a few
bundles. Despite that, the application’s adaptation to
OSGi may cause considerable additional efforts for
software developers. Compared to VM-based appro-
aches, components and their services may be reused
by different customers.

Other works make use of well-known technolo-
gies like RPC (Balan et al., 2007) and remote servi-
ces (Kemp et al., 2012) that are accessible via stubs.
The main drawback of these approaches is the con-
siderable effort a developer has to undertake to re-
ceive their benefits. In (Balan et al., 2007) the kno-
wledge of the authors’ description language Vivendi
is required to create the tactics the developer wants to
apply for the methods available via RPC. In (Kemp
et al., 2012) developers have to create interfaces by
using Android’s interface definition language AIDL
and to provide methods that transform their objects
to so-called Android Parcels. Furthermore, a second
implementation has to be supplied for the remote ser-
vice.

Our MOCCAA framework makes use of Remote
Method Invocation, but uses an intermediate serializa-
tion format that is translated seamlessly from/to An-
droid as well as from/to Java representations. Delta
synchronization is supported to reduce state transfer
costs. Offloading is enabled through annotations at
object and method granularity. VMs are not needed
per user. This relieves application users as they do
not need to search and lease own VMs. Instead, ser-
vers are the responsibility of the application provi-
ders. This allows them to reuse installed applications
or even tailor them to a more efficient utilization of
the available cloud resources. MOCCAA-RMS fa-
cilitates monitoring, scaling, managing and finding
suitable resources within the application provider’s
domain. Monitoring and prediction costs on the mo-
bile device are reduced through our analysis tool In-
spectA.

9 CONCLUSION AND FUTURE
WORK

We proposed a configurable and extendable frame-
work and architecture for Mobile Cloud Compu-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

146



ting. In its simplest form, developers may use it
by applying a few annotations and install the fra-
mework on a server. However, it can be exten-
ded with resource consumption prediction, a distribu-
ted and self-configuring Resource Management Sy-
stem (MOCCAA-RMS), and a grid-like computation
pattern. In addition, we presented DRMI, a delta-
synchronized RMI that is well suited for applications
communicating deltas with their offloaded part. In fu-
ture, DRMI will be equipped additionally with a sli-
ding window approach that will be applied for arrays
and Java Collections. Although the current DRMI
version works for Java Collections and arrays, it can
be further optimized for them if they only contain pri-
mitive data types. Additionally, we examine further
patterns for splitting tasks and exploiting Cloud re-
sources.

REFERENCES

Alliance, O. (2009). OSGi Service Platform Service Com-
pendium: Release 4, Version 4.2 Author: OSGi Al-
liance, Publisher: AQute Publishing Pages. AQute
Publishing.

Balan, R. K., Gergle, D., Satyanarayanan, M., and
Herbsleb, J. (2007). Simplifying cyber foraging for
mobile devices. In Proceedings of the 5th internati-
onal conference on Mobile systems, applications and
services, pages 272–285. ACM.

Bernstein, A. J. (1966). Analysis of programs for parallel
processing. Electronic Computers, IEEE Transactions
on, 5(5):757–763.

Chaumette, S., Grange, P., et al. (2002). Parallelizing
multithreaded java programs: a criterion and its pi-
calculus foundation. Workshop on Formal Methods
for Parallel Programming IPDPS.

Chiba, S. (1998). Javassist - a reflection-based program-
ming wizard for java. In Proceedings of OOPSLA98
Workshop on Reflective Programming in C++ and
Java, volume 174.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A.
(2011). Clonecloud: elastic execution between mobile
device and cloud. In Proceedings of the sixth confe-
rence on Computer systems, pages 301–314. ACM.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. (2010). Maui:
making smartphones last longer with code offload. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–
62. ACM.

Friedman, J. H. (1991). Multivariate adaptive regression
splines. The annals of statistics, pages 1–67.

Gai, K., Qiu, M., Zhao, H., Tao, L., and Zong, Z. (2016).
Dynamic energy-aware cloudlet-based mobile cloud
computing model for green computing. Journal of
Network and Computer Applications, 59:46–54.

Giurgiu, I., Riva, O., Juric, D., Krivulev, I., and Alonso, G.
(2009). Calling the cloud: enabling mobile phones as
interfaces to cloud applications. In Middleware 2009,
pages 83–102. Springer.

Graf, J., Hecker, M., and Mohr, M. (2013). Using joana for
information flow control in java programs-a practical
guide. In Software Engineering (Workshops), volume
215, pages 123–138.

Hall, M. A. (1999). Correlation-based feature selection for
machine learning. University of Waikato, New Zea-
land.

Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups
in data: an introduction to cluster analysis, volume
344. John Wiley & Sons.

Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2012).
Cuckoo: a computation offloading framework for
smartphones. In Mobile Computing, Applications, and
Services, pages 59–79. Springer.

Kohavi, R. and John, G. H. (1997). Wrappers for feature
subset selection. Artificial intelligence, 97(1-2):273–
324.

Kosta, S., Aucinas, A., Hui, P., Mortier, R., and Zhang, X.
(2012). Thinkair: Dynamic resource allocation and
parallel execution in the cloud for mobile code offloa-
ding. In Infocom, 2012 Proceedings IEEE, pages 945–
953. IEEE.

Ou, S., Yang, K., and Liotta, A. (2006). An adaptive multi-
constraint partitioning algorithm for offloading in per-
vasive systems. In Pervasive Computing and Commu-
nications, 2006. PerCom 2006. Fourth Annual IEEE
International Conference on, pages 10–pp. IEEE.

Rellermeyer, J. S., Riva, O., and Alonso, G. (2008). Al-
fredo: an architecture for flexible interaction with
electronic devices. In Proceedings of the 9th ACM/I-
FIP/USENIX International Conference on Middle-
ware, pages 22–41. Springer-Verlag New York, Inc.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N.
(2009). The case for vm-based cloudlets in mobile
computing. Pervasive Computing, IEEE, 8(4):14–23.

Tridgell, A. (1999). Efficient algorithms for sorting and sy-
nchronization. PhD thesis, Australian National Uni-
versity Canberra.

Yang, S., Kwon, D., Yi, H., Cho, Y., Kwon, Y., and Paek, Y.
(2014). Techniques to minimize state transfer costs for
dynamic execution offloading in mobile cloud com-
puting. IEEE Transactions on Mobile Computing,
13(11):2648–2660.

Zhao, Y., Hu, F., and Chen, H. (2016). An adaptive tuning
strategy on spark based on in-memory computation
characteristics. In Advanced Communication Techno-
logy (ICACT), 2016 18th International Conference on,
pages 484–488. IEEE.

MOCCAA: A Delta-synchronized and Adaptable Mobile Cloud Computing Framework

147


