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Abstract: Smart Cities draw a nice picture of a connected city where useful services and data are ubiquitous, energy
is properly used and urban infrastructures are well orchestrated. Fulfilling this vision in our cities implies
unveiling citizens data and assets. Thus, security and data privacy appear as crucial issues to consider. In
this paper, we study a way of offering a secured energy management service for diagnosis and classification
of buildings in a district upon their energy consumption. Our remote service can be beneficial both for local
authorities and householders without revealing private data. Our framework is designed such that the private
data is permanently encrypted and that the server performing the classification algorithm has no information
about the sensitive data and no capability to decrypt it. The underlying cryptographic technology used is
homomorphic encryption, allowing to perform calculations directly on encrypted data. We present here the
prototype of a crypto-classification service for energy consumption profiles involving different actors of a
smart city community, as well as the associated performances results. We assess our proposal atop of real data
taken from an Irish residential district and we show that our service can achieve acceptable performances in
terms of security, execution times and memory requirements.

1 INTRODUCTION

The smart city concept is intrinsically related to the
one of energy infrastructure and of smart grids. De-
spite their advantages, the smart metering systems
and in general the monitoring of smart devices and the
services for the energy domain cause serious security
and privacy concerns. A reporting too fine-grained on
a user consumption can reveal behavioral patterns and
thus may infringe on his/her privacy. For example, the
daily measurements can reveal whether a house is in-
habited or not or when the inhabitants are away. In
the same manner, the 15-minute or even the hourly
reports can reveal a person timetable and habits mak-
ing him/her vulnerable.

Therefore, in some countries and regions, privacy
concerns are the main barriers for the large scale
adoption of smart grid infrastructures (based on smart
meters) and of the associated services one could ben-
efit from. These problems of privacy and more gener-
ally data protection and computer security are mak-
ing the object of various reports and recommenda-
tion documents. For example, (NIST, 2010) is ad-
vanced by the NIST (National Institute of Standards

and Technology) in the USA as well as (Cavoukian
et al., 2010) by the Canadian authorities. In France,
the CNIL (Commission Nationale de l’Informatique
et des Libertés) has published in November 2012 a
compliancy kit for the communication meters (CNIL,
2012), conceived as a guide of best practices for the
innovation process in the electrical industry by in-
tegrating data protection directly in the definition of
new services, i.e. the “privacy by design”.

It is in this context, of a real concern of citizens
about their energy data privacy and the need of inno-
vative services, making use of modern cryptographic
primitives such as homomorphic cryptosystems, that
our work arose.

The aim of this work is to propose a new pri-
vacy preserving classification service architecture, us-
ing homomorphic cryptography, in which the privacy
of the energy data is assured by design. The sys-
tem prototype proposed in this paper is a service for a
smart district made of residential buildinds, perform-
ing classification and labelling remotely, without hav-
ing access to sensitive data such as energy consump-
tion or households characteristics (surface, number of
inhabitants, etc.). Since one of the main issues with
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homomorphic cryptosystems are their costs in terms
of applicability and performances, we are focusing
here more on the required effort needed to imple-
ment a privacy preserving service based on this kind
of technology. As such, we analyse the requirements
in terms of protocol as well as the performances when
using an additive homomorphic cryptosystem ((Pail-
lier, 1999)), more easy to use but allowing only ad-
ditions on encrypted data, and also a leveled homo-
morphic scheme (e.g. (Brakerski et al., 2011)). The
latter is more recent and more complex but allows to
execute, beside additions on the encrypted domain,
a predefined number of consecutive multiplications.
Let us also insist on the fact that, in this paper, we fo-
cus only on the privacy-preserving of the second step
of a classification process, i.e. the operational phase
of predicting the label for a given secured-through-
encryption data, based on an already acquired model.

To summarize, the main contributions in this pa-
per are: (a) the proposal of a new type of services
for the smart city and energy field which are secured-
by-design; (b) a Gaussian classifier for predicting the
class of encrypted data (here, readings of smart me-
ters); (c) the use of two appropiate homomorphic en-
cryption schemes to protect energy data and, finally,
(d) a description of a working demonstrator and a de-
tailed analysis of its performances.

This work is organized as follows. In Section 2,
we present some prior work related to the data pri-
vacy in the smart energy field with a focus on the
privacy preserving data mining approaches. Section
3 describes the overall architecture of the classifier
as well as the underlying mechanisms for performing
the required operations using homomorphic proper-
ties. The implementation of the prototype, the dataset
description and an evaluation of the associated per-
formance results are given in Section 5. Lastly, the
final section gives some insight about future works
and perspectives.

2 RELATED WORK

Most of existing studies for energy data privacy con-
centrate on aggregation as the main application of ho-
momorphic cryptography for smart grids (e.g. (Li
et al., 2010), (Zirm and Niedermeier, 2012), (Vetter
et al., 2012)). Data aggregation is one of the core
functionalities often implemented in smart grids ar-
chitectures at various scales (neighborhood, region,
cities, etc.) and at different frequencies (every 15 min-
utes, daily, monthly, etc.). This comes with the pur-
pose of monitoring and predicting power consump-
tion, billing, reducing network load and traffic, effi-

ciently administrate power generation, etc.
Moreover, a large category of existing services ex-

ploits the smart meters readings based on data mining
techniques but without any guarantee on data privacy
while performing this type of algorithms. We can also
note a variety of approaches dedicated to the analysis
and data mining of individual electricity consumption
data, such as the HERS-Home Energy Rating System,
NILM - Non-Intrusive Load Monitoring approaches
(e.g., (Kim et al., 2010)) or other related literature
on pattern identification (e.g., (De Silva et al., 2011),
(Verdu et al., 2006)). However, to our knowledge,
none of the existing work for the energy consumption
classification has addressed the problem of assigning
a class label for a given household while protecting its
private data. For respecting the “privacy by design”
principle one has to imagine new secure services us-
ing, for example, cryptographic techniques such as
homomorphic encryption.

We consider that the application of efficient data
mining techniques with underlying homomorphic
schemes for building more privacy-friendly decision
making tools in the context of smart energy could be
beneficial for all the actors of this domain: the energy
providers, the transmission system operators, the end-
users, etc.

According to the mechanisms they rely on, we can
distinguish between three main categories of privacy
preserving data mining approaches:

• Data perturbation methods (e.g. (Agrawal and
Srikant, 2000), (Bayardo and Agrawal, 2005))
Before outsourcing the data to an external service
which performs the data mining, the data is per-
turbed by adding random noise such that the fi-
nal distribution seems different from the one of
the actual data. Due to the addition of noise, data
mining results may be significantly less accurate.
Additionally, the data perturbation techniques do
not offer strong cryptographic security properties
such as the semantic security (Goldwasser and
Micali, 1982).

• Data distribution or partitioning methods (e.g.
(Lindell and Pinkas, 2000), (Kantarcioglu and
Clifton, 2004))
The main disadvantage of this type of methods
is that they rely on heavy cryptographic mecha-
nisms with high computational and communica-
tion overheads.

• Other cryptography-based techniques.
In this category, we include the studies which are
also using homomorphic encryption schemes be-
side other cryptographic techniques (e.g. (Bost
et al., 2014), (Graepel and Naehrig, 2012),
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(Samanthula et al., 2014)). Since there are only
a few existing studies and this is the particular
setting we are interested in, we will insist on this
family of studies and provide more details for de-
scribing the classification algorithms belonging to
this class.

Most of existing studies are dedicated to preserving
privacy during the training phase in which a model
is learned (using or not homomorphic encryption ma-
chinery, e.g. (Graepel and Naehrig, 2012),(Saman-
thula et al., 2014)) and only a few address the predic-
tion step. Since, as stated previously, our approach
addresses data privacy in the operational step of the
classification process, we will describe further on the
existing studies using homomorphic encryption dur-
ing the labeling process.

The authors in (Graepel and Naehrig, 2012) pro-
pose a machine learning confidential protocol based
on homomorphic encryption in which both training
and prediction occur on encrypted data for a Linear
Means classifier and a Fisher’s Linear Discriminant
Classifier. The results on the Wisconsin Breast Can-
cer dataset (UCI, 2016) show a slow down of 6-7
orders of magnitude when performing on encrypted
data instead on plaintexts. For example, using a Lin-
ear Means Classifier, the classification of a test vector
with 30 attributes takes roughly 6 seconds.

In (Bost et al., 2014), only the privacy for the clas-
sification process is addressed, by ignoring how the
model has been build. As such, they are first con-
ceiving a library with three building blocks which is
further used as support for implementing classifiers
such as hyperplane decision based, Naive Bayesian,
decision trees and AdaBoost. The performances vary
in function of the complexity of the classifier and the
number of classes of the model (e.g. > 1600 ms for
a Naive Bayes Classifier on 5 classes and 9 features)
and with an important overhead due to the communi-
cation (more than 70% of the total execution).

Here, we present a Gaussian classifier with the
prediction performed on encrypted data, tailored to be
applied for the protection of smart energy data read-
ings.

3 SERVICE ARCHITECTURE

In this section, we present different global views for
employing the classification service while assuring
data privacy. The difference between these architec-
tures lies in the manner the service is exploited by the
actors in a smart city. In the scenario of a residen-
tial district, between the main users of such privacy-

preserving classification energy service, one can enu-
merate:

• Owners of residential buildings, providers of en-
ergy data and other household characteristics (sur-
face, number of inhabitants, revenues, etc.)

• A district management entity. One of his main
concerns is how to ensure the district energy cost
effectiveness based on district energy data. Esti-
mating the energy efficiency of the district build-
ings is an interesting way towards the identifica-
tion of greedy consumers. It is also a valuable
feedback for future strategic decisions. However,
for different reasons (legal or ethics, lack of re-
sources or experience in data mining, focus on his
core business) he does not perform the classifica-
tion service by his own.

• A qualified remote third-party. This service
provider designates a major actor of the use
case and is able to process data, perform en-
ergy classification and assign ratings or labels.
It can be perceived as an energy stakeholder
having a valuable experience with classification
or an energy consulting service supported by
an energy provider/governmental programs (Ene,
2016). Typically, these services are built over
conceived metrics and defined ratings (Niko-
laou et al., 2015). They are extracted from
users’ feedback, investigations, surveys and sim-
ulations about residential electricity consumption
and householders information. Thereby, shar-
ing such data with the energy rating service is
obviously necessary. Nevertheless, if sharing
plain data threatens the privacy of inhabitants, this
would compromise the rating process. The use of
the homomorphic cryptography, in this situation,
is a credible solution to overcome this constraint.

Attributing labels or ratings to the buildings, the
same way it is done for some home appliances, could
be helpful in providing synthetic indications about the
energy efficiency throughout the district. Many archi-
tectures can be proposed in this sense but we will de-
scribe here two kinds of architectures. On the one
hand, a three-tier architecture that involves the en-
ergy rating service, the district buildings and a district
management entity. The latter role can be assumed
by a district manager, (an) energy program adminis-
trator(s) or state/local authorities. According to the
entity right access to district energy data, two sub-
types of this architecture variant can be defined. On
the other hand, if the process only concerns buildings
and the energy rating service, a two-tier architecture
fulfills the use case requirements.

We address the following questions: Concretely,

SMARTGREENS 2018 - 7th International Conference on Smart Cities and Green ICT Systems

80



how do a district management entity or district build-
ings communicate with the energy rating service?
What are the requirements that allow the energy rating
service to process data and guarantee the exclusive ac-
cess to the plain results to the district manager?

3.1 First Variant of the Three-Tier
Architecture

As shown in Fig. 1, this architecture supposes that
the district management entity collects the data and
leads the encrypted data exchange with the energy
rating service. This requires that the district manage-
ment entity securely collects the energy data through-
out the district (for example using standard cryptogra-
phy techniques such as symmetric encryption). Then,
when the district management entity needs to rate the
energy efficiency of residential buildings, he launches
the encryption of the data with her homomorphic pub-
lic key.The encrypted data is sent to the third-party
service to be processed and to determine encrypted
ratings expressing the energy efficiency. In order to
assign a rating to residential building in a secure way,
an encrypted distance is computed between its energy
efficiency metric and the one of each reference rat-
ing. The reference metrics are also encrypted with
the public key of the district management entity. The
sharing of the homomorphic public key can be real-
ized by sending it from the district manager to the
third-party service or by the recourse to a public key
infrastructure (PKI). Finally, after the secure rating
process, the district management entity collects the
encrypted classification results. Her private key en-
sures that he has the exclusive right to decrypt the out-
puts of the energy rating service and obtain the energy
efficiency for all the district he administrates.

3.2 Second Variant of the Three-Tier
Architecture

Fig. 2 depicts a second variant of the three-tier ar-
chitecture. In this case, the district buildings send the
encrypted data to the energy rating service to perform
the secure classification. As for the district manage-
ment entity, he collects the encrypted ratings. The
three tiers share the same public key, meanwhile, the
district management entity possesses the private key
which enable her to decrypt the service output in order
to access the labeling results. Here, the architecture
offers a credible solution when it is preferred that the
district management entity has no visibility on plain
data.

3.3 Two-Tier Architecture

When the process does not involve a district manage-
ment entity, we head for a two-tier architecture as de-
picted in Fig. 3. A private key is possessed by each
one of the buildings in the district. In this case, a
householder who wants to obtain an energy efficiency
evaluation launches the sending of his own encrypted
data. Then, the energy rating service processes this
data and returns the encrypted rating to the house-
holder. Finally, he decrypts the service answer with
his private key to access his evaluation. In this case,
we assume either the existence of a PKI or that each
district building has previously sent the public key to
the energy rating service.

Figure 1: First Variant of the Three-Tier Architecture.

Figure 2: Second Variant of the Three-Tier Architecture.

Figure 3: Two-Tier Architecture.
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4 PRIVATE CLASSIFICATION
ALGORITHM

4.1 General Description

For showing the feasibility of our approach, we have
chosen a basic Gaussian classifier which was adapted
in order to execute the prediction step on encrypted
data. As such, given an encrypted attribute vector
x, the purpose is to predict its class label based on
the learning model acquired during the training step.
Remember that we focus here only on the labeling
step using private data and we suppose that the model
building was realized previously in the clear domain.

In the case of a Gaussian Classifier, each class C j
from the m classes defined during the training phase
is assumed characterized by a Gaussian distribution
with a mean µ j and a covariance matrix Σ j.

The mean of a class C j is the vector µ j ∈Rn: µᵀj =
[µ j0 ,µ j1 , . . . ,µ jn ] with µ ji the mean for the components
i of the examples vectors x belonging to class C j (i.e.

µ ji =
∑

n
i x(i)
n ).

For vectors with n features, the covariance matrix
of a class C j is a semi-positive n×n matrix computed
as: Σ j = {c(a,b)} with a,b ∈ {1, . . . ,n} and c(a,b)
the covariance between the features a and b, measur-
ing their tendency to vary together.

A feature vector x from the training set T is thus
classified by measuring a Mahalanobis distance from
x to each of the classes and by selecting the minimal
norm. The main steps of the prediction phase of the
Gaussian classification algorithm are described in Al-
gorithm 1, Steps 4-6. The training phase realized on
T0, the set of training vectors x0, has been realized be-
fore, resulting in a model with m classes. After com-
puting the mean and the covariance of each class C j
(Steps 1-3), a class label is predicted for each testing
vector x ∈ T .

As you can see, the prediction algorithm consists
mainly on the computation of distances between the

Algorithm 1: Gaussian classifier - prediction step.

Require: T0 = {x0 ∈ Rn}; T = {x ∈ Rn} ; m classes
C j

1: for ∀C j, j ∈ {1, . . . ,m} do
2: compute µ j and Σ j using x0
3: end for
4: for x ∈ T do
5: compute dM(x,C j), ∀ j ∈ {1, . . . ,m}
6: C(x)← argmin(dM(x,C j))
7: end for

Ensure: C(x), ∀x ∈ T

attribute vector x and the classes. Let us now explain
how this distance can be evaluated on homomorphic
encrypted data.

4.2 Homomorphic Distance Evaluation

Given a vector x and a class C j, the Mahanalobis dis-
tance from x to class C j is defined as:

d2
M(x,C j) = (x−µ j)

ᵀ
Σ
−1
j (x−µ j).

Note that in the particular case where the features
are uncorrelated or of a unidimensional feature vec-
tor the Mahalanobis distance is equivalent to the Eu-
clidean distance.

For simplification reasons, let us note Σ
−1
j as S,

µ j simply as µ and r = d2
M(x,C j). Thus, the distance

metric becomes:

r = (x−µ)ᵀS(x−µ) = xᵀSx−2µᵀSx+µᵀSµ.

Let suppose that we want to protect x and that µ
and S were previously computed on plaintexts. Thus,
the computation of the distance has to be realized us-
ing the encrypted form of x leading to an encrypted
r. The last term is only using plaintext data so it is
easy to calculate it and to add it to the other terms
using the properties of the underlying homomorphic
scheme. Also, since µᵀ is a vector with the same di-
mension as x, the term µᵀSx is linear (the scalar ten-
sor between a plaintext vector and an encrypted one)
and can be computed with an additive homomorphic
scheme. The first term α = xᵀSx is a little bit more
complicated. If ∑

n
j=1 si jx j = y then:

α =
n

∑
i=1

xiyi =
n

∑
i=1

n

∑
j=1

si jxix j =
n

∑
i=1

n

∑
j=1

si jzi j (1)

with zi j = xix j. So, if we have at our disposal the n
ciphertexts xi and the n(n− 1)/2 ciphertexts zi j, we
can use an additive homomorphic cryptosystem. If
we want to avoid the transfer of the quadratic terms
from the client to the server, we can also make appeal
to a homomorphic cryptosystem with a multiplicative
depth of at least 1. An example is the encryption
scheme from (Catalano and Fiore, 2014), extension of
Paillier cryptosystem, allowing to perform one multi-
plication over encrypted data. One can also use the
so-called leveled homomorphic cryptosystems, such
as the Ring-LWE-based (e.g. (Brakerski et al., 2011)),
more complex but with more computing capabilities
and quantum-safe. Let us remember that the multi-
plicative depth, notion related to the number of con-
secutive multiplications one can execute on cipher-
texts, is a important characteristic of these leveled ho-
momorphic schemes, defining the maximum allow-
able level of noise for a given set of parameters (the
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multiplication inducing a much bigger noise than the
addition).

In the following, for simplicity sake, we explain
the case of a classical architecture, in which the client
has some private data, a single attribute vector, and
makes appeal to a classification service in order to ob-
tain a label for this data only. Of course, the protocols
described below still can be applied if, instead of a
single instance, we have to label k such instances, as
is the case with the district manager in the scenarios
described in Section 3.

4.3 Prediction Step on Homomorphic
Encrypted Data

Additive Homomorphic Encrypted Data. Let us
suppose that the system relies on an additive homo-
morphic cryptosystem and analyze more in details the
overall protocol required by the classification service.

The client having the sensitive data to be pro-
tected in the form of an attribute vector x of size n,
has to encrypt, using his public key, for each vec-
tor each component xi as well as the products xixk,
with i,k ∈ {1 . . .n} and i ≤ k. He send these en-
crypted data to the service provider which has the
model build on clear data, i.e. for the Gaussian clas-
sifier, the m classes mean µ j and the inverse of the co-
variance matrix Σ j for j∈{1, . . . ,m}. When receiving
an encrypted vector to be labeled, the server computes
the distances as described in the previous section and
sends these encrypted m ciphertexts to the client. The
client decrypts the distances using his secret key, then
performs the sorting and selects the minimal distance,
corresponding to the classes his data belongs. More-
over, the access to all clear distances can give the
client an idea not only of the class he belongs to now
but also how far is it from the other classes and, in
some way, the needed effort in order to target a better
label. The main drawback is the communication over-
head induced by sending the quadratic terms from the
client to the server.

Leveled Homomorphic Encrypted Data. If the
underlying homomorphic scheme allows to realize at
least one multiplication on the ciphertext, there are
some slight modifications in the protocol for the label-
ing step. This time, the client having the attribute vec-
tor x of size n will encrypt only the components {xi}
and send them to the service provider. As such, the
quantity of upload information is in this case linear in
the number of attributes. The server computes the m
encrypted distances as previously, with the mention
that now it is able to compute alone the first term α

since one multiplication is allowed. The remaining

of the protocol is similar to the previous one, on the
client side.

Moreover, this protocol can be improved due
to the batching technique (Smart and Vercauteren,
2014), allowing to pack and encode data for process-
ing it in parallel in a SIMD (Single Instruction Mul-
tiple Data) fashion without any extra cost. As such,
all the m distances can be embedded in slots and en-
crypted with a single ciphertext, computed in parallel
by the service provider, and send in a single shot to
the client (and thus reducing the download communi-
cation cost).

Threat Model. For both protocols, one could argue
that the client could infer the properties model of the
server from the information he has access to, through
repeated requests and statistical inference. We fo-
cus in this paper more on protecting the client data
from a honest-but-curious or not secured enough ser-
vice provider and one could easily imagine protection
mechanisms also for the server side (e.g. no more
than a given number of requests). Note also that the
security model we present here is not designed to as-
sure the model nondisclosure in the case of collusion
between several clients. As for the underlying homo-
morphic cryptosystems, they assure semantic security
(Goldwasser and Micali, 1982).

Let us now give some details about the homomor-
phic schemes we used for testing the feasibility of our
approach, with the remark that the general principles
remain the same if other additive or leveled homomor-
phic schemes are deployed.

4.4 Homomorphic Cryptosystems

Paillier Additive Encryption Scheme. As de-
scribed previously, it appears that an additively homo-
morphic system is enough in order to execute the clas-
sification algorithm. We have chosen Paillier cryp-
tosystem (Paillier, 1999) a well-known and popular
additively homomorphic cryptosystem. Let us recall
here some of its main characteristics allowing the dis-
tance computation in the encrypted domain.

Let p and q denote two large primes and n = pq.
Then, the cleartext domain of the Paillier system is
Zn and the ciphertext domain is Zn2 . Additionally, let
λ = lcm(p−1,q−1) and g < n2 be randomly chosen
such that

gcd(L(gλ mod n2),n) = 1,
with L(u) = u−1

n . The public (encryption) key is pro-
vided by n and g whereas the private (decryption) key
in given by p and q or, equivalently, λ. Then, encryp-
tion is done by computing

c = enc(m) = gmrn mod n2, (2)
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where m < n is the message and r is uniformly chosen
in Zn. Letting D = L(gλ mod n2) and D−1 its multi-
plicative inverse in Zn, decryption is then performed
by evaluating

m = dec(c) = L(cλ mod n2)×D−1 mod n.

More importantly for the present purpose, this
cryptosystem has the following homomorphic prop-
erties:

1. dec(enc(m1)enc(m2)) mod n2 = m1 + m2
mod n (addition of two encrypted messages).

2. dec(enc(m)gk) mod n2 = m + k mod n, for all
k∈Zn (addition of an encrypted message to a clear
integer).

3. dec(enc(m)k) mod n2 = km mod n, for all k ∈
Zn (multiplication of an encrypted message by a
clear integer).

BGV Encryption Scheme. This leveled homomor-
phic encryption scheme, based on the Ring-Learning
with Errors problem, uses a series of different inte-
ger modulus for ciphertexts evaluation, allowing the
modulus switching between these modulus in order
to reduce the noise. Let A= Z [x]/Φm (x) be the ring
of integers modulo the m-th cyclotomic polynomial.
The ciphertext space is composed of vectors over the
polynomial ring Aq = A/q where q is an odd mod-
ulus evolving during homomorphic evaluation. The
cleartext domain is the ring of polynomials At , with
the native plaintext being t = 2 but larger modulus al-
lowing to execute operations on integers modulo t are
also possible.

In its batching version, the plaintext space ring At
is factored into sub-rings (through CRT-factorization
of Φm (x) modulo t) such that the operations of addi-
tion and multiplication can be applied on each sub-
ring independently. As such, it is possible to pack
several several messages into the slots of a single ci-
phertext and execute the homomorphic operations in
parallel on all messages at once.

Let us enumerate some of the important homo-
morphic operations supported by this cryptosystem:

1. Keygen(1λ) with λ security parameter (generation
of the secret key sk, the public key pk and of
an additional set of evaluation keys evk for key-
switching in homomorphic operations).

2. encpk(m) (encryption of the plaintext message
m ∈ At using pk).

3. decsk(ct) (decryption of the ciphertext ct using
sk).

4. decsk(Add(ct1ct2)) = decsk(ct1)+ decsk(ct2) (ad-
dition of two encrypted messages).

5. decsk(Mult(ct1,ct2,evk)) = decsk(ct1)∗decsk(ct2)
(multiplication of two encrypted messages using
if needed key-switching for reducing the noise).

More details are to be found in the original paper
(Brakerski et al., 2011).

5 SYSTEM PROTOTYPE

5.1 Load Profiles Dataset and Energy
Efficiency Rating

In order to reproduce the scenario of the residen-
tial district, we have used the CER Smart Metering
Project dataset1. It represents a comprehensive data
source as it encompasses several residential load pro-
files (4225 load profiles in total) with related envi-
ronmental information. On top of proposing elec-
tricity consumption information, the dataset provides
specific indications about the householders owners.
Subsequently, we chose 40 residential load profiles
among the available ones to create our district. The
selected profiles have to fulfill the following condi-
tions:
• No missing data between January 1st, 2010 and

December 31st, 2010.
• Householders of the retained load profiles must

have completed the information about the surface
of the residential building and the number of oc-
cupants.
• Electric heating systems are installed in these

buildings.
These conditions are defined so to enable us to ex-
press the energy efficiency of a residential building.

Regarding the ratings, we proposed to create clus-
ters from the metrics for each load profile, each clus-
ter defined by a label (ranged from ’A’, heavy con-
sumers, to ’F’, light consumers) and an average met-
ric (expressed in kWh/(year.m2.occupant)). For this
purpose, we simply applied a k-means (MacQueen,
1967) and we set the number of cluster at 6. This
choice proposed the maximum number of rating lev-
els where no cluster has a size of one. To determine
the category of a residential building, a distance is
computed between its metric and the ones of each
cluster using homomorphic encryption.

5.2 Performances Results

All the experiments were realized using a standard
workstation, with a processor Intel Core I7 at 2.6
1www.ucd.ie/issda/data/commissionforenergyregulationcer/
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GHz, with 16 GB of RAM memory and Ubuntu 16.04
as operating system (on 64 bits). The performance
tests use a home made C++ implementation of Pail-
lier additive cryptosystem (based on GMP library)
as well as HElib (Halevi, 2013), the open-source li-
brary from IBM, implementing the BGV cryptosys-
tem. For the version based on Paillier, the code has
parallelized sections for the encryption part and the
distance evaluation (using pragma omp instructions).
For the HElib-based tests, we implemented two basic
solutions both using batching but one of them being
more optimized.

Results for Paillier-based Prototype. Our experi-
ments showed that, as expected, the size of the up-
load data increases with the number of instances we
want to label and, also, with the number of attributes
for each instance and their quadratic products. The
download data is proportional with the number of
households’ instances to classify, the dimension of
the attribute vector for each household (one dimen-
sion for our demonstrator) and the number of classes
the model presents.

Table 1 shows the size, in bytes, of one ciphertext
for different security levels (i.e. the modulus size) as
well as the latency in seconds for uploading the en-
crypted data (column “UP”) and downloading the 6
distances (column “DW”) for all of the 40 instances,
when considering a network with a throughput of 10
Mbps.

We have also been interested in measuring the pro-
cessing times of the encryption, distance computation
and decryption steps according to the size of the key.
For this evaluation we defined a scenario by a cou-
ple of parameters: the key size and the step to exe-
cute. We considered 2 key sizes for this purpose, by
analyzing the execution times when using 1024- and
2048-bit keys for the encryption of the 40 residential
profiles, the computation of the distances for these in-
stances with regards to the 6 classes and the decryp-
tion of the results for all the households. We collected
valuable information after executing each scenario 40
times. Table 2 summarizes these execution times for
each step and each key size. As expected, the larger
the key size, the longer the execution times are, for
each of the steps. This is particularly remarkable for
the distance computation step, taking the most impor-
tant part of the overall computation. Besides its de-
pendency on the key size, the labeling is also propor-
tional with the number of instances to classify (here
40), their dimension (here 1) and the number of the
reference classes (here 6). The execution times for
the encryption depend on the number of instances to
classify and their dimension while the decryption pro-

Table 1: Data communication for different key sizes.

Bits Size/ciphertext (bytes) Latency (sec)
UP DW

1024 617 0.03 0.12
2048 1233 0.08 0.23

Table 2: Execution times (sec) of labeling steps for different
keys.

Bits Step Avg. Min. Max.

1024
Encryption 0.76 0.42 2.25
Labeling 3.97 3.23 5.73

Decryption 0.49 0.34 1.91

2048
Encryption 3.96 3.19 5.45
Labeling 19.84 17.97 22.85

Decryption 2.69 2.47 4.34

cessing times depend on the dimension and the num-
ber of references.

Results for HElib-based Prototype. For the first
solution based on HElib tests (named “SOL 1”) and
for a given attribute vector x with n elements, each of
the attributes xi, with i ∈ {1, . . . ,n} is embedded in a
different plaintext slot in the form of an integer mod-
ulo pr where p is an arbitrary prime (which does not
divide m) and r a small positive integer. This allows
to encrypt all the attributes of x in the same cipher-
text. The references, i.e. the means of the classes,
are represented as m vectors of dimension n. As such,
for one instance to label, we obtain m ciphertexts cor-
responding to the encrypted distances to each class.
When such a ciphertext is decrypted, the sum on the
slots for the obtained plaintext gives the clear distance
to the associated class (modulo pr).

In the second solution, named “SOL 2”, we take
advantage of the free plaintexts slots (usually the
number of slots is much larger than the number of at-
tributes) and, for a single instance x of dimension n to
label with regards to m classes, we replicate it m times
and embedded into the slots of a plaintext, by padding
with 0 the remaining space. In this configuration, the
means are expressed as a single array of dimension
m× n and we can compute all the distances in the
same time using a single ciphertext. Once received
and decrypted, one can obtain the clear distances by
making the sum on sub-sets of successive slots. The
necessary condition for this approach is that the num-
ber of slots has to be higher or equal to m×n.

Table 3 shows two configuration of parameters for
HElib testing we chosen in order to have s, the right
number of slots, (sufficient but not too large) and a
security level of at least 80.
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Table 3: Parameters for HElib tests.

Test m p r L s Security
TEST 1 6679 2 8 3 42 180.46
TEST 2 8253 2 8 4 12 92.17

Tables 4 - 5 highlight the data size for both so-
lutions when using the first and respectively the sec-
ond set of HElib parameters (TEST 1 and respec-
tively TEST 2). As previously, the latency is com-
puted in seconds for uploading the encrypted data
(column “UP”) and downloading the 6 distances (col-
umn “DW”) for all of the 40 instances, when consid-
ering a network with a throughput of 10 Mbps. This
time, the size of a ciphertext is much larger than the
one for a Paillier encrypted data (several thousands
of kbytes versus thousands of bytes), due to the com-
plexity of BGV cryptosystem. We also note that the
second solution allows to decrease the download la-
tency. In fact, instead of sending m ciphertexts, only
one is sent back to the client for decryption.

Table 4: Data communication for different key sizes (TEST
1).

SOL Size/ciphertext (kbytes) Latency (sec)
UP DW

1) 290.98 9.31 55.87
2) 290.98 9.31 23.14

Table 5: Data communication for different key sizes (TEST
2).

SOL Size/ciphertext (kbytes) Latency (sec)
UP DW

1) 204.61 6.54 98.30
2) 204.61 6.54 16.38

Tables 6 - 7 summarize the execution times ob-
tained for the first and respectively second solution,
when using the above configurations of parameters,
for labeling the 40 households relying on 6 references.

Table 6: Execution times (sec) of labeling steps for different
key sizes (TEST 1).

SOL Step Avg. Min. Max. Context
Reading

1)
Enc. 0.67 0.60 0.79

7Label 9.56 9.02 10.51
Dec. 27.49 25.64 31.44

2)
Enc. 0.71 0.64 0.91

7.15Label 1.65 1.48 2.10
Dec. 4.36 4.05 5.02

Table 7: Execution times (sec) of labeling steps for different
key sizes (TEST 2).

SOL Step Avg. Min. Max. Context
Reading

1)
Enc. 0.83 0.80 0.98

4.06Label 14.57 13.55 15.32
Dec. 9.80 9.25 10.55

2)
Enc. 0.90 0.81 1.31

4.31Label 2.45 2.31 3.27
Dec. 1.58 1.38 2.57

We consider that the context reading (the parame-
ters and the keys reading) is realized once for all the
40 instances and, as the results indicate, depends on
the set of initial HElib parameters. The results of exe-
cution times of the second optimized solution (SOL 2)
are of better quality than for the first solution for the
labeling and decrypting step, which looks right since
we are executing the homomorphic evaluation and the
decryption on a single ciphertext. Also, we obtain
that for the second set of parameters (TEST 2), aim-
ing a smaller security level, the processing times are
smaller that the ones for the first set (TEST 1) which
seems quite normal.

Finally, when comparing the second optimized so-
lution with Paillier-based prototype on 2048 modulus,
we remark that in general the execution times for en-
cryption and labeling steps are faster but the decryp-
tion takes longer.

Of course, these are just some preliminary tests
using HElib and a more thoughtful analysis of the pa-
rameters setting is necessary. Moreover, we can imag-
ine several solutions for improving the performances.
One of the problems we have in the current form is
that most of the time passes in the context reading.
Also, for now, the 40 instances are executed sequen-
tial and in the future this treatment could be also par-
allelized.

6 CONCLUSION AND
PERSPECTIVES

This paper presents a demonstrator of a practical im-
plementation of a secure energy data classifier to be
deployed in a Smart City. The system was tested
with a homomorphically additive cryptosystem and
a leveled homomorphic scheme and achieves perfor-
mances acceptable in a real-world setting. The re-
sults obtained attested the effectiveness of our pro-
posal and the ability of our solutions to perform pro-
cesses on data while guaranteeing privacy. This is
just a first proposal of a secure rating energy service
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using homomorphic encryption and thus many im-
provements can be imagined. First at all, we plan to
implement and test the classification algorithm using
other homomorphic cryptosystems (e.g., more recent
third generation homomorphic schemes such as (Gen-
try et al., 2013)). At the same time, we will focus on
the scalability of such an application and the subse-
quent impacts on processing performance. Secondly,
one could imagine a more complex classification al-
gorithm, less naive than the Gaussian one along with
a more thorough evaluation process of the accuracy
of the proposed service. Last but not least, one has
to think of the way the labeling provided by this out-
sourced service could be usefully exploited by other
tools, such as optimization scenarios, in order to en-
dow the Program Administrator with a cost efficient
overall solution.
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