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Abstract: Standard modelling languages enabled the Model-Driven Software Engineering paradigm, allowing the 

development of model compilers for code generation. This, however, induces a subordination of 

implementation to the modelling language: the modelling benefits are confined to a fixed semantic space. On 

the other hand, the rise of agile software development practices has impacted model-driven engineering 

practices - an Agile Modelling paradigm was consequently introduced. This was later expanded towards the 

Agile Modelling Method Engineering (AMME) framework which generalizes agility at the modelling method 

level. By observing several AMME-driven implementation experiences, this paper specialises the notion of 

Model-Driven Software Engineering to that of Model-Aware Software Engineering – an approach that relies 

on modelling language evolution, in response to the evolution of the implemented system's requirements. The 

key benefit is that the modelling language-implementation dependency is reversed, as the implementation 

needs propagate requirements towards an agile modelling language. 

1 INTRODUCTION 

The convergence of agile software development 

practices and the Model-Driven Engineering 

paradigm has naturally lead to the Agile Modelling 

methodology (Ambler, 2002). However, agility in 

AM focuses on modelling practices rather than 

modelling methods.  

The underlying assumption is that all software 

development needs can be subordinated and 

conceptually subsumed to the fixed semantic space 

defined by standard modelling languages. This is a 

reasonable assumption in the two dominant 

perspectives on the role of conceptual modelling in 

software engineering: (i) the modelling is 

documenting perspective, where models act as 

guidance for developers, and are therefore "distilled" 

by a human programmer relying on consensus with 

respect to notation, structure and meaning; (ii) the 

modelling is programming perspective, where models 

are input for code generators that have been 

preprogrammed based on the fixed semantic space. 

The Agile Modelling Method Engineering 

(AMME) framework (Karagiannis, 2015) introduced 

a third perspective, that of modelling is knowledge 

representation, where the modelling language is 

tailored for capturing with diagrammatic means the 

enterprise knowledge that is relevant for implemented 

artefacts. The relation to implemented artefacts is not 

based on code generation, but rather on 

parameterization of software artefacts with properties 

that are extracted or inferred from models. Compared 

to process-aware information systems (van der Aalst, 

2009), AMME advocates a full customization of the 

modelling language. 

This vision of AMME was adopted for the 

purposes of the work at hand, which focusses on the 

implementation of project-based instances of a 

Model-Aware application for the goals of (i) 

evaluating the feasibility of this software engineering 

methodology and of (ii) positioning AMME in a 

novel, knowledge-driven software development 

method. Therefore the proposed contribution is ther a 

software development method (labelled as Model-

Aware Software Engineering) that assumes the 

adoption of AMME for modelling activities, as an 

alternative to the standards that traditionally drive 

model-driven engineering efforts. 

The remainder of the paper is structured as 

follows: Section 2 provides background on AMME. 
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Section 3 shows how AMME fosters knowledge 

processes that establish the "knowledge-driven" 

quality of the hereby proposed method. Section 4 

employs an illustrative example that is currently 

being evolved in project-based work. Section 5 

comments on related works. The paper ends with a 

concluding evaluation and outlook. 

2 BACKGROUND ON AGILE 

MODELLING METHOD 

ENGINEERING 

The keynote paper of (Karagiannis, 2015) introduced 

the principles of Agile Modelling Method 

Engineering, indicating the Open Models Laboratory 

- OMiLAB (Open Models Laboratory, 2017) as a 

deployment environment and architecture where 

AMME emerged and is being evaluated in project 

work involving the development of domain-specific 

modelling tools - see a presentation of tools in 

(Karagiannis et al., 2016). A commonly employed 

platform for the fast prototyping of modelling tools is 

ADOxx (BOC, 2017). Earlier AMME experience 

reports are available in the literature (Buchmann and 

Karagiannis, 2015) - however, such experiences 

focus on the development of modelling tools and not 

on the software development processes that can be 

supported by such tools and their agile qualities – a 

gap that we aim to fill through this paper. 

The usable result of AMME is a modelling tool 

that deploys a modelling method, as defined in 

(Karagiannis and Kühn, 2002). Such a modelling tool 

evolves through iterations reflecting the increments 

applied on the modelling method's building blocks 

(i.e., the language, procedure and functionality). The 

fundamental drivers of this process are the modelling 

requirements – a specialized notion of requirements 

focusing on modelling scenarios / use cases. Just as 

requirements are considered unstable or evolving in 

agile software development, modelling requirements 

are also considered essentially unstable in AMME – 

several pragmatic reasons are behind this 

consideration, confirmed by this paper's work 

context: (i) users lacking in modelling experience will 

start raising change requests once they gain initial 

hands-on experience; (ii) if software is implemented 

based on the created models, the changing 

requirements for the software artefacts will propagate 

in modelling requirements. 

3 PROBLEM STATEMENT AND 

SOLUTION OVERVIEW 

The work at hand proposes a model-driven software 

engineering method that reverses the traditional 

subordination between implementation and models – 

i.e., instead of having the implementation 

subordinated to an invariant modelling language (i.e., 

confined to its fixed semantic space), the proposal is 

to have the modelling language subordinated to 

evolving implementation needs. Thus, a modelling 

language (and tool) should be agilely tailored and 

evolved through AMME to expose the semantics 

needed for implementation. 

The proposed method expands AMME towards 

the goal of software engineering. The applied 

extensions are summarized in Figure 1 (i.e., the Data 

Management and the Implementation lane). Since 

AMME produces an evolving modelling language 

(and, consequently, an evolving semantic space) the 

core assumption of traditional Agile Modelling (and 

associated software development processes) that 

models comply with some consensus on structure and 

semantics does not hold anymore. It is not feasible to 

evolve code generators in synchronicity with the 

modelling language evolution – change requests may 

be as drastic as adding an entirely new type of 

diagram to the language, thus reusability is very 

limited. AMME sacrifices reusability for benefits 

pertaining to specificity –the modelling environment 

will act as a Knowledge Management System rather 

than as component in some standards-based roundtrip 

engineering cycle. Under these assumptions, AMME 

does not serve as a system design enabler, but rather 

as a flexible knowledge acquisition enabler. Since 

AMME is essentially a metamodelling framework, it 

supports the acquisition of knowledge on two levels: 

(i) Domain knowledge, captured in the metamodel 

tailored for each language iteration; (ii) Case 

knowledge, captured through the act of modelling (by 

using a language iteration designed on the previous 

level). 

The two knowledge layers should be exposed to 

software development processes in an agile manner – 

i.e., changes in both the language and the model 

contents should be immediately made available to 

software development processes in a uniform 

representation that covers both layers. Models should 

be amenable to reasoning (i.e., if what was explicitly 

captured in diagrammatic form is deemed 

insufficient) - for this purpose, the Resource 

Description Framework (W3C, 2017a) is employed to 

streamline the knowledge conversion flow between 

the method's phases (Figure 1): 
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Figure 1: Knowledge conversion flow in Model-aware Software Engineering. 

The Conceptualization Cycle takes as input 

requirements and domain knowledge to produce an 

agile modelling tool engineered through AMME's 

incremental and iterative cycle comprising the 

following phases: Create (knowledge acquisition and 

modelling requirements analysis), Design 

(specification of the modelling method building 

blocks, including metamodel), Formalize (method 

formalization for a targeted audience or goal), 

Develop (modelling tool implementation) and Deploy 

(modelling tool deployment and usage). 

Microiterations involving only the design and tool 

implementation are common for fast prototyping 

purposes; they are performed on metamodelling 

platforms, benefitting from built-in user interaction 

and model management features, thus allowing the 

engineer to focus on the modelling semantics. The 

Modelling Cycle uses the tool produced by the 

Conceptualization Cycle to define models along a 

typical modelling cycle. Feedback from hands-on 

experience will drive new iterations of the 

Conceptualization Cycle. In the Knowledge-Driven 

Data Management Lane, model contents, enriched 

with metamodel information are converted to RDF 

knowledge graphs and linked through Linked Data 

techniques to any data entities that are not depicted in 

models. A graph database with reasoning capabilities 

is necessary - GraphDB (Ontotext, 2017) has been 

used in implementations. An adapter was 

implemented for ADOxx, to serialize models 

(enriched by metamodel information), according to a 

highly abstract meta-metamodel easily translatable to 

other metamodelling platforms, according to some 

transformation rules detailed in (Karagiannis and 

Buchmann, 2016). Their output is a conglomerate of 

RDF graphs – one graph per diagram, including an 

RDF schema derived from the metamodel and 

metadata associated with each diagram. This "model 

base" can be further enriched by the reasoning engine 

of the database (GraphDB supports both custom rules 

and OWL axioms), thus further filling the semantic 

gap between model contents and front-end. The 

Implementation Lane covers the model-aware 

implementation tasks. The developed front-end 

artefacts are semantically parameterized with 

information retrieved via SPARQL queries (W3C, 

2017b) from models, data, model-data links and any 

inferences that might have been executed on the 

"model base". Requirements for changes in the 

developed functionality can propagate back to the 

modelling language, thus triggering new AMME 

iterations, including the reprototyping of the 

modelling tool and the model base regeneration. 

4 ILLUSTRATIVE EXAMPLE 

4.1 Initial Requirements 

Stakeholders require a Workflow Management 

System driven by diagrammatic process descriptions. 

Their organization coordinates a virtual enterprise 

offering customized clothing, where a network of 
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candidate tailors, embroidery providers and delivery 

couriers can contribute, based on capacity and 

availability, to the execution of make-to-order 

production and delivery processes. 

Figure 2 shows a simplified make-to-order 

production process together with a screenshot of task 

assignments in the workflow management system, 

showing the tasks of the authenticated user – active, 

fulfilled and pending (in the latter case showing 

contact data for those responsible). Between the 

required front-end functionality and the richness of 

the model information there is an obvious semantic 

gap that is commonly filled in Workflow 

Management Systems by the data model employed at 

run-time, using the model description as a backbone 

to guide the task flow. Conceptual redundancy 

manifests between the data model employed at run-

time and the metamodel employed at design-time 

(e.g., the roles expressed by pools). Shifting 

conceptual fragments from the run-time data model 

towards the modelling environment will empower the 

modeller to drive process execution. 

4.2 Advanced Iteration 

The following modelling requirements are derived for 

an evolved iteration: Semantic Requirements: The 

virtual enterprise ecosystem must be described in 

more detail than what the swimlanes/pools allow. 

That is, dedicated concepts and relations must be 

devised to capture organizational structures, roles and 

instance employees as well as business partners 

grouped by the capability they can provide to the 

virtual enterprise. Similarly, a geographical coverage 

model should provide at least a grouping of targeted 

locations. Instance data properties may be necessary 

for those elements representing instances (e.g., 

address or coordinates for locations, contact data for 

business partners and employees). A distinction must 

be ensured between domain-specific task types 

(production tasks, driving tasks and delivery tasks). 

Syntactic Requirements: The new concepts must be 

separated from the process description in distinct 

types of models that may potentially evolve later 

independently of one another: one for business 

participants and one for locations, with the ability of 

mapping them to process tasks through hyperlinks 

across models. Notational Requirements: Simple 

groupings as graphical containers are preferable to 

visual connectors. The distinction between task types 

must be reflected visually. The notation should be 

enriched with domain specific visual cues rather than 

a standard notation. Visual cues should act as anchors 

for the hyperlinks between models. 

A traditional model-driven system would assume that 

the modelling language is invariant. Consequently, 

such systems will assimilate any emerging semantic 

requirements in their run-time components and data 

model (i.e., the Task Manager functionality in a 

Workflow Management System). 

 
 

 

Figure 2: Example of process and process-aware front-end. 
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Certain descriptions and properties implied by the 

aforementioned requirements are out of the scope of 

common business process modelling languages – 

e.g., an organizational chart, mappings between roles 

and instance candidates (as commonly necessary in 

virtual enterprise agile configurations), the 

geographical coverage of process executions or task 

assignments (typically performed in the Task 

Manager functionality).  

It can be argued that some of this information 

belongs to the realm of instances and execution-time 

data repositories – however, the following aspects 

must be considered: (i) some data is sufficiently 

stable to be stored in models; (ii) certain instance 

representations are of interest for modelling in 

general (see also the multi-level modelling paradigm 

(Clark et al., 2014)) or for specific model analysis 

goals (e.g., workload simulation). Numerous types of 

models include elements that designate instances – 

e.g., concrete business partners, concrete locations, 

concrete software, As-Is or To-Be system 

components. Their properties can be just as stable as 

process models and therefore semantically coupled 

with more abstract model elements (a common 

situation in Enterprise Architecture Management). 

In other words, those parts of a relational database 

that have a rather invariant nature and can support a 

modelling use case (e.g., simulation, model-based 

reporting) may be transferred to the model base, 

rather than being redundantly covered by both models 

and run-time components. Links between their model 

representations and their more dynamic properties 

(e.g., real-time availability of employees) will be 

maintained with the help of the inherent linking 

mechanisms provided by RDF. 

Figure 3 shows a sample of how the BPMN 

process in Figure 2 can be evolved in a domain-

specific modelling language with three types of 

diagrams – processes, locations and participants. 

Hyperlinks establish semantic relations between 

these models (e.g., locations of participants, task 

assignments on role level or instance level). 

Such an evolution requires, of course, a 

reimplementation of the modelling tool, which is 

supported by the AMME conceptualization cycle and 

its fast prototyping support. Agility can manifest in 

all building blocks of the modelling method – 

notation (e.g., replacing the BPMN symbols with 

domain-specific visual cues), syntax (e.g., splitting 

the metamodel in multiple model types connected 

through hyperlinks), semantics (e.g., adding new 

concepts, specializing concepts, adding domain-

specific property sheets), functionality (e.g., scripting 

model-driven functionality relevant for the current 

language iteration). 

Further down the development process, the 

customized models are exported in an RDF 

knowledge base and subjected to relevant extensions. 

Figure 4 isolates a fragment that contains model 

elements from all three model types depicted in 

Figure 3, including the hyperlinks between them. It 

also depicts the enriched machine-readable graph that 

can be derived from it, by applying several graph 

extensions (e.g., OWL inferences or rules): (i) Links 

to dynamic data (e.g., real time availability) not 

included in models; such links rely on the URI 

identification scheme, with model elements having 

the same identifier as their counterparts in the 

external data model (assumed to be a semantic graph 

database, to simplify interoperability); (ii) Inferred 

direct relations (e.g., directFollowedBy) 

corresponding to the graphical connectors available 

in models (connectors are typically n-ary relations to 

also capture their annotations); (iii) Inferred types 

based on property restrictions (e.g., 

AvailableTextileProvider for those whose availability 

property is set to true and are contained within the 

CandidateTextileProvider box of required 

capability); (iv) Inferred types based on property 

restrictions (e.g., AvailableTextileProvider for those 

whose availability property is set to true and are 

contained within the CandidateTextileProvider box 

of required capability); (v) Certain relations (e.g., 

assigned instance) may be set either in the modelling 

user interface (e.g., the coordinator directly assigning 

instances to tasks through modelling means) or in the 

front-end interface (e.g, a user taking responsibility 

for tasks assigned to its capability container pool); 

(vi) Inferred relations based on relevant property 

chains (e.g., the destination identified by combining 

visual containment with instance availability). 

Examples of such axioms are provided here for 

case (iii), with a richer discussion on OWL reasoning 

on model contents being available in (Karagiannis 

and Buchmann, 2018). 

:containedBy owl:inverseOf :contains. 

 

:TextileProvider  

owl:onProperty :containedBy; 

   owl:hasValue :CandidateTextileProvider. 

 

:AvailableInstance  

   owl:onProperty :availability; 

   owl:hasValue true . 

 

:AvailableTextileProvider  

   owl:intersectionOf  

   (:AvailableInstance :TextileProvider). 
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Figure 3: The agile modelling tool – metamodel (top) and model samples (bottom). 

 

Figure 4: Machine-readable knowledge graph derived from inferences applied on model content.
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5 RELATED WORKS 

The proposed software engineering method 

converges from a tradition in investigating flexibility 

in semantics-driven engineering methods – see the 

paradigms of situational method engineering (Kumar 

and Welke, 1992), ontology engineering (Corcho et 

al., 2003) and agile software engineering (Agile 

Manifesto, 2017). Situational method engineering 

was introduced generically as a process for 

constructing methods that are tuned to situation 

specificity, specialized by AMME for modelling 

methods regardless of their application and goals. For 

modelling languages and tools, other methodolo-gies 

and platforms aiming for flexible customization are 

also available (Kelly et al., 2013) (Frank, 2013) and 

could be included in the engineering method hereby 

proposed – i.e., if they are enriched with a knowledge 

streamlining approach to interoperate with RDF 

graph databases. This key ingredient was originally 

envisioned in (Karagiannis and Buchmann, 2016) and 

later deployed in several implementations 

(Buchmann and Karagiannis, 2015), (Buchmann and 

Karagiannis, 2016). 

The proposed method generalizes and repurposes 

earlier attempts of applying reasoning on models 

(Corea and Delfmann, 2017). Workflow management 

systems, traditionally driven by XML serialization of 

standard process descriptions - e.g., XPDL (WfMC, 

2017) - may also benefit from this proposal, if models 

represent processes and their execution context (as 

highlighted in the presented illustrative example). 

The Semantic Business Process Management 

paradigm (Hepp and Roman, 2007), which aims to 

splice Web Services, semantic technology and 

business process modelling also takes a knowledge-

centric approach to processes. It emphasizes process 

checking and composition under ontological 

frameworks, showing less interest in their impact on 

agile software engineering methods. 

Since the semantic parameterization of the 

developed software artefacts replaces the more 

traditional code generation practices, the traditional 

roundtrip engineering challenges (Maciaszek, 2002) 

must be reconsidered. An ADOxx plug-in ensures 

that the RDF graph's schema is kept in synch with 

metamodel changes for any modelling tool 

implemented on ADOxx (Open Models Laboratory, 

2017). A roundtrip engineering cycle can be devised 

as a generalization of the proposed method– however, 

currently we only consider the benefits of the 

unidirectional knowledge flow from the model base 

back-end to the model-aware front-end. 

6 CONCLUDING DISCUSSION 

Figure 5 shows empirically observed efforts averaged 

over three development processes where the hereby 

proposed method was employed. The chart shows the 

evolution, across the 5 iterations, of several indicators 

corresponding to the knowledge conversion flow 

phases presented earlier in Figure 5: 

For the conceptualization effort we have isolated 

only the microiteration cycle (language design and 

modelling tool implementation). We also subtracted 

the AMME training and the learning curve of 

nonexperienced modelling method engineers, as this 

develops a skill that is reused across projects. Once a 

modelling tool was prototyped, the modelling effort 

was also isolated, this time including the learning of 

the modelling language which is significantly high in 

the initial iteration, until users gain initial hands-on 

experience. The data management effort includes (i) 

the setup of the external data that does not make sense 

to be included in models (e.g., resource availability) 

and (ii) the setup of rules or OWL axioms to enrich 

the derived graphs according to the information 

needed in the front-end and (iii) the preparation of 

retrieval queries – e.g., SPARQL queries over HTTP 

and, in one case, a dereferencing mechanism for all 

model elements (Cinpoeru, 2017). Finally, the model-

driven implementation effort covers the semantically 

parameterized implementation taking input from the 

model-data mashup and the inference results. 

 

Figure 5: Empirically observed efforts across multiple 

implementations (averaged). 

The chart shows a slow start due to the modelling 

language (re)implementation – however, this includes 

significant parts of the data model (including instance 

data, as shown in Figure 3) that otherwise would be 

created later; also, it relies on metamodelling 

platforms for fast prototyping. An essential benefit is 

that the setup is inherently prepared for integration 
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within a Linked Data-based application environment. 

As this is a novel engineering approach that benefits 

from the interplay of Agile Modelling Method 

Engineering, semantic technology and model-driven 

software development, the existing experience is still 

limited and must be subjected to comparisons with 

traditional agile processes in order to quantify the 

trade-off between agile semantic richness and 

specificity in models and the benefits of standards-

based code generators. Just as with the maturation of 

agile development practices, the uptake of the 

proposed Model-Aware Software Engineering 

approach depends on an accumulation of learned 

lessons from experimentation-oriented projects. 
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