
Detection of Access Control Violations in the Secure Sharing of Cloud
Storage

Carlos André Batista de Carvalho1,2, Rossana Maria de Castro Andrade1, Nazim Agoulmine3

and Miguel Franklin de Castro1

1Computer Science Department, Group of Computer Networks, Software Engineering, and Systems (GREat), Federal
University of Ceará (UFC), Fortaleza, Brazil

2Computer Science Department, Federal University of Piauı́ (UFPI), Teresina, Brazil
3IBISC Laboratory, University of Evry (UEVE), Evry, France

Keywords: Secure Storage, Data Sharing, Access Control Violations.

Abstract: A cloud storage service implements security mechanisms to protect users data, including an access control
mechanism to enable the data sharing. Thus, it is possible to define users permissions, granting the access only
to authorized users. Existing solutions consider that the provider is honest but curious so that the designed
mechanisms prevent the access to the files by the provider. However, the possibility of executing illegal
transactions is not analyzed, and a malicious provider can perform transactions requested by unauthorized
users, resulting in access control violations. In this paper, we propose monitoring and auditing mechanisms to
detect these violations. As a result, new attacks are identified, especially those resulting from writing actions
requested by users whose permissions were revoked. Colored Petri Nets (CPNs) are used to model and validate
our proposal.

1 INTRODUCTION

Cloud computing is a distributed computing paradigm
that enables the sharing of computational resources
between many clients. It is possible to reduce the in-
frastructure costs by contracting a public cloud provi-
der and paying only for the consumed resources. Be-
sides, the services’ scalability allows the dynamic al-
location of resources, in accordance with customers’
needs. However, this technology comes with the main
drawback of losing control over the data stored in the
cloud infrastructures. Therefore, there is some resis-
tance in adopting public clouds, due to concerns about
security and privacy (Ardagna et al., 2015) (Luna
et al., 2015).

Among security concerns (e.g., data loss and
leakage, resource location, service disruption and
multi-tenancy issues), (Rong et al., 2013) stress that
the big concern is the assurance of the security in
cloud storage. Cloud providers have developed se-
curity mechanisms based on frameworks and secu-
rity guidelines elaborated by standardization bodies,
such as ISO (International Organization for Stan-
dardization), NIST (National Institute of Standards
and Technology) and CSA (Cloud Security Alliance)

(Luna et al., 2015). In Amazon S3 (Simple Storage
Service), for example, the SSL (Secure Socket Layer)
protocol is used to protect data transmission, and the
AWS KMS (Key Management Service) to protect
data at rest (Amazon, 2017a). The KMS facilitates
the creation, storage and distribution of keys. Besides,
the permission management, based on Access Control
Lists (ACLs), enables secure data sharing (Amazon,
2017b).

Security mechanisms are designed to prevent or
detect attacks, and the success of an attack results in
the violation of a security property (Stallings, 2016).
An access control mechanism, for example, is used to
allows the definition and updating of files’ permissi-
ons. In addition, the providers can be ”honest but cu-
rious”, requiring cryptographic solutions so that the
files cannot be accessed by the providers (Tiwari and
Gangadharan, 2015b) (Jiang et al., 2014). In this con-
text, the key management becomes essential, being
responsible for updating the keys and their distribu-
tion only for authorized users (Popa et al., 2011).

However, it is not possible to avoid all kind of at-
tacks, especially those performed by malicious pro-
viders. Therefore, the cloud customers request more
transparency and security guarantees from providers

124
Batista de Carvalho, C., de Castro Andrade, R., Agoulmine, N. and Franklin de Castro, M.
Detection of Access Control Violations in the Secure Sharing of Cloud Storage.
DOI: 10.5220/0006698701240135
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 124-135
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(Ardagna et al., 2015). In this context, scienti-
fic research has been realized to develop solutions
that improve the trust in cloud providers (Jin et al.,
2016) (Hwang et al., 2014a) (Tiwari and Gangadha-
ran, 2015a). These solutions can detect malicious be-
haviors that result in violations of security properties.

A malicious provider can, for example, ignore the
verification of access control, performing unauthori-
zed transactions. This malicious behavior results in
a violation of access control that must be detected.
The existing mechanisms can detect, for example, an
illegal writing when this writing uses invalid keys re-
sulting in integrity violations. On the order hand, the
cloud customer can revoke a user’s write permission,
but this user can use an older encryption key and try
to write a new file (Kallahalla et al., 2003). In this
case, if the malicious provider commits this writing,
no integrity violation will be detected.

In this paper, we propose monitoring and auditing
mechanisms to detect access control violations in a
cloud storage service avoiding the provider to deceive
or deny the violation detection. An honest broker that
manages the cloud transactions (e.g., reading and wri-
ting) and informs users the current state of the system,
enabling the real-time detection. A private cloud or
other Trust Third Party (TTP), for example, can acts
as a honest broker. Otherwise, the broker can be dis-
honest, making the auditing necessary to identify the
violations.

The rest of this paper is organized as follows. In
Section 2, we detail the concepts related to secure
sharing in cloud storage. The proposed mechanisms
and the security evaluation are described in Section 3.
Next, the related work is discussed. Lastly, Section 5
presents the final considerations and future work sug-
gestions.

2 SECURE SHARING IN CLOUD
STORAGE

In this section, we present the mechanisms, for access
control and violation detection, used as the basis for
this research. In addition, we enumerate attacks that
result in access control violations.

2.1 Access Control

The security of the stored data and file sharing are ty-
pical requirements of a cloud storage service. Then,
existing solutions include an access control mecha-
nism, allowing the file sharing while preventing data
leakage. In these solutions, a cloud customer (or
client administrator) can purchase the storage service,
and define permissions for cloud users that can, at le-
ast, read and write files. The cloud transactions are
managed by a broker and performed by a cloud provi-
der. Figure 1 presents an overview of a cloud storage
service, and Table 1 describes the roles of each actor
of this service. Due to the possibility of the provi-
der and the broker act maliciously, the access control
violations can be detected by the users and the Third-
Party Auditor (TPA).

Security mechanisms must be designed to protect
a user against existing threats, which are, in the scope
of this research, data leakage and corruption. In this
context, these mechanisms provide data confidentia-
lity and integrity, ensuring the data access or modi-
fication only by authorized users. An access control
mechanism allows the cloud customer to define who
can read and who can write in each file. The proxy re-
encryption (PRE), Attribute-Based Encryption (ABE)
and Access Control Lists (ACLs) are the approaches
used to design access control mechanisms (Thilaka-
nathan et al., 2014).

Figure 1: Storage service overview.

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

125



Table 1: Cloud actors definition.

Actor Definition

Costumer The person of an organization that administer the storage service. He/she is responsible
for define/modify the permissions and upload new files.

User An employee that can read or write files in accordance with his/her permissions.
A user also checks the security properties based on the information received by the broker

Broker The entity responsible for managing the transactions. It check permissions and
sends the keys and the current status of a file.

Provider The entity responsible for storing the files.

Third-Party Auditor (TPA) The entity responsible for analyzing the transactions’ logs to demonstrate the security
or prove the occurrence of a violation.

The Access Control Lists (ACLs) has been used
in solutions that include mechanisms for violation de-
tection (Popa et al., 2011) (Jin et al., 2016). Due to its
suitability to be used in conjunction with other secu-
rity mechanisms, ACLs are used, in this research, to
specify users’ permissions. Each file has an ACL that
contains a list of users with their permissions. The
users have read or read/write permissions, and only
the cloud customer can change the permissions, gran-
ting or revoking access. For efficiency purposes, it
is possible to use one single ACL for authorizing the
access to a group of files (Kallahalla et al., 2003).

In addition to setting permissions, it is essential
to use cryptography algorithms to make effective the
access control so that providers do not have access
to the plaintext (Tiwari and Gangadharan, 2015b). A
symmetric cipher is used for data confidentiality so
that only authorized users can encrypt or decrypt the
file, using the secret key (R). The data integrity is
ensured based on digital signature in which the pair of
keys (W and Wv) is used, respectively, to sign the file
and verify its signature. These keys are generated by
the process defined by the asymmetric cipher used for
digital signature. The security of the cryptographic
primitives used by cloud storage solutions is attested
by the scientific community and outside the scope of
this paper.

These keys that can be accessed in accordance
with the users’ permissions, enabling a granular
access control. Then, the key management is essential
to distribute the keys only to authorized users and up-
date the keys whenever necessary. It is recommended
to use different keys for each file and change the en-
cryption key when the permissions are updated, fol-
lowing the guideline to limit the amount of data en-
crypted by a single key (Barker, 2016) and avoiding
that revoked users can access a file (Kallahalla et al.,
2003).

In a simple and costly solution, while Wv is kept
public, R and W can be encrypted with the public
key of each authorized user so that they are accessed
only by them. Due to the inefficiency of this appro-
ach, Broadcast Encryption has been used (Popa et al.,

2011) (Jin et al., 2016). The key and the group of
authorized users (G) are the inputs of a broadcast en-
cryption scheme (EB), generating a ciphertext that can
be deciphered only by users in G. (Boneh et al., 2005)
detail a scheme that enables the broadcast encryption.

Figure 2 illustrates the layout of each stored file
and its metadata, detailing how each key is used. The
users with read or read/write permissions belongs to
the set Gr and can decipher the EB(Ri,Gr) and ex-
tract the key used to encrypt/decrypt the file. Wi can
be obtain by users with read/write permissions (i.e.,
members of the set Gw). Thus, authorized users can
modify a file, encrypt it and generate a valid signature.

Figure 2: File and file’s metadata layout.

In addition, there are different versions of the rea-
ding and writing keys, indicated by the indexes i and
j. The key version used to encrypt the file can be dif-
ferent from the key indicated in the metadata due to
the lazy revocation approach. This approach is fre-
quently adopted to reduce the overhead when permis-
sions are revoked (Jiang et al., 2014) (Tassanaviboon
and Gong, 2011). With lazy revocation, the keys are
updated, and the file is re-encrypted only in the next
writing transaction. When the permissions are upda-
ted, the key version (index i) in metadata is also up-
dated. However, the file is not re-encrypted so that its
key version (index j) remains unchanged.

The Key Rotation scheme is used to simplify the
keys updating when the permissions are changed and
enable the lazy revocation (Kallahalla et al., 2003).
In this scheme, only the customer can generate a se-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

126



quence of keys from an initial key and a secret key
so that when the customer modifies the permissions,
he/she creates the next key version and signs the new
metadata. After deciphering the file’s metadata, aut-
horized users can extract any previous version from
the current version, obtaining the correct key used to
cipher or sign a file. It is interesting to mention this
scheme can create keys to be used by symmetric and
asymmetric ciphers.

Besides the high cost of the immediate revocation,
the possibility of a malicious user making copies of
the files before losing his privileges encourages the
use of this approach (Popa et al., 2011). However, it
is necessary to mention the loss of security resulting
of the lazy revocation because it enables the occur-
rence of access control violations. When a user is re-
voked, he/she leaves the set of users that can decipher
the new metadata. Despite, the revoked user can keep
the reading or writing key extracted from the previous
metadata, making he/she able to access or modify the
file if these keys are not updated. Therefore, it is es-
sential to evaluate the impact of this approach in the
access control.

In accordance with (Thilakanathan et al., 2014),
the evaluation of the access control must analyze if
revoked users really lost their privileges and if the pro-
vider cannot collude with an unauthorized user, gran-
ting access to this user without the customer’s per-
missions. The collusion between entities must also be
evaluated when a third party is included to mediate
the communication between the users and the provi-
der (Tiwari and Gangadharan, 2015b).

On the other hand, the assumption that the pro-
vider is ”honest but curious” is common in this en-
vironment (Jiang et al., 2014) (Tiwari and Gangad-
haran, 2015b). In this context, access control me-
chanisms usually are evaluated to show the protection
against data leakage, demonstrating that the provider
and unauthorized users have not access to the keys
and, consequently, cannot read files or write uncor-
rupted files. However, the possibility of the provider
acting maliciously is not analyzed, and the execution
of an illegal transaction (e.g., unauthorized writing)
results in a violation that must be detected.

2.2 Violation Detection

The access control is a prevention mechanism and
must be combined with other security mechanisms
to detect malicious behaviors from malicious internal
entities, especially providers. Attacks from these en-
tities not always can be avoided and result in security
violations that must be identified. There are monito-
ring and auditing solutions for verification of security

properties (Jin et al., 2016) (Tiwari and Gangadharan,
2015a).

In our preliminary paper (Carvalho et al., 2017a),
we propose mechanisms to improve the violation de-
tection, addressing attacks not analyzed by existing
solutions. So, in this subsection, we present an over-
view of this solution and then highlight the threats
related to access control violations that have not yet
been analyzed by existing solutions (Carvalho et al.,
2017b).

2.2.1 Log Analysis

The existing violation detection mechanisms are ba-
sed on log analysis of cloud transactions. This ana-
lysis allows to prove the occurrence or not of vio-
lations of security properties. Existing solutions ve-
rify the integrity, retrievability, freshness and write-
serializability of the data stored in the cloud. The in-
tegrity ensures the data modification only by authori-
zed users. The retrievability is related to the data loss
verification, and the freshness indicates the reading of
the updated file. The write-serializability controls the
writing order, ensuring that the new version of a file
overwrites the last version of it.

In accordance with (Carvalho et al., 2017a), each
log entry, called attestation, represents one cloud tran-
saction and contains the following elements: UserID,
UserLSN, FileID, FileVersion, FileHash, KeyVer-
sion, TransactionType, ChainHash and Signatures.
The UserID identifies each user and, the UserLSN re-
presents the last sequence number used by each user.
The FileVersion is essential to verify the freshness
and write-serializability, and the FileHash to check
the signature of the received file. The type of the tran-
saction (i.e., reading or writing) indicate whether the
expect FileVersion must be replaced during an audi-
ting. The KeyVersion allows a user to derive the cor-
rect key, using a Key Rotation scheme. The Chain-
Hash is used to build the chain of attestations and is
computed over the data of the current attestation and
the ChainHash of the previous one. Last, all invol-
ved entities (i.e., broker, user and provider) sign the
attestation for non-repudiation purposes.

The verification of security properties is perfor-
med in real-time (by monitoring of the cloud tran-
sactions) and in auditing. The monitoring enables to
detect violations early, reducing the damage resulted
from, for example, the use of an invalid file (Hwang
et al., 2014a). The users follow a protocol that enables
to verify security properties while read or write files
in the cloud storage. Figure 3 details, for example, the
writing protocol. Based on the attestation sent by the
broker, a user verifies the integrity and freshness of
the stored file, or prepare a writing request that com-

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

127



Figure 3: Writing a file.

plies with the write-serializability. However, the user
must be sure that the received attestation is really the
attestation regarding the last transaction, making in-
dispensable the participation of an honest broker to
manage the transactions. After an attack (e.g., in next
transaction), an inconsistency between the last attes-
tation and the stored file is identified.

Before the audit, the provider must send all at-
testations to the TPA, and the broker and users send
their last attestations. For each file, the TPA builds
the chain of attestations, ordering them, and analyzes
the sequence of the file’s versions to prove that no vi-
olation occurs. Besides, it also checks the presence of
all UserLSNs considering the chains of attestation of
all files. The attestations sent by users and broker are
used to verify whether the provider hides some tran-
saction. Otherwise, the TPA report a violation. Due
to the signature of attestations, no entity can deny a
violation. The auditing also includes a Proof of Re-
trievability (PoR) scheme to check if scarcely acces-
sed files were lost or not (Yang and Jia, 2012). After
the audit, the attestations can be discarded, except the
last attestation of each file that will be chained with
the attestations of the new epoch1.

2.2.2 Threat Model

The verification performed by existing solutions is not
enough to detect all violations resulting from the exe-
cution of illegal transactions. The transactions are il-
legal when the malicious provider allows the reading
or writing by an unauthorized user. Normally, the
unauthorized users do not have the keys to read files,

1The period between two consecutive audits is called
epoch (Popa et al., 2011)

and an unauthorized writing is detected by existing
solutions because the users cannot write files with a
valid signature.

On the other hand, a user can be, for example, dis-
missed, and his permissions being revoked. In this
case, this user can try to use his old credentials to
access or modify files. Due to the lazy revocation, re-
voked users can read files if they are not re-encrypt
yet. Besides, a malicious provider can ignore the
access control, and a revoked user can write new fi-
les using old keys, which may be considered valid
(Kallahalla et al., 2003). Therefore, besides an access
control mechanism, a mechanism to verify the access
control is necessary to check if the provider performs
only authorized transactions.

These scenarios are not analyzed by existing solu-
tions (see Section 4), not verifying the possibility of
a malicious provider allowing the reading or writing
by a revoked user. Besides, the broker displayed in
Figure 1 can be trustworthy or malicious. So, a ma-
licious broker can collude with the provider, trying to
deceive violation detection, and must also be detected
by the proposed mechanisms.

Lastly, there are transactions to modify permis-
sions, requested only by the cloud customer. These
transactions must be committed by the broker and
provider in order to update the ACLs and file’s me-
tadata. The malicious entities can also ignore these
transactions, allowing unauthorized readings and wri-
tings in the future.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

128



3 DETECTING ACCESS
CONTROL VIOLATIONS

In this paper, we extend our previous solution to iden-
tify also the access control violations. This section
describes our proposal followed by the modeling and
validation of the proposed mechanisms using CPNs
(Colored Petri Nets), demonstrating that access cont-
rol violations are detected.

3.1 Proposal

An access control mechanism is used by a secure
storage service to provide data confidentiality and
integrity in accordance with the permissions by the
cloud customer. In a data sharing environment, autho-
rized users read and write files in the cloud provider
while the cloud customer can also update the permis-
sions, granting or revoking privileges to users. The
cloud transactions are stored in logs that are scanned
for violation detection. Previously, only the reading
and writing transactions are addressed.

In this context, it is necessary to specify how to
represent the updating of permissions in the log. The
attestation of a permission update transaction inclu-
des a new field (called PermissionList) with a list of
the modified permissions, as shown in Figure 4. This
field appears only in attestations of transactions to up-
date permissions and each element of this list indica-
tes the UserID and his/her new permission. In order
to reduce the size of this list, only the users whose
permissions have been changed are added to the list.

It is interesting to mention that the cloud customer
has an ID as well as the other users and can request
reading and writing transactions. In addition, only the
cloud costumer can write a new file and, next, define
its permissions.

It is important to mention that the attestation of a
permission update transaction must be chained with
other transactions of a file. Besides the attestations,
the customer and the provider send to the TPA the cur-
rent permissions for auditing. Thus, the auditor verify
the correctness of the access control, observing if the
users had or not permission in the moment of each
transaction. A malicious provider cannot bypass the
violation detection, hiding an unauthorized writing,
because any writing modifies the file’s signature, and
an attestation with this signature is sent to users for
integrity verification. It is not possible to inform that
different users request the transactions, due to the sig-

nature of the attestations, and to change the content of
an attestation without breaking the chain of attestati-
ons.

On the order hand, a malicious provider can hide
an illegal reading without being detected if the unaut-
horized user also does not report this transaction. Ho-
wever, even if this user receives the file, he/she cannot
decipher it without the keys. Thus, the data leakage
can occur only if the lazy revocation is applied. In this
case, a revoked user can use the old key to access the
file if it has not been modified. So, due to the impact
of not detecting leaks, the lazy revocation approach is
not a security recommendation.

In this context, the customer re-encrypts the file
when the permissions are updated. Before the encryp-
tion, the customer receives the last attestation, the me-
tadata and the file. In addition, the customer creates
the new metadata and the new attestation that inclu-
des, respectively, the generated keys and the modi-
fied permissions. The re-encryption is only required
if some user loses the reading privileges. Thus, it is
possible to remove the cost to encrypt the file and to
transmit the file from and to the provider.

The auditing is enough to detect access control vi-
olations. However, the use of an honest broker ena-
bles users to be sure that the attestation and the me-
tadata received are the last ones, making possible the
access control monitoring. When a violation is de-
tected, then TPA can perform an audit to avoid that
a user falsely accuses the cloud provider, solving any
conflict. Figure 5 details the protocol to change the
permissions, using a broker to manage the transacti-
ons. It is worth mentioning that the last step finalizes
the transaction so that the three parties have the attes-
tation signed by everyone.

A malicious provider can ignore the permissions,
executing illegal transactions. In this context, a revo-
ked user is able to write files that seem valid for other
users because the signatures generated with old keys
pass on integrity checks. In a practical way, a ma-
licious agent (software) in the provider can commit a
writing request by a revoked user, without the broker’s
participation during the communication. There is no
attestation of this writing because all attestation must
also be signed by the broker. Thus, this transaction
will not be represented in the chain of attestations. If
the broker is honest, the illegal writings are detected
when the FileHash of the last attestation is different
from the received file.

On the other hand, it is possible, in collusion with

Figure 4: Structure of an attestation.

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

129



Figure 5: Updating file’s permissions.

the broker, to bypass the violation detection. In this
case, a valid attestation is created and signed by the
attackers (revoked user, provider and broker), perfor-
ming the writing as defined in writing protocol (see
Figure 3). The difference is that the broker also igno-
res the permissions and accepts this transaction, sig-
ning its attestation. The broker also sends an old me-
tadata, indicating the same FileVersion of the file. In
next transaction, a user receives the file and the attes-
tation with the same FileHash. Thus, if the broker is
compromised, the users may not detect, in the monito-
red data, a trace of the violations because they do not
have the correct information about the current state of
the system.

Otherwise, the violation will be identified in audi-
ting. Although the attestation of the illegal writing is
rightly chained with the others attestations, the TPA
can report the violation, identifying that a user does
not have permission in the moment of the transaction.
The provider and broker can also try to hide the attes-
tation that indicates the revocation of the user’s per-
mission. In this case, the TPA cannot build a valid
chain of attestations, or one UserLSN of the cloud cu-
stomer is absent. Therefore, the auditing indispensa-
ble to identify the undetected violations analyzing the
historical transactions.

The broker is also responsible for controlling con-
current transactions, allowing access to different files
due to the no possibility of violation resulting from
such access. On the order hand, simultaneous access
to the same file can result in violations if the transacti-
ons end in a different order from which they started.
In this case, the blockade of simultaneous access en-

sures the order of execution of the transactions, avoi-
ding, for example, the reading of the previous version
of a file and the requests of writings with the same Fi-
leVersion. However, concurrent readings do not result
in violations and can be allowed.

Due to the signature of the attestations and ex-
changed messages, any involved entity can detect ot-
hers attacks (e.g., impersonation and replay attacks)
and cancel the unauthorized transaction. However, a
malicious behavior of the provider and/or broker re-
sults in a security violation. In this case, a penalty
and a recovery procedure can be applied as specified
in an SLA (Service Level Agreement). For example,
if an integrity violation is detected, it is possible to
restore the most up-to-date version in a backup, re-
ducing the damage. Last, it is interesting to mention
the holding of the users’ privacy because the metadata
and attestations do not have any sensible information
available to malicious entities.

3.2 Modeling and Validation

The evaluation of the security solution is an essen-
tial task of its development to demonstrate its secu-
rity. Due to the difficulty of demonstrating the secu-
rity only with experiments, the literature highlight the
advantages of using formal methods to model soluti-
ons and validate their security (Armando et al., 2014).
However, there are solutions for secure cloud storage
in which the evaluation is limited to an informal dis-
cussion about their security and a performance analy-
sis (Popa et al., 2011) (Hwang et al., 2014b) (Jin et al.,
2016).

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

130



Figure 6: Overview of the simplified CPN.

In this research, CPN Tools2 is being used to for-
mally model and validate the proposed mechanisms.
The choice was based on the ease of use of this tool, of
the extensive documentation on CPNs, and its suitabi-
lity for specifying security protocols (Carvalho et al.,
2017a).

The modeling of a system in Petri Nets is done
by describing a graph composed of nodes that indi-
cate the places and the transitions of the system. Arcs
connect places to transitions or vice versa, but never
two places or two transitions. The places in a Petri
Net contain tokens, which can enable transitions to
be fired. When a transition occurs, tokens from the
input places are consumed, and new tokens are ad-
ded at the output places, according to the arc expres-
sions. The choice for the transition to be fired is non-
deterministic. The initial positioning of the tokens in
places is called the initial marking, and each marking
during the execution of a system represents a state of
this system.

The Colored Petri Net is an extension of the Petri
Net, which allows you to assign colors or values to the
tokens. Similar to programming languages it is pos-

2http://cpntools.org

sible to define what type of information can be stored
in each place and also assign or verify the values of
the tokens. Thus, the size of the created models is
reduced. There are also other extensions, including
hierarchical and timed Petri Nets, which respectively
organizes a system into modules and adds timers to
the transitions. This topic is detailed in (Jensen and
Kristensen, 2009), with details on the types of CPNs
and formal definitions.

Here, we present the modeling of the proposed, as
well as, the security evaluation, showing the detection
of the attacks enumerated in Section 2.2.2. The mo-
deled CPN includes the protocols for auditing and for
monitoring cloud transactions (i.e., writing, reading
and permissions updating) to analyze the detection of
violations.

A simplified CPN of our proposal is available
at https://sites.google.com/site/candrebc/scss ac.zip3

and the overview of this modeling is shown in Figure
6. The simplifications do not change it functioning
and include: i) the storage of a single file; ii) the exe-
cution of a single transaction each time; iii) the re-

3The original file can be used for proper analysis and
simulations. A .pdf file is also available.

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

131



presentation of the chain hash as a sequence number;
and iv) the assumption that all messages are authen-
tic. The modeled CPN is parametrized so that several
users can be easily added making our proposal theo-
retically scalable. These simplifications facilitate the
analysis of the modeling due to the reduction of its
complexity and of the space state.

This modeling represents the correct behavior of
the involved entities and simulations were realized to
verify the correctness and to evaluate the modeled me-
chanisms. Thus, no violation is detected because the
analysis of the space state reveals that no token is sto-
red in error places in any possible state. This result
is expected when the entities are trustworthy, but it is
also necessary to analyze if all possible attack is de-
tected, enabling the use of the proposed mechanisms
to demonstrate the security of a storage service.

Thus, it is essential to model the attacks that vio-
late the access control, showing if they are identified.
We modeled malicious behaviors of the provider, bro-
ker and users in different CPNs, simulating the viola-
tion scenarios. The changes in the modeling repre-
sent an entity’s ability to execute malicious software,
making possible to perform attacks that result in vi-
olations. Now, it is possible to verify if the attacks
performed by malicious entities can be detected. We
also define special places, indicating the execution of
malicious actions and the violation detection. The-
reby, if some attack is triggered, the users or auditor
detect it when a violate place is achieved.

Since the unauthorized users cannot obtain the
keys, they are unable to read a file or write with a
valid signature. Thus, we focused our analysis in ve-
rifying if revoked users can access the files in accor-
dance with the threats highlighted in Section 2.2.2.
Due to the file’s re-encryption when updating the per-
missions, the revoked users can no longer read the file.
So, it was verified if, using lazy revocation, the unaut-
horized readings are allowed.

In the experiments, revoked users can read a file
since this has not been updated. The unauthorized re-
adings were only detected in auditing and if the tran-
sactions were registered in the log. Otherwise, the
illegal reading attestation is not chained with the ot-
hers attestations, and the violation detection is by-
passed. In order to allow lazy revocation and avoid
data leakage, solutions of trusting computing must be
used so that accountability tools register all events in
logs that are tampered-free and cannot be deleted (Ko
et al., 2011). However, the study of these tools is
beyond the scope of this work.

In addition, a revoked user can write files using
the old keys with the help of the malicious provider.
If the broker is honest, this transaction cannot be per-

formed through the broker and is not registered in the
log. The experiments demonstrated that a user detects
the violation as soon as he/she executes a transaction,
comparing the signature of the received file and the
one indicated in attestation sent by the broker.

Although this modeling includes the broker, it is
not possible to be sure about its honesty, making ne-
cessary the auditing to detect collusion attacks. In this
case, the broker can collude with the provider and re-
voked user, generating a valid attestation of an illegal
writing. Thus, in the following transactions, the users
do not have enough information to detect the attacks.
It is interesting to mention that the file’s metadata is
also sent to users by the broker. So, make this attack
possible if the lazy revocation is not used, the broker
must send, after the attack, the last attestation and an
old metadata. With the lazy revocation approach, it is
not necessary to send an old metadata because, with
the current metadata, the users can extract the previ-
ous key, used by the revoked user.

Experiments with and without lazy revocation
were performed, and the collusion attacks were iden-
tified in auditing. It is interesting to mention that,
even if the broker is malicious it is possible to iden-
tify violations in real-time under certain conditions.
The users can detect attacks early when comparing
the FileVersion of the current transaction with that
of the last transaction. The current FileVersion can-
not be smaller than the previous one. Therefore, the
proposed monitoring and auditing mechanisms of the
access control detect these violations.

4 RELATED WORK

The monitoring and auditing will increase the transpa-
rency of cloud storage services, enabling the detection
and proof of violations. These violations result from
attacks that could not be avoided, especially the ones
resulting from malicious acts of the stakeholders, in-
cluding end users. The existing solutions combine,
mainly, access control mechanisms with violation de-
tection mechanisms to offer a secure storage solution.
Table 2 presents a comparison of related work, focu-
sing on violation detection mechanisms. Our proposal
is highlighted in the last line of this table.

These mechanisms can detect malicious behavi-
ors that result in violations of integrity, retrievability,
freshness, or write-serializability. While the verifica-
tion of integrity checks if a received file is corrupt, the
others properties are related to data loss. The verifi-
cation of retrievability identifies, in auditing, the loss
of data scarcely accessed. Data freshness indicates
the reading of the most updated file, and the write-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

132



Table 2: Comparison of related work.

Work Violations Detected Real-time
Detection

Collusion
AttacksI F W R AC

Popa et al. 2011 Yes Yes Partially No No I Unfeasible
Albeshiri et al. 2012 Yes Yes Inefficient Yes No I Unfeasible
Hwang et al. 2014b Yes Yes Partially No No I Unfeasible
Hwang et al. 2014a Yes Yes Partially No No I, F, W Not detected
Tiwari and Gangadharan 2015a Yes Yes Inefficient Yes No I Unfeasible
Jin et al. 2016 Yes Yes Inefficient Yes No I, F, W Not detected
Carvalho et al. 2017a Yes Yes Yes Yes No I, F, W Yes
Proposed Mechanism Yes Yes Yes Yes Yes I, F, W, AC Yes
I - Integrity; F - Freshness; W - Write-serializability; R - Retrievability; AC - Access Control

serializability controls the writing order (Jin et al.,
2016).

The secure storage service, proposed by (Popa
et al., 2011), is based on Access Control Lists
(ACLs) and audited for integrity, freshness and write-
serializability verification. (Jin et al., 2016) add a
scheme for verifying the data retrievability. The
discard of old logs and management of concurrent
transactions are discussed by (Hwang et al., 2014b).
(Hwang et al., 2014a) specify a trusted third party,
called synchronization server, to enable real-time vi-
olation detection.

The detection of write-serializability violations
performed by (Albeshri et al., 2012), (Tiwari and
Gangadharan, 2015a) and (Jin et al., 2016) is ineffi-
cient because the reading is always required before
each writing. Besides, (Popa et al., 2011), (Hwang
et al., 2014b) and (Hwang et al., 2014a) do not detect
all violations, because only the logs are analyzed to
check the write-serializability, as discussed in our pre-
liminary study (Carvalho et al., 2016). Thus, we pro-
posed, in (Carvalho et al., 2017a), the use of a Proof
of Retrievability (PoR) scheme to check the file stored
by the provider without recovery the whole file (Yang
and Jia, 2012), improving the write-serializability ve-
rification.

The real-time detection is possible when a broker
(or other third entity) manages the cloud transactions
and informs users the current state of the system. In
(Jin et al., 2016), a broker is not specified, and the
freshness verification depends on the knowledge of
the last root signing key. However, the real-time ve-
rification is possible only if the users are sure that the
key received is the last one, and the authors do not dis-
cuss it. If it is deployed in a private cloud, it is valid to
assume that the broker is honest. On the order hand,
an untrustworthy broker makes feasible the collusion
attacks, in which the broker informs a previous state
of the system, deceiving the real-time violation de-
tection. The auditing is indispensable to detect these
attacks, as discussed in (Carvalho et al., 2017a).

These mechanisms do not verify the data confi-

dentiality because the protection against data leakage
is already provided by the access control mechanism.
However, these mechanisms do not detect the attacks
described in Section 2.2.2. This limitation is addres-
sed by the proposed mechanism that verifies if the
transactions are authorized.

5 CONCLUSION

The literature reveals solutions that address security
issues in cloud storage, especially regarding the de-
tection of data corruption, loss and leakage. In gene-
ral, the solutions combine different security mecha-
nisms to protect the system against various threats.
For example, an access control mechanism is neces-
sary to allow data sharing, preventing unauthorized
access, while monitoring and auditing mechanisms
permit to detect attacks that cannot be avoided. The
attacks are identify in real-time if the broker is trust-
worthy. Otherwise, the auditing detect the violations.
Thus, these mechanisms improve the transparency of
security storage services, proving the honesty of the
provider or its malicious behaviors.

However, existing solutions do not detect access
control violations, especially resulted from transacti-
ons performed by revoked users. In this paper, we
described mechanisms to verify the correctness of the
access control. The transactions for permissions up-
dating must also be registered in the read/write tran-
sactions log. Thus, it is possible to analyze if only
authorized users accessed the files.

The proposed mechanisms detect all violations
enumerated in Section 2.2.2. However, a solution of
trust computing must also be used to avoid the reading
by revoked users if the lazy revocation is applied. An
honest broker enables the real-time detection, and the
auditing solves conflicts and identifies malicious bro-
kers, detecting collusion attacks. The modeling with
CPNs enables a formal validation of the proposed me-
chanisms, demonstrating that detection of attacks in

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

133



accordance with the specified threat model. The pro-
posed mechanisms improves the violation detection
and can be used with an SLA solution that specifies
security guarantees (Luna et al., 2015).

Although our evaluation with CPNs demonstrate
the security of our proposal, it is interesting, as future
work, to deploy it in a cloud infrastructure in order
to evaluate its functioning in a real scenario and ana-
lyze performance aspects. After, it is possible to pro-
pose changes to improve the efficiency, without losing
the security. The proposed mechanisms can be adap-
ted to be combined with others access control mecha-
nisms (e.g., proxy re-encryption or Attribute-Based
Encryption). A robust solution should also include
mechanisms to address other security properties such
as availability and location. The broker, for example,
can manage the storage in multiple providers, impro-
ving the service availability.

ACKNOWLEDGEMENTS

This work was partially supported by the STIC-
AmSud project SLA4Cloud. Carlos André Batista
de Carvalho was also supported by CAPES/FAPEPI
Doctoral Scholarship.

REFERENCES

Albeshri, A., Boyd, C., and Nieto, J. G. (2012). A secu-
rity architecture for cloud storage combining proofs of
retrievability and fairness. In 3rd International Con-
ference on Cloud Computing, GRIDS and Virtualiza-
tion, pages 30–35.

Amazon (2017a). How amazon simple storage ser-
vice (amazon s3) uses aws kms. http://docs.aws.
amazon.com/kms/latest/developerguide/services-
s3.html. Accessed: 2017-07-06.

Amazon (2017b). Managing access permissions to your
amazon s3 resources. http://docs.aws.amazon.com/
AmazonS3/latest/dev/s3-access-control.html. Acces-
sed: 2017-07-06.

Ardagna, C. A., Asal, R., Damiani, E., and Vu, Q. H.
(2015). From security to assurance in the cloud: A
survey. ACM Comput. Surv., 48(1).

Armando, A., Carbone, R., and Compagna, L. (2014).
Satmc: A sat-based model checker for security-
critical systems. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 31–45.
Springer.

Barker, E. (2016). Recommendation for key management,
part 1. NIST Special Publication 800-57.

Boneh, D., Gentry, C., and Waters, B. (2005). Collusion re-
sistant broadcast encryption with short ciphertexts and
private keys. In Advances in Cryptology CRYPTO

2005, volume 3621 of Lecture Notes in Computer
Science, pages 258–275. Springer Berlin Heidelberg.

Carvalho, C. A. B., Agoulmine, N., Castro, M. F., and An-
drade, R. M. C. (2017a). How to improve monitoring
and auditing security properties in cloud storage? In
35th Brazilian Symposium on Computer Networks and
Distributed Systems, pages 559–572.

Carvalho, C. A. B., Andrade, R. M. C., Castro, M. F., and
Agoulmine, N. (2016). Modelagem e deteco de fal-
has em solues para armazenamento seguro em nuvens
usando redes de petri coloridas: Um estudo de caso.
In XIV Workshop de Computao em Clouds e Aplicaes
(WCGA/SBRC), pages 17–30.

Carvalho, C. A. B., Castro, M. F., and Andrade, R. M. C.
(2017b). Secure cloud storage service for detection of
security violations. In 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
pages 715–718.

Hwang, G.-H., Huang, W.-S., and Peng, J.-Z. (2014a).
Real-time proof of violation for cloud storage. In
CloudCom’14, pages 394–399.

Hwang, G.-H., Huang, W.-S., Peng, J.-Z., and Lin, Y.-W.
(2014b). Fulfilling mutual nonrepudiation for cloud
storage. Concurrency and Computation: Practice and
Experience.

Jensen, K. and Kristensen, L. M. (2009). Coloured Petri
nets: modelling and validation of concurrent systems.
Springer Science & Business Media.

Jiang, W., Wang, Z., Liu, L., and Gao, N. (2014). Towards
efficient update of access control policy for crypto-
graphic cloud storage. In International Conference
on Security and Privacy in Communication Systems,
pages 341–356.

Jin, H., Zhou, K., Jiang, H., Lei, D., Wei, R., and Li, C.
(2016). Full integrity and freshness for cloud data.
Future Generation Computer Systems.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and
Fu, K. (2003). Plutus: Scalable secure file sharing on
untrusted storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, pages
29–42.

Ko, R. K., Jagadpramana, P., Mowbray, M., Pearson, S.,
Kirchberg, M., Liang, Q., and Lee, B. S. (2011).
Trustcloud: A framework for accountability and trust
in cloud computing. In Services (SERVICES), 2011
IEEE World Congress on, pages 584–588.

Luna, J., Suri, N., Iorga, M., and Karmel, A. (2015). Le-
veraging the potential of cloud security service-level
agreements through standards. IEEE Cloud Compu-
ting Magazine, 2(3):32 – 40.

Popa, R. A., Lorch, J. R., Molnar, D., Wang, H. J., and
Zhuang, L. (2011). Enabling security in cloud storage
slas with cloudproof. In USENIXATC’11.

Rong, C., Nguyen, S. T., and Jaatun, M. G. (2013). Beyond
lightning: a survey on security challenges in cloud
computing. Computers and Electrical Engineering,
39(1):47–54.

Stallings, W. (2016). Cryptography and network security:
principles and practices. Pearson, 7 edition.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

134



Tassanaviboon, A. and Gong, G. (2011). Oauth and abe
based authorization in semi-trusted cloud computing:
aauth. In Proceedings of the second international
workshop on Data intensive computing in the clouds,
pages 41–50.

Thilakanathan, D., Chen, S., Nepal, S., and Calvo, R. A.
(2014). Secure data sharing in the cloud. In Secu-
rity, Privacy and Trust in Cloud Systems, pages 45–72.
Springer.

Tiwari, D. and Gangadharan, G. (2015a). A novel secure
cloud storage architecture combining proof of retrie-
vability and revocation. In ICACCI’15, pages 438–
445.

Tiwari, D. and Gangadharan, G. (2015b). Secure sharing of
data in cloud computing. In International Symposium
on Security in Computing and Communication, pages
24–35.

Yang, K. and Jia, X. (2012). Data storage auditing service
in cloud computing: challenges, methods and oppor-
tunities. World Wide Web, 15(4):409–428.

Detection of Access Control Violations in the Secure Sharing of Cloud Storage

135


