
Heuristics for Improving Trip-Vehicle Fitness in On-demand

Ride-Sharing Systems

Sevket Gökay1,2, Andreas Heuvels1,2 and Karl-Heinz Krempels1,2

1Informatik 5 (Information Systems), RWTH Aachen University, Aachen, Germany
2CSCW Mobility, Fraunhofer FIT, Aachen, Germany

Keywords: Demand-Responsive Transport, Dial-a-Ride Problem with Time Windows, Ride-Sharing.

Abstract: On-demand ride-sharing services are emerging alternatives to classical transport modes. Combined with self-

driving vehicles, this movement has potential to shape the future of our mobility. To make full use of the

potential, such services need to be scalable with growing demand. Assigning real-time trip requests to vehi-

cles such that the driving costs are minimized is computationally expensive, but has to be done fast. This

work proposes an approach to reduce the processing time it takes to assign a trip request to a vehicle. The

solution is a trip-vehicle fitness estimation framework that is flexible enough to utilize any fitness measure and

is self-adjusting through feedback loops. We analyze the placement of a trip request within a vehicle schedule,

present and implement three fitness measures. The resulting system is evaluated based on performance, cus-

tomer satisfaction and vehicle costs criteria by running simulations. The evaluation results indicate significant

performance improvement and noticeable improvements in terms of customer satisfaction and vehicle costs.

1 INTRODUCTION

Personal transportation, both private and public, is es-

sential for the well-being of a society. Private trans-

portation is flexible (w. r. t. time and location) and

convenient since it imposes no vehicle changes as in

its public counterpart. But it comes with traffic conge-

stion, parking place problems, increased gas emissi-

ons and additional costs attached to owning a vehicle.

Public transportation is usually cheaper and elimina-

tes the parking place problem, but is not as flexible

and convenient. Moreover, the quality of the service

can be poor in rural areas compared to urban areas. In

this Internet-driven information age, classical systems

are being challenged by new ideas that take advantage

of information technology (IT) and the collective vi-

sion hints at a paradigm shift towards Mobility-as-a-

Service (MaaS) where two trends meet: On-demand

shared mobility and self-driving vehicles (Greenblatt

and Shaheen, 2015; IFT, 2015).

On-demand transportation services pick up the cu-

stomers at their desired time and bring them from

any location to any location, and therefore offer an

emerging middle ground between private and public

transportation. Uber1 and Lyft2 are IT-embracing,

1https://www.uber.com
2https://www.lyft.com

rising alternatives to the classical example for on-

demand transportation, that is the taxi service. These

are functionality-wise similar to a taxi service: Each

vehicle services one trip request after another, se-

quentially. Furthermore, they also offer ride-sharing

(UberPOOL and Lyft Line) where multiple trip reque-

sts are combined into one vehicle ride by picking up

or dropping off another customer while servicing a

trip request. This turns the classical taxi service into

a more efficient offering (better use of resources with

increasing demand) and has potential for a larger scale

deployment. There are also companies that concen-

trate on providing a ride-sharing service such as Via3,

allygator shuttle4 and CleverShuttle5. Since the cus-

tomers can benefit from, e. g., reduced prices, but also

should be able to tolerate some newly-introduced do-

wnsides (i. e. potentially increased waiting and ride

times), a delicate trade-off has to be made between

customer satisfaction and service/vehicle costs, which

are inherently in opposition to each other. Hereafter,

customer satisfaction refers to the number of satisfied

trip requests, waiting and ride times. Likewise, ser-

vice/vehicle costs refer to the number of vehicles in

service, distances driven by vehicles and vehicle ca-

3https://ridewithvia.com
4https://www.allygatorshuttle.com
5http://clevershuttle.org

Gökay, S., Heuvels, A. and Krempels, K.
Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems.
DOI: 10.5220/0006690203230334
In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2018), pages 323-334
ISBN: 978-989-758-293-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323

pacity utilization.

There are two variants of on-demand transporta-

tion services with respect to how trip requests become

apparent to the system. While in offline solutions all

requests are known before service and vehicle sche-

dules do not change after calculation (later during ser-

vice), online solutions process requests as they appear

in real-time without knowledge about the future and

constantly update the route of vehicles during service.

The performance of an online on-demand ride-

sharing system (i. e. how fast it processes the request

and finds a fitting vehicle or not) is particularly impor-

tant, since the customers are requesting rides in real-

time and waiting for responses. While most of the

theoretical related work concentrates on the offline

variant, the online variant offerings of aforementioned

private companies are niche such that the performance

and scalability are not big concerns. This work identi-

fies shortcomings of an existing system (Gökay et al.,

2017) and improves it in this regard. While Section 2

provides an overview of the research field, Section 3

motivates this work. It describes in detail how the

problem has been diagnosed by performing a simu-

lation using a real data set, collecting and analyzing

statistics. Section 4 explains the taken optimization

approach on an abstract level. The proposed solution

is a flexible framework that combines multiple me-

asures which can influence trip-vehicle assignments.

We identify three measures and integrate them into

the framework. Section 5 presents the details of the

technical realization, as well as the implementation

improvements that have been carried out to take the

optimization efforts further. Section 6 illustrates the

evaluation methodology and results. We let the pre-

vious and the current, improved implementation per-

form a simulation using identical configuration and

data sets. We compare and discuss the outcome of

both versions. Finally, Section 7 concludes the paper.

2 RELATED WORK

On-demand ride-sharing addresses the dial-a-ride

problem (DARP) (Cordeau and Laporte, 2007) which

is a generalization of a number of problems such as

Pickup and Delivery Problem (PDP) (Savelsbergh and

Sol, 1995), Vehicle Routing Problem (VRP) (Laporte,

1992b) and Traveling Salesman Problem (TSP) (La-

porte, 1992a). While TSP considers only one ser-

ver (i. e. vehicle), VRP works with a fleet of vehi-

cles. VRP only considers deliveries to locations, whe-

reas in PDP, vehicles transport goods from pickup to

delivery locations. All three problems have variants

that consider time constraints by employing time win-

dows, i. e. location visits have to occur within given

time windows, (Savelsbergh, 1985; Cordeau et al.,

2001a; Parragh et al., 2008). Most DARP models

already impose time windows, so we consider it as

part of the problem definition. The main difference of

DARP from TSP, VRP and PDP is the human per-

spective: These problems aim to minimize vehicle

route costs and maximize the number of satisfied re-

quests. DARP additionally aims to minimize custo-

mer waiting and ride time in order to maximize cus-

tomer satisfaction.

DARP has two configurations: Online or offline,

single- or multi-vehicle. In (Cordeau and Laporte,

2007), the authors show that earliest works concen-

trate on offline single-vehicle DARP, most of the

work addresses offline multi-vehicle DARP and only

very few of the algorithms solve online multi-vehicle

DARP. We believe that online multi-vehicle variant is

the most promising when considering real-time, real-

world practical usage.

Since DARP generalizes TSP, determining an op-

timal solution is NP-hard (Coja-Oghlan et al., 2005;

Gørtz, 2006). Even though there are exact algorithms

that can find optimal solutions, these either solve sim-

plified DARPs by leaving some constraints out or

work on small to medium problem instances (Psaraf-

tis, 1983; Desrosiers et al., 1986; Ropke et al., 2007).

Many exact algorithms use a branch-and-cut techni-

que (Lysgaard et al., 2004; Cordeau, 2006). However,

due to the need in practical applications, most rela-

ted work focuses on development of heuristics and

metaheuristics. There are some techniques that are

widely used such as neighborhood search (Pisinger

and Ropke, 2007), tabu search (Cordeau et al., 2001b;

Attanasio et al., 2004), simulated annealing (Baugh

et al., 1998), insertion heuristics (Jaw et al., 1986;

Madsen et al., 1995; Tsubouchi et al., 2010), and ge-

netic algorithms (Jorgensen et al., 2007).

Solving DARP with big problem instances in a

performant and scalable way only recently started to

get attention. The work in (Alonso-Mora et al., 2017)

presents a solution approach to online multi-vehicle

DARP that starts with a greedy solution and improves

it incrementally. The authors evaluate the algorithm

by using 1000, 2000, 3000 vehicles and ∼3 million

trip requests (∼500,000 per day). The requests are

collected for a time period (i. e. 10–50 seconds) and

then assigned to vehicles in batches, which detracts

from its real-time applicability. Another algorithm,

presented in (Ota et al., 2017), is evaluated by proces-

sing ∼260 million trip requests using between ∼500

and ∼6500 vehicles. It provides good performance,

but requires extraordinary resources (i. e. a 1200 CPU

core cluster). Both works evaluate their approaches

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

324

with trips extracted from New York City taxi trip data

(2010–2013)6.

3 MOTIVATION

Having developed the initial version of an online

multi-vehicle DARP solution approach in (Gökay

et al., 2017) but tested it with only small problem in-

stances (10-70 vehicles and up to 5000 trip requests),

we wanted to challenge the system and run a simula-

tion test with the same data set (one day with 524,845

trip requests) and similar configuration (3000 vehicles

each with a capacity of 10 and a time window of 5

min for pick-up and drop-off events) as presented in

(Alonso-Mora et al., 2017). The simulation was not

finished even after two and half days (we stopped it

after processing 292,200 requests).

The fact, that a request data set of one day could

not be processed at the very worst within a day, im-

plies that the system cannot scale and is not applicable

for real-time, practical usage. This led us to investi-

gate the possible sources of the problem.

Problem Description

Our approach employs insertion heuristics: A request

consists of a pick-up and drop-off event. Each event

comprises of a location, a time window and an ac-

tual time within the time window, that represents the

point of time when the location will be visited by the

vehicle7. The processing pipeline of a request con-

tains a first stage, that sorts the vehicles according to

vehicle-request fitness, and a second stage that itera-

tes the sorted list of vehicles, inserts the request into

the schedule of the considered vehicle and tries to ad-

just the schedule in a way that the detour caused by

this new request does not violate the time constraints

of existing requests. After satisfying time constraints,

it is checked whether this new schedule violates the

capacity constraints of the vehicle. The request is as-

signed to the first vehicle that has no violations. A

detailed description of the working principle, and the

scheduling algorithm, can be found in (Gökay et al.,

2017), which bases on (Tsubouchi et al., 2010).

During the adjustment of the schedule, the order

of events is changed several times until finding a fe-

asible order without time constraint violations. Mo-

reover, changing the order of events (and thus loca-

tions) causes many routing calculations to determine

6https://databank.illinois.edu/datasets/IDB-9610843
7Maximum ride time constraints are implied, since both

pick-up and drop-off events have time windows.

0 72.51 83.27 90.31 95.65 100
0

500

1,000

1,500

2,000

2,500

Percentile distribution (%)

V
eh

ic
le

in
d

ic
es

Figure 1: Vehicle index statistics of the initial implemen-
tation for 292,200 requests with 3000 vehicles, vehicle
capacity of 10 and time window of 5 min (mean≈164,
stdev≈335, max=2281). The vehicle sorter is inefficient
about finding the fitting bus to which a request can be as-
signed.

the ride times between newly ordered events so that

the algorithm can check whether time constrains are

still held. This many live routing calculations cau-

sed significant runtime overhead, since we do not pre-

compute and store the routes between all locations in

a lookup table for the following reasons:

1. The boundaries of the service area are defined

by the imported map during application startup,

which can be as big as the service operator desi-

res. Within the service area the trip requests can

be made from any location to any location. A pre-

defined set of allowed pick-up and drop-off loca-

tions would make pre-computation possible, but

also force customers to walk which is inconve-

nient.

2. Since the system is an online on-demand service,

there is no knowledge about the future reque-

sts. Pre-computing routes from each location to

each location and storing them is only manageable

(w. r. t. computation space and time) for offline va-

riants with small problem instances. At best, the

online system can cache computed routes to pre-

vent costly re-calculation of the same route. Our

implementation already utilizes route caches.

Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems

325

Interestingly enough, most existing DARP solutions

neglect the route calculation cost aspect of the pro-

blem, since they consider the routes to be given, and

focus on the multi-criteria combinatorial optimiza-

tion. The aforementioned recent works, (Alonso-

Mora et al., 2017; Ota et al., 2017), utilize the gridlike

street geography of Manhattan to pre-compute routes,

which is not the case for most service areas.

Having established that, we investigated whether

we can reduce the number of routing calculations.

The investigation led to the discovery that the first

stage in the pipeline, the vehicle sorter, was ineffi-

cient (Figure 1): The indices of the vehicles, to which

the requests were assigned, were so high within the

sorted vehicle list, that the second stage considered

many, apparently unfitting, vehicles and thus has done

many unnecessary routing calculations.

4 APPROACH

Our optimization approach starts with the analysis

where pick-up and drop-off events are inserted into a

schedule. Figure 2 illustrates one section of a vehicle

schedule, in which ek−1,ek,ek+1,ek+2 are consecutive

events and the actual times are ordered:

t f irst < ... < tk−1 < tk < tk+1 < tk+2 < ... < tlast

When a new event enew has to be inserted into a sche-

dule, it should fall between two events, based on the

actual times of events: tk < tnew < tk+1. We call the

position (i. e. the pair (ek,ek+1)), where the new event

enew falls, a pocket. While the schedule contained the

path ek → ek+1 before the insertion, afterwards it will

be changed to ek → enew → ek+1 due to the detour.

The schedule of a vehicle contains the future re-

quests that are assigned to it. So, e f irst is the first

event that the vehicle has to service. Likewise, elast is

the last event in the schedule. An event cannot fall be-

fore the first event e f irst , because in this case it implies

that the event is in the past. In our implementation, a

vehicle is waiting idle at elast until a new request is

assigned to it (in the related problem space of VRP

the variant, where vehicles are not required to return

to a depot after the last delivery, is called open VRP

(Li et al., 2007)).

There are three possibilities where the pick-up and

drop-off events of a request might fall:

(P1) Both within the schedule (Figure 3a):

t f irst < tnewpick−up
< tnewdrop−o f f

< tlast

(P2) Pick-up in the schedule, drop-off after the

schedule (Figure 3b):

t f irst < tnewpick−up
< tlast < tnewdrop−o f f

ek-1 ek ek+1 ek+2

enew
(tk-1) (tk) (tk+1) (tk+2)

(tnew)

efirst

(tfirst)

elast

(tlast)

Figure 2: Illustration of a pocket. The event pair (ek,ek+1)
is the pocket for enew.

Since the drop-off event does not fall into an

actual pocket, we treat (elast ,enewdrop−o f f
) as

such.

(P3) Both after the schedule (Figure 3c):

tlast < tnewpick−up
< tnewdrop−o f f

Since the pick-up event does not fall into an ac-

tual pocket, we treat (elast ,enewpick−up
) as such.

To reduce the number of false positives of the vehicle

sorting stage and therefore to have a more precise stra-

tegy, we incorporate the information where the events

fall into our approach. Based on this observation, we

define three measures for sorting vehicles with respect

to a request for each event:

Detour Distance: This measure ensures that we fa-

vor vehicles with minimal additional route costs

imposed by detours. It is calculated as the diffe-

rence between new and old path distance:

distek→enew + distenew→ek+1
− distek→ek+1

However, the cases (P2) and (P3) contain situa-

tions in which the old path does not exist. We

address this issue in Section 4.1. Values returned

by this measure are treated as the lower the better.

Since we want the vehicle sorting stage to be fast,

we calculate all distances between two geolocati-

ons based on the haversine formula.

Largest Pocket: This measure ensures that we disfa-

vor vehicles with potential event constraint viola-

tions. Event constraint violations occur when the

actual times of two events are too close to each

other, while the locations of the events are too far

from each other. In such cases, our routing en-

gine calculates the shortest path duration from the

first to the subsequent location and our scheduling

algorithm decides that the vehicle cannot make it

to the subsequent event in time. Preventing these

cases reduces the number of routing calculations.

Largest pocket is calculated as the division of time

available in pocket by the new path distance:

tk+1 − tk

distek→enew + distenew→ek+1

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

326

a

efirst elast

old

new

old

new

enewpick-up
enewdrop-off

b

efirst elast

old

new

enewpick-up
enewdrop-off

old
(missing)

new

c

efirst elast

old
(missing)

new

enewpick-up
enewdrop-off

Figure 3: Possible event pockets: (a) Pick-up and drop-off events within the schedule (b) Pick-up in schedule, drop-off after
the schedule (c) Both events after the schedule

Values returned by this measure are treated as the

higher the better.

Reward: Our vehicle sorting stage is intended to be

fast and therefore its calculations are approximate.

In the second stage, shortest path durations are

calculated and actual times are adjusted. This me-

asure ensures that we disfavor vehicles, where po-

tentially more event adjustments are needed, by

rewarding cases with less events within the sche-

dule. It assigns a constant value to each case fol-

lowing the preference (P3) > (P2) > (P1) and va-

lues returned by this measure are treated as the

higher the better.

4.1 Old Path Distance Estimation

We define a mechanism to estimate old path distan-

ces in cases where we have only a new path distance

(drop-off in (P2) and pick-up in (P3)). For this, we

make use of the situations, i. e. both events in (P1)

and pick-up event in (P2), where both the old and

new distances are present. The idea is to store and

always update the average of old and new distance ra-

tios. Then, when it comes to estimate the old path

distance, we multiply this ratio with the new path dis-

tance to approximate what the old path distance would

have been.

The distance values can be as small as tens of me-

ters and can grow up to tens of kilometers. Therefore,

having only one ratio for the whole value spectrum

would not have been precise. In order to handle the ra-

tios better, we divide the spectrum into multiple buc-

kets that are 200m wide.

4.2 Combining Measures

After establishing the basic building blocks of our ap-

proach, this section presents how we put everything

together. The optimized vehicle sorter follows these

steps for each trip request and for each vehicle:

1. Determine the pockets for pick-up and drop-off

events, i. e. find out the case ((P1), (P2) or (P3))

for this request-schedule mapping.

2. Calculate the three measures for this request-

schedule mapping.

3. Construct the weighted linear combination of the

three measures to derive the final fitness score.

4. Sort vehicles by their fitness score.

In the field of forecasting, the weights for combining

the features are commonly determined by incorpora-

ting domain knowledge of experts and analyzing his-

torical data (Adya et al., 2001). One problem with

weighting is that past data may not reflect the current

characteristics and therefore using static weights can

result in poor accuracy (Miller et al., 1992). We get

around this problem by employing a feedback mecha-

nism into our processing pipeline in order to inform

the vehicle sorter after processing each request how

good or bad the sorting was based on the index of the

assigned vehicle (Figure 4). This approach can be de-

fined as dynamic linear combination (Lobrano et al.,

2010). In addition to sorting vehicles after the linear

combination step, we also sort vehicles by each mea-

sure, separately. By this means, we can compare the

global index a vehicle receives with the index each

measure gave the same vehicle. If the measure gave

the vehicle a smaller (or higher) index than the final

index, the measure increases (or decreases) its weight.

Moreover, adjusting the weights based on only the

Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems

327

Scheduler / Router
Try next
vehicle

Violates
constraints

No violation

Request
Processor

Vehicle Sorter

User
Notification

Vehicle / Driver
Notification

Reached
max retries

F
e
e
d

b
a
c
k

: S
u

c
c
e
s
sF

e
e
d

b
a
c
k

:
F

a
il

u
r
e

Figure 4: Overview of the general framework how the trip
requests are processed with the added feedback mechanism.

last request or all past requests would be misleading,

since we rather want to recognize a trend and adjust

accordingly. In order to realize this, we use a moving

average of last 1000 indices for each measure.

4.3 Request Rejection Costs

Another important aspect is the processing costs of a

request rejection. A rejection means iterating all the

vehicles in the fleet, where no vehicle is a valid can-

didate for accepting the request into schedule. When

the number of vehicles is huge, it takes an excessive

amount of time to reject a single request. With the

optimization techniques illustrated thus far, the im-

proved vehicle sorting stage produces less deviation

between the indices of assigned vehicles. We use this

outcome to our advantage and employ a filter to re-

duce the number vehicles that are to be considered.

We keep track of vehicle indices for accepted reque-

sts and update the moving average for subsequent re-

quests. The average index is used as a cut-off point

when the second stage iterates the sorted list of vehi-

cles. The average index is relaxed with each rejected

request, since it could mean that the cut-off point was

set too greedily.

5 IMPLEMENTATION

The system is developed as a standalone Java 8 ap-

plication. It uses GraphHopper8 as the routing en-

gine, since it can be embedded into a Java application.

GraphHopper imports OpenStreetMap (OSM)9 maps

and builds the underlying graph to be used for routing.

Moreover, GraphHopper utilizes contraction hierar-

chies to speed up routing and we specify the transpor-

tation mode as car. The computed routes are easily

cacheable, because the graph is not time-dependent

(as it would be in the case of public transportation

modes such as bus or train).

We make use of parallelization at all steps where

it is possible. One step worth mentioning is the se-

cond stage, the scheduler in Figure 4. The initial im-

plementation iterated the list of vehicles sequentially.

This takes too long, if the viable vehicle has a high

index in the list. Parallel processing with paralleliza-

tion factor set to the number of vehicles to be conside-

red can also be costly due to context switching, if this

number is huge. We partition the sorted list of vehi-

cles into batches with size set to the number of CPU

cores of the system. The scheduler runs for each vehi-

cle within a batch in parallel. If no viable vehicle is

found in this batch, we continue with the next batch.

If there are results, we calculate the total time cost for

each result and pick the vehicle with the lowest cost,

which is determined by the sum of several criteria:

• Increased costs of the vehicle

∆v = travelTime(Snew)− travelTime(Sprev),

where travelTime(S) is the sum of all trips in

schedule S.

• Increased costs for each customer due to the sche-

dule adjustment

∆S = ∑
c ∈ Snew

costSnew(c)− ∑
c ∈ Sprev

costSprev(c),

where costS(C) denotes the cost for a customer C

in schedule S and is calculated as the sum of wai-

ting and ride time.

6 EVALUATION

We perform two simulations, one with the old and

one with the new vehicle sorting strategy implemen-

tation, using the same simulation configuration and

data sets, and compare their results. The old vehi-

cle sorting strategy is the one presented in (Tsubouchi

8https://www.graphhopper.com/
9http://www.openstreetmap.org/

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

328

et al., 2010), which prefers vehicles with the closest

direction to the new trip request. Both simulations

benefit from the improvements outlined in Section 5.

The simulations are run inside a virtual machine con-

figured with 8 vCPUs (Intel Xeon E5-2650 clocked at

2.20 GHz) and 8 GB system memory. Used Java Vir-

tual Machine parameters are -Xms2048m -Xmx4096m

-XX:+UseG1GC. As of writing, this system configura-

tion represents an entry level off-the-shelf server.

The OSM data used for New York City con-

tains all information and changes up to 2017-04-

09T15:01:34Z. We extract trips from New York City

taxi trip data (2010–2013) for the day Saturday May

11, 2013 (524,845 trips after clean-up). From each

data point we read the pick-up date time (we treat this

as the beginning of the pick-up time window) and the

geolocations of pick-up and drop-off to construct the

trip requests. Number of passengers is set to 1. Since

the previous vehicle sorting strategy could not cope

with processing all trips of a day in reasonable time,

we prepare three data sets:

1. Reduced number of trips by selecting every 10th

(from 00:00 to 23:59 totaling to 52,552 trips). The

aim is to keep the distribution as close as possible

to Figure 5 with less data points. Hereby, we as-

sume not to introduce a selection bias.

2. Picking a time interval with high density of reque-

sts to represent peak demand (with pick-up times

from 19:00 to 20:00 totaling to 30,884 trips)

3. Picking a time interval with low density of reque-

sts to represent off-peak demand (with pick-up ti-

mes from 05:00 to 07:00 totaling to 10,388 trips).

The configuration consists of number of vehicles (de-

pending on the data set this parameter varies between

100 and 3000), vehicle capacity (3 or 10) and time

window (5 or 10 min). For all data sets, all vehicles

are initialized at the same location and at the start of

the data set’s time range (e. g. for low density data

set at 05:00). We evaluate our results in three cate-

gories: Performance improvement (Figure 6), custo-

mer satisfaction (Figure 7) and service/vehicle costs

(Figure 8). We also discuss how the changes aiming

at performance improvements affect the customer sa-

tisfaction and service costs. The detailed results are

presented in Tables 1 and 2.

Figure 6 shows that the improved implementation

is always faster in terms of request-vehicle assign-

ment calculation duration. The average calculation

duration is reduced from 2707 ms to 320 ms (worst

case). This is due to the fact that it considers less false

positive vehicles until finding a viable vehicle for a

request (i. e. reduced average vehicle index). This im-

proves the total run time substantially (Table 1). As

01
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

23
:0

0

5

10

15

20

25

30

35
·103

Time of day

T
ri

p
co

u
n
t

Figure 5: Hourly trip distribution throughout the day on Sa-
turday May 11, 2013.

newold

0

50

100

150

200

250

300

350

400

A
v
g

v
eh

ic
le

in
d

ex

every 10th

low density

high density newold

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750

A
v
g

ca
lc

u
la

ti
o
n

d
u
ra

ti
o
n

(i
n

m
s)

Figure 6: Performance comparison of the old and new im-
plementation. Average vehicle index is reduced, since the
new implementation considers less false positives. This
significantly reduces the calculation duration of request-
vehicle assignments.

can be seen in Figure 7, the customer satisfaction as-

pect benefits from improved implementation. We can

recognize that the new version almost always reduces

the waiting time and ride delay of customers while

producing similar or better success rate10. Ride de-

lay improvements are not that prominent or slightly

worse with the low density data set, because the new

implementation consistently has higher success rate

(see Table 2).

These improvements can come at slightly increa-

sed vehicle costs. Vehicle statistics in Table 2 show

that the new implementation has somewhat higher

vehicle costs when the configuration is too generous

(e. g. more vehicles in service than actually needed),

because it distributes requests more evenly across all

10The number of accepted requests divided by the num-
ber of all requests

Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems

329

newold

1

1.4

1.8

2.2

2.6

3

3.4
A

v
g

w
ai

t
ti

m
e

(i
n

m
in

)

newold

1

1.4

1.8

2.2

2.6

3

3.4

A
v
g

ri
d
e

d
el

ay
(i

n
m

in
)

newold

1.3

1.4

1.5

1.6

1.7

A
v
g

ra
ti

o
o
f

ac
tu

al

to
d
ir

ec
t

ri
d
e

ti
m

e

every 10th

low density

high density

Figure 7: Customer satisfaction comparison of the old and new implementation. Both wait time and ride delay are lower with
the new implementation. Average ratio of actual to direct ride time expresses the relative ride delay.

newold

5

10

15

20

·104

T
o

ta
l

d
is

ta
n

ce
(i

n
k

m
)

newold

0

250

500

750

1,000

1,250

A
v

g
d

is
ta

n
ce

p
er

v
eh

ic
le

(i
n

k
m

)

newold
15

20

25

30

35

40

45

50

A
v

g
ca

p
ac

it
y

u
ti

l.
(%

)

every 10th

low density

high density

Figure 8: Service/vehicle costs comparison of the old and new implementation. Average capacity utilization decreases with the
data sets every 10th and high density because with some simulation configurations the new implementation is at a disadvantage
(see Table 2).

vehicles (as highlighted by the column # of used vehi-

cles). Even though the driven distance per vehicle is

lower, there are more vehicles that are used. This si-

tuation results in a slightly higher sum of driven dis-

tance of all vehicles. Moreover, we capture capacity

utilization statistics for each customer-vehicle assig-

nment by counting total customers in a vehicle after

picking up the new customer. Figure 8 illustrates that

average capacity utilization decreases with the data

sets every 10th and high density. This is due to the

huge differences between the new and old implemen-

tation with generous configurations. Since the events

in vehicle schedules are not that dense with the new

implementation (a consequence of even distribution

of requests to all vehicles), capacity utilization is lo-

wer. Even though the new implementation yields bet-

ter capacity utilization results with diminishing con-

figurations, they are not dominant enough to counter-

balance the overall average. With diminishing con-

figurations the new implementation starts to produce

better results in all aspects. If the number of vehicles

is set to a value such that both implementations have

to make use of all the vehicles, then in most cases

the new implementation satisfies more customers (i. e.

achieves higher success rate) with less vehicle costs.

As a result, the total distance driven by all vehicles or

the average distance driven per vehicle stays more or

less the same (Figure 8).

7 CONCLUSION

On-demand ride-sharing systems are becoming incre-

asingly popular. This entails a potential scalibility

problem which only recently started to get attention.

In this work, we presented an optimization approach

for an online on-demand ride-sharing system that was

intended to be a runtime improvement without sacri-

ficing quality of the results, but the evaluation showed

that the new approach can yield better results as well.

The system’s working principle consists of a trip re-

quest processing pipeline with two stages. The first

stage, the vehicle sorter, sorts the vehicles according

to their request-vehicle assignment fitness. The se-

cond stage, the scheduler, iterates the list of sorted

vehicles and adjusts the schedule of each vehicle (af-

ter inserting the new request into the schedule) such

that the detours imposed by the inclusion of the new

request do not break the time constraints of other re-

quests. Schedule adjustments include a large number

of routing calculations which are costly. The schedu-

ler iterates the list until finding one viable vehicle that

can tolerate the inclusion of the new request and to

which the request is assigned. The need for a runtime

improvement is based on the evaluation with huge

data sets (∼500,000 trip requests) and thousands of

vehicles. The evaluation took such a long time to

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

330

process the requests, that the solution was not appli-

cable for real-time usage. We identified that the cause

of this problem was the former vehicle sorting stage,

which inefficiently considered false positive vehicles

as fitting and therefore the second stage, the schedu-

ler, had to do many schedule adjustments of unfitting

vehicles.

The proposed optimization replaces the vehicle

sorting stage and tries to avoid time constraint vio-

lations. At first, we determine the pockets (i. e. po-

tential placements) of the pick-up and drop-off events

of a new request within a schedule and use the infor-

mation gathered from neighboring events for a more

precise judgment. Based on this, we calculate three

measures (detour distance, largest pocket and reward)

and derive the final fitness score by the weighted li-

near combination of these three measures. Moreover,

we introduce a feedback loop into the processing pi-

peline for the system to learn from its successes and

failures in order to regulate the measure weights ac-

cordingly. For the evaluation, we extract trip reque-

sts from New York City taxi trip data and run two

simulations, i. e., we let the old and new implementa-

tions with otherwise identical configurations process

the same requests. The evaluation results are categori-

zed in three groups: Performance improvement, cus-

tomer satisfaction and service costs. As the main goal

of this work, the new implementation outperforms the

old one in all simulations. Moreover, the new imple-

mentation provides better customer satisfaction in al-

most all simulations. Since the new implementation

aims to minimize the possibility of time constraint

violations, it distributes requests more evenly to all

vehicles. With generous configurations (e. g. there

are more vehicles in service than actually needed), it

has slightly higher vehicle costs. When reducing the

number of vehicles, the new implementation starts to

yield better results in all aspects. We observe that a

time window of 10 min and 2000 vehicles each with a

capacity of 10 can satisfy 98% of the demand at peak

periods. At off-peak time periods, the number of vehi-

cles can be reduced to 500 to accomplish the same.

This work serves as a basis for further experimen-

tation and improvements. Having a fast evaluation

cycle enables extensive testing with big problem in-

stances to better assess the real-world applicability.

Event though the performance gain is particularly evi-

dent with the data set high density, the test runtime is

still suboptimal with some configurations. Further-

more, the disadvantageous consequences of generous

configurations (making use of all vehicles, decreased

shared rides and capacity utilization) should be avoi-

ded. Addressing these issues is part of future work.

ACKNOWLEDGMENTS

This work was partially funded by the German Fe-

deral Ministry of Transport and Digital Infrastructure

(BMVI) for the project “Digitalisierte Mobilität – die

Offene Mobilitätsplattform” (19E16007B).

REFERENCES

Adya, M., Collopy, F., Armstrong, J., and Kennedy, M.
(2001). Automatic identification of time series featu-
res for rule-based forecasting. International Journal
of Forecasting, 17(2):143–157.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Fraz-
zoli, E., and Rus, D. (2017). On-demand high-
capacity ride-sharing via dynamic trip-vehicle assign-
ment. Proceedings of the National Academy of Scien-
ces, 114(3):462–467.

Attanasio, A., Cordeau, J.-F., Ghiani, G., and Laporte, G.
(2004). Parallel tabu search heuristics for the dyna-
mic multi-vehicle dial-a-ride problem. Parallel Com-
puting, 30(3):377 – 387.

Baugh, J. W., Kakivaya, G. K. R., and Stone, J. R. (1998).
Intractability of the dial-a-ride problem and a multiob-
jective solution using simulated annealing. Engineer-
ing Optimization, 30(2):91–123.

Coja-Oghlan, A., Krumke, S. O., and Nierhoff, T. (2005).
A Hard Dial-a-Ride Problem that is Easy on Average.
Journal of Scheduling, 8(3):197–210.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the
dial-a-ride problem. Oper. Res., 54(3):573–586.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon,
M. M., and Soumis, F. (2001a). VRP with Time Win-
dows. In Toth, P. and Vigo, D., editors, The Vehi-
cle Routing Problem, pages 157–193. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA,
USA.

Cordeau, J.-F. and Laporte, G. (2007). The dial-a-ride pro-
blem: models and algorithms. Annals of Operations
Research, 153(1):29–46.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001b). A
unified tabu search heuristic for vehicle routing pro-
blems with time windows. Journal of the Operational
Research Society, 52(8):928–936.

Desrosiers, J., Dumas, Y., and Soumis, F. (1986). A
dynamic programming solution of the large-scale
single-vehicle dial-a-ride problem with time windows.
American Journal of Mathematical and Management
Sciences, 6(3-4):301–325.

Gökay, S., Heuvels, A., Rogner, R., and Krempels, K.-H.
(2017). Implementation and Evaluation of an On-
Demand Bus System. In Proceedings of the 3rd Inter-
national Conference on Vehicle Technology and Intel-
ligent Transport Systems (VEHITS 2017), Porto, Por-
tugal.

Gørtz, I. L. (2006). Hardness of preemptive finite capa-
city dial-a-ride. In in Computer Science, L. N., edi-
tor, Proceedings of 9th International Workshop on Ap-

Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems

331

proximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX 2006).

Greenblatt, J. B. and Shaheen, S. (2015). Automated
vehicles, on-demand mobility, and environmental im-
pacts. Current Sustainable/Renewable Energy Re-
ports, 2(3):74–81.

IFT (2015). Urban Mobility System Upgrade – How
shared self-driving cars could change city traffic.
Research report, International Transport Forum at
the Organisation for Economic Co-operation and
Development (OECD). Available at https://www.itf-
oecd.org/sites/default/files/docs/15cpb self-
drivingcars.pdf.

Jaw, J.-J., Odoni, A. R., Psaraftis, H. N., and Wilson, N. H.
(1986). A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time win-
dows. Transportation Research Part B: Methodolo-
gical, 20(3):243 – 257.

Jorgensen, R. M., Larsen, J., and Bergvinsdottir, K. B.
(2007). Solving the dial-a-ride problem using gene-
tic algorithms. Journal of the Operational Research
Society, 58(10):1321–1331.

Laporte, G. (1992a). The traveling salesman problem: An
overview of exact and approximate algorithms. Eu-
ropean Journal of Operational Research, 59(2):231 –
247.

Laporte, G. (1992b). The vehicle routing problem: An over-
view of exact and approximate algorithms. European
Journal of Operational Research, 59(3):345 – 358.

Li, F., Golden, B., and Wasil, E. (2007). The open vehi-
cle routing problem: Algorithms, large-scale test pro-
blems, and computational results. Comput. Oper. Res.,
34(10):2918–2930.

Lobrano, C., Tronci, R., Giacinto, G., and Roli, F. (2010).
Dynamic Linear Combination of Two-Class Classi-
fiers, pages 473–482. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004).
A new branch-and-cut algorithm for the capacitated
vehicle routing problem. Mathematical Program-
ming, 100(2):423–445.

Madsen, O. B. G., Ravn, H. F., and Rygaard, J. M. (1995). A
heuristic algorithm for a dial-a-ride problem with time
windows, multiple capacities, and multiple objectives.
Annals of Operations Research, 60(1):193–208.

Miller, C. M., Clemen, R. T., and Winkler, R. L. (1992).
The effect of nonstationarity on combined forecasts.
International Journal of Forecasting, 7(4):515 – 529.

Ota, M., Vo, H., Silva, C., and Freire, J. (2017). STaRS:
Simulating Taxi Ride Sharing at Scale. IEEE Tran-
sactions on Big Data, 3(3):349–361.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008).
A survey on pickup and delivery problems - Part I:
Transportation between customers and depot. Journal
für Betriebswirtschaft.

Pisinger, D. and Ropke, S. (2007). A general heuristic for
vehicle routing problems. Computers & Operations
Research, 34(8):2403 – 2435.

Psaraftis, H. (1983). An exact algorithm for the single vehi-

cle many-to-many dial-a-ride problem with time win-
dows. Transportation Science, 17(3):351–357.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2007). Models
and branch-and-cut algorithms for pickup and delivery
problems with time windows. Networks, 49(4):258–
272.

Savelsbergh, M. and Sol, M. (1995). The general
pickup and delivery problem. Transportation Science,
29(1):17–29.

Savelsbergh, M. W. P. (1985). Local search in routing pro-
blems with time windows. Annals of Operations Re-
search, 4(1):285–305.

Tsubouchi, K., Yamato, H., and Hiekata, K. (2010). Inno-
vative on-demand bus system in Japan. IET Intelligent
Transport Systems, 4(4):270–279.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

332

Table 1: Performance overview of test cases. Each cell contains a value that represents the result of the simulation with the
new implementation and another value within parentheses that expresses the difference of the this value from the result of the
simulation with the old implementation. The green (or red) cells indicate that the new implementation produced a better (or
worse) result.

T
es

t
ca

se
se

tu
p

In
d

ic
es

o
f

as
si

g
n

ed
v
eh

ic
le

s
C

al
cu

la
ti

o
n

d
u

ra
ti

o
n

s
fo

r
ea

ch
re

q
u

es
t

(i
n

m
s)

D
at

a
se

t
#

o
f

v
eh

ic
le

s
V

eh
ic

le
ca

p
ac

it
y

T
im

e
w

in
d

o
w

(i
n

m
in

)
M

ea
n

S
td

ev
M

ax
M

ea
n

S
td

ev
M

ax
T

es
t

ru
n

ti
m

e

(i
n

h
)

ev
er

y
1

0
th

5
0

0
1

0
1

0
1
.
2

2
(
−

5
5
.
9

4
)

0
.
8

1
(
−

4
6
.
4

6
)

8
(
−

2
6

2
)

4
.
8

6
(
−

1
9

1
.
6

0
)

2
.
2

4
(
−

1
6

7
.
0

9
)

9
1

(
−

2
7

1
8

)
0
.
0

7
(
−

2
.
8

0
)

ev
er

y
1

0
th

5
0

0
1

0
5

1
.
2

7
(
−

5
8
.
0

3
)

0
.
8

6
(
−

4
7
.
4

6
)

8
(
−

2
8

0
)

4
.
9

6
(
−

1
8

9
.
4

1
)

2
.
4

1
(
−

1
6

2
.
5

0
)

7
8

(
−

2
5

5
9

)
0
.
0

7
(
−

2
.
7

6
)

ev
er

y
1

0
th

5
0

0
3

1
0

1
.
2

1
(
−

5
7
.
5

1
)

0
.
8

0
(
−

4
7
.
4

6
)

8
(
−

2
6

7
)

4
.
8

2
(
−

1
9

1
.
6

7
)

2
.
1

1
(
−

1
6

6
.
1

3
)

7
3

(
−

2
7

3
0

)
0
.
0

7
(
−

2
.
8

0
)

ev
er

y
1

0
th

5
0

0
3

5
1
.
3

0
(
−

5
8
.
7

2
)

0
.
8

9
(
−

4
7
.
6

6
)

8
(
−

2
6

7
)

5
.
0

2
(
−

1
9

1
.
4

4
)

2
.
4

6
(
−

1
6

3
.
7

5
)

9
8

(
−

2
4

8
1

)
0
.
0

7
(
−

2
.
7

9
)

ev
er

y
1

0
th

2
5

0
1

0
1

0
2
.
8

4
(
−

5
8
.
8

2
)

2
.
6

1
(
−

4
7
.
7

7
)

3
2

(
−

2
1

8
)

1
7
.
4

4
(
−

2
2

6
.
6

1
)

1
6
.
5

4
(
−

2
2

0
.
1

0
)

2
4

5
(
−

3
0

8
4

)
0
.
2

5
(
−

3
.
3

1
)

ev
er

y
1

0
th

2
5

0
1

0
5

4
.
1

7
(
−

5
5
.
1

0
)

4
.
0

4
(
−

4
3
.
9

7
)

5
0

(
−

2
0

0
)

2
3
.
5

4
(
−

1
9

4
.
7

7
)

2
1
.
9

1
(
−

1
8

7
.
0

8
)

3
2

6
(
−

2
3

5
1

)
0
.
3

4
(
−

2
.
8

4
)

ev
er

y
1

0
th

2
5

0
3

1
0

3
.
5

9
(
−

6
0
.
9

7
)

3
.
4

4
(
−

4
8
.
1

5
)

4
2

(
−

2
0

8
)

1
9
.
7

0
(
−

2
3

3
.
8

0
)

1
8
.
7

0
(
−

2
2

2
.
3

0
)

3
4

9
(
−

2
6

2
6

)
0
.
2

9
(
−

3
.
4

1
)

ev
er

y
1

0
th

2
5

0
3

5
4
.
0

6
(
−

5
6
.
4

2
)

4
.
1

3
(
−

4
4
.
3

5
)

5
4

(
−

1
9

6
)

2
2
.
5

7
(
−

2
0

1
.
2

2
)

2
2
.
6

9
(
−

1
9

0
.
9

4
)

3
1

8
(
−

2
8

4
1

)
0
.
3

3
(
−

2
.
9

4
)

ev
er

y
1

0
th

1
7

5
1

0
5

5
.
7

3
(
−

5
0
.
0

3
)

6
.
0

5
(
−

3
5
.
7

5
)

7
9

(
−

9
6

)
5

2
.
9

4
(
−

2
1

5
.
5

4
)

6
6
.
3

0
(
−

1
3

8
.
4

0
)

6
6

4
(
−

1
8

5
7

)
0
.
7

7
(
−

3
.
1

5
)

ev
er

y
1

0
th

1
7

5
3

5
5
.
9

7
(
−

5
0
.
8

6
)

6
.
4

1
(
−

3
5
.
7

2
)

9
5

(
−

8
0

)
5

5
.
9

3
(
−

2
1

4
.
7

8
)

6
8
.
6

3
(
−

1
3

3
.
0

0
)

7
0

4
(
−

1
7

0
5

)
0
.
8

2
(
−

3
.
1

4
)

ev
er

y
1

0
th

1
0

0
1

0
1

0
7
.
9

7
(
−

3
2
.
3

1
)

8
.
6

6
(
−

1
7
.
7

1
)

5
9

(
−

4
1

)
9

4
.
9

5
(
−

1
4

0
.
1

1
)

6
6
.
2

9
(
−

4
9
.
3

6
)

8
2

5
(
−

5
2

7
)

1
.
3

9
(
−

2
.
0

5
)

ev
er

y
1

0
th

1
0

0
1

0
5

5
.
3

6
(
−

3
2
.
1

7
)

5
.
3

6
(
−

2
0
.
4

5
)

5
6

(
−

4
4

)
9

0
.
5

0
(
−

1
3

1
.
0

9
)

6
6
.
4

5
(
−

4
7
.
3

2
)

7
3

9
(
−

6
7

6
)

1
.
3

2
(
−

1
.
9

1
)

ev
er

y
1

0
th

1
0

0
3

1
0

8
.
1

5
(
−

3
2
.
5

5
)

8
.
8

1
(
−

1
7
.
0

5
)

6
3

(
−

3
7

)
9

4
.
1

1
(
−

1
3

9
.
9

1
)

6
4
.
5

3
(
−

4
8
.
0

9
)

6
2

0
(
−

7
1

1
)

1
.
3

7
(
−

2
.
0

4
)

ev
er

y
1

0
th

1
0

0
3

5
5
.
3

9
(
−

3
2
.
8

1
)

5
.
3

8
(
−

2
0
.
5

5
)

6
0

(
−

4
0

)
8

9
.
5

6
(
−

1
3

2
.
2

9
)

6
5
.
6

7
(
−

4
7
.
1

0
)

7
2

6
(
−

7
9

1
)

1
.
3

1
(
−

1
.
9

3
)

h
ig

h
d

en
si

ty
3

0
0

0
1

0
1

0
4
.
3

1
(−

3
9

3
.
2

6
)

3
.
0

5
(−

3
8

2
.
5

5
)

7
8

(−
2

3
8

5
)

9
.
5

3
(−

1
8

5
0
.
6

8
)

8
.
0

8
(−

2
0

4
8
.
4

4
)

2
3

5
(−

2
8

8
3

6
)

0
.
0

8
(−

1
5
.
8

8
)

h
ig

h
d

en
si

ty
3

0
0

0
1

0
5

4
.
1

7
(−

3
5

3
.
8

0
)

3
.
1

6
(−

3
5

2
.
9

3
)

1
0

7
(−

2
0

7
8

)
1

0
.
8

4
(−

1
6

3
9
.
1

7
)

1
1
.
4

0
(−

1
8

9
8
.
1

1
)

3
2

2
(−

2
4

9
8

9
)

0
.
0

9
(−

1
4
.
0

6
)

h
ig

h
d

en
si

ty
2

0
0

0
1

0
1

0
5
.
0

1
(−

4
5

7
.
8

2
)

2
.
7

6
(−

4
3

4
.
9

8
)

6
0

(−
1

9
4

0
)

1
2
.
6

6
(−

2
9

7
7
.
1

6
)

1
2
.
9

5
(−

3
4

8
5
.
4

2
)

4
1

4
(−

2
5

1
0

5
)

0
.
1

1
(−

2
5
.
5

4
)

h
ig

h
d

en
si

ty
2

0
0

0
1

0
5

4
.
8

4
(−

3
7

5
.
5

6
)

3
.
4

1
(−

3
7

9
.
0

4
)

9
9

(−
1

9
0

1
)

1
7
.
8

0
(−

2
0

4
9
.
9

6
)

1
9
.
7

3
(−

2
6

9
2
.
6

7
)

2
7

1
(−

2
4

3
2

0
)

0
.
1

5
(−

1
7
.
5

8
)

h
ig

h
d

en
si

ty
1

5
0

0
1

0
1

0
4
.
5

0
(−

4
3

2
.
1

8
)

2
.
7

1
(−

3
8

1
.
5

6
)

4
5

(−
1

4
5

5
)

2
0
.
0

3
(−

3
4

7
4
.
8

1
)

1
7
.
6

6
(−

3
3

2
7
.
3

0
)

2
6

7
(−

1
8

7
7

2
)

0
.
1

7
(−

2
9
.
8

1
)

h
ig

h
d

en
si

ty
1

5
0

0
1

0
5

1
1
.
4

4
(−

3
7

1
.
4

3
)

2
2
.
1

0
(−

3
3

8
.
6

7
)

3
0

1
(−

1
1

9
9

)
1

0
6
.
9

6
(−

2
8

1
9
.
8

5
)

2
5

6
.
5

0
(−

2
7

8
8
.
1

3
)

2
7

7
5

(−
1

6
6

6
4

)
0
.
9

2
(−

2
4
.
1

9
)

h
ig

h
d

en
si

ty
1

2
5

0
1

0
1

0
1

8
.
6

2
(−

3
7

2
.
6

0
)

4
1
.
9

1
(−

2
9

0
.
9

2
)

4
7

7
(
−

7
7

3
)

5
4

6
.
1

6
(−

2
8

7
4
.
9

9
)

1
0

7
1
.
6

2
(−

1
8

3
3
.
9

3
)

6
5

8
7

(
−

9
7

3
2

)
4
.
6

8
(−

2
4
.
6

6
)

h
ig

h
d

en
si

ty
1

2
5

0
1

0
5

1
9
.
1

2
(−

3
3

0
.
0

1
)

3
1
.
8

6
(−

2
8

6
.
8

1
)

4
6

5
(
−

7
8

5
)

5
1

6
.
7

6
(−

2
4

6
4
.
6

3
)

8
5

3
.
3

5
(−

1
8

2
1
.
2

4
)

5
2

9
9

(−
1

0
8

7
6

)
4
.
4

3
(−

2
1
.
1

4
)

h
ig

h
d

en
si

ty
1

0
0

0
1

0
1

0
2

6
.
2

4
(−

3
0

2
.
1

4
)

4
9
.
1

3
(−

2
2

3
.
9

5
)

5
1

5
(
−

4
8

5
)

1
0

6
4
.
3

1
(−

1
9

0
9
.
8

3
)

1
3

1
4
.
0

2
(
−

8
9

7
.
4

7
)

6
6

5
5

(
−

6
0

8
0

)
9
.
1

3
(−

1
6
.
3

8
)

h
ig

h
d

en
si

ty
1

0
0

0
1

0
5

1
8
.
8

6
(−

2
7

9
.
9

6
)

2
8
.
6

1
(−

2
3

3
.
9

4
)

3
7

6
(
−

6
2

4
)

8
8

8
.
2

5
(−

1
8

1
7
.
9

4
)

1
0

6
8
.
7

2
(−

1
0

1
7
.
0

7
)

5
0

4
3

(
−

8
0

9
2

)
7
.
6

2
(−

1
5
.
5

9
)

lo
w

d
en

si
ty

5
0

0
1

0
1

0
4
.
4

2
(−

1
4

5
.
1

2
)

2
.
9

3
(−

1
2

1
.
6

0
)

2
2

(
−

4
7

8
)

2
2
.
4

5
(
−

7
4

7
.
6

5
)

1
8
.
6

4
(
−

5
9

6
.
0

9
)

4
3

7
(
−

3
5

8
8

)
0
.
0

6
(
−

2
.
1

6
)

lo
w

d
en

si
ty

5
0

0
1

0
5

1
2
.
3

9
(−

1
3

6
.
9

6
)

1
7
.
8

8
(−

1
0

5
.
7

4
)

1
9

9
(
−

3
0

1
)

1
1

0
.
6

3
(
−

6
1

8
.
0

4
)

1
6

9
.
0

6
(
−

3
8

0
.
3

6
)

1
4

8
1

(
−

2
3

4
2

)
0
.
3

2
(
−

1
.
7

8
)

lo
w

d
en

si
ty

5
0

0
3

1
0

8
.
8

8
(−

1
4

8
.
0

4
)

1
1
.
3

2
(−

1
1

2
.
7

5
)

1
5

5
(
−

3
4

5
)

5
0
.
2

7
(
−

7
4

5
.
4

2
)

8
4
.
7

6
(
−

5
1

5
.
7

8
)

8
5

6
(
−

2
8

2
5

)
0
.
1

5
(
−

2
.
1

5
)

lo
w

d
en

si
ty

5
0

0
3

5
1

3
.
5

7
(−

1
3

9
.
0

1
)

1
9
.
2

9
(−

1
0

6
.
8

6
)

2
1

4
(
−

2
8

6
)

1
2

2
.
2

5
(
−

6
0

8
.
6

7
)

1
7

6
.
2

2
(
−

3
7

2
.
4

8
)

1
4

2
6

(
−

2
1

4
9

)
0
.
3

5
(
−

1
.
7

6
)

lo
w

d
en

si
ty

2
5

0
1

0
1

0
1

2
.
4

8
(
−

7
4
.
1

8
)

1
7
.
5

9
(
−

4
9
.
6

6
)

1
3

3
(
−

1
1

7
)

2
3

9
.
6

6
(
−

3
4

6
.
4

0
)

1
8

1
.
1

2
(
−

1
0

3
.
6

1
)

9
4

3
(
−

7
5

7
)

0
.
6

9
(
−

1
.
0

0
)

lo
w

d
en

si
ty

2
5

0
1

0
5

1
1
.
2

3
(
−

7
2
.
5

6
)

1
4
.
9

7
(
−

4
9
.
8

0
)

1
4

9
(
−

1
0

1
)

2
3

0
.
2

3
(
−

3
1

5
.
4

5
)

1
6

5
.
8

1
(
−

1
0

4
.
0

3
)

7
4

8
(
−

9
7

0
)

0
.
6

6
(
−

0
.
9

1
)

lo
w

d
en

si
ty

2
5

0
3

1
0

1
3
.
8

0
(
−

7
5
.
6

1
)

1
8
.
2

4
(
−

4
8
.
0

1
)

1
4

1
(
−

1
0

9
)

2
4

2
.
7

8
(
−

3
4

3
.
9

5
)

1
7

3
.
7

4
(
−

1
0

3
.
2

4
)

9
3

8
(
−

7
2

4
)

0
.
7

0
(
−

0
.
9

9
)

lo
w

d
en

si
ty

2
5

0
3

5
1

0
.
6

8
(
−

7
5
.
4

8
)

1
4
.
2

4
(
−

5
1
.
2

5
)

1
4

1
(
−

1
0

9
)

2
3

2
.
7

0
(
−

3
1

5
.
6

5
)

1
6

9
.
4

0
(
−

9
1
.
0

4
)

9
5

9
(
−

9
9

0
)

0
.
6

7
(
−

0
.
9

1
)

Heuristics for Improving Trip-Vehicle Fitness in On-demand Ride-Sharing Systems

333

Table 2: Statistics w. r. t. vehicle/service costs and customer satisfaction. Each cell contains a value that represents the result of
the simulation with the new implementation and another value within parentheses that expresses the difference of the this value
from the result of the simulation with the old implementation. The green (or red) cells indicate that the new implementation
produced a better (or worse) result.

T
es

t
ca

se
se

tu
p

V
eh

ic
le

/s
er

v
ic

e
co

st
s

C
u

st
o

m
er

sa
ti

sf
ac

ti
o

n

D
at

a
se

t
#

o
f

v
eh

ic
le

s

V
eh

ic
le

ca
p

ac
it

y

T
im

e

w
in

d
o
w

(i
n

m
in

)

#
o

f
u

se
d

v
eh

ic
le

s

M
ea

n
d

ri
v
en

d
is

ta
n

ce
p

er

v
eh

ic
le

(i
n

k
m

)

S
td

ev
d

ri
v
en

d
is

ta
n

ce
p

er

v
eh

ic
le

(i
n

k
m

)

S
h

ar
ed

ri
d

es

(%
)

A
v

g
ca

p
ac

it
y

u
ti

l
(%

)

A
v

g
w

ai
ti

n
g

ti
m

e
(i

n
m

in
)

A
v

g
ri

d
e

d
el

ay
(i

n
m

in
)

A
v

g
ra

ti
o

o
f

ac
tu

al
to

d
ir

ec
t

ri
d

e
ti

m
es

S
u

cc
es

s
ra

te

(%
)

ev
er

y
1

0
th

5
0

0
1

0
1

0
5

0
0

(+
1

5
5

)
6

0
7
.
8

8
(−

2
1

1
.
8

0
)

4
3
.
5

8
(−

3
5

5
.
5

0
)

2
.
5

7
(−

5
9
.
7

3
)

1
0
.
2

7
(
−

9
.
5

4
)

0
.
0

5
(−

3
.
0

4
)

0
.
1

2
(−

3
.
7

2
)

1
.
1

1
(−

0
.
7

6
)

9
9
.
8

5
(
−

0
.
1

4
)

ev
er

y
1

0
th

5
0

0
1

0
5

5
0

0
(+

1
6

6
)

6
0

7
.
8

7
(−

2
0

0
.
5

6
)

4
4
.
0

9
(−

3
6

6
.
7

1
)

2
.
4

9
(−

5
4
.
9

8
)

1
0
.
2

6
(
−

8
.
0

2
)

0
.
0

4
(−

1
.
8

6
)

0
.
0

9
(−

2
.
0

9
)

1
.
0

8
(−

0
.
4

5
)

9
9
.
7

6
(
−

0
.
1

6
)

ev
er

y
1

0
th

5
0

0
3

1
0

5
0

0
(+

1
4

0
)

6
0

8
.
5

1
(−

1
9

6
.
4

6
)

4
4
.
9

1
(−

3
6

0
.
3

9
)

2
.
4

6
(−

6
0
.
7

4
)

3
4
.
2

2
(−

2
9
.
0

0
)

0
.
0

5
(−

3
.
0

4
)

0
.
1

1
(−

3
.
7

1
)

1
.
1

1
(−

0
.
7

6
)

9
9
.
8

6
(
−

0
.
1

3
)

ev
er

y
1

0
th

5
0

0
3

5
5

0
0

(+
1

5
9

)
6

0
7
.
9

3
(−

1
8

9
.
4

1
)

4
3
.
4

9
(−

3
7

3
.
5

4
)

2
.
5

6
(−

5
4
.
8

8
)

3
4
.
2

3
(−

2
5
.
1

6
)

0
.
0

4
(−

1
.
8

6
)

0
.
0

9
(−

2
.
0

6
)

1
.
0

8
(−

0
.
4

4
)

9
9
.
7

5
(
−

0
.
1

7
)

ev
er

y
1

0
th

2
5

0
1

0
1

0
2

5
0

(
0

)
8

3
9
.
1

3
(−

2
1

2
.
1

9
)

1
6

8
.
9

6
(
−

0
.
9

9
)

6
8
.
9

2
(
+

6
.
2

5
)

2
0
.
9

4
(
+

1
.
3

5
)

1
.
6

7
(−

1
.
5

5
)

2
.
8

0
(−

0
.
8

9
)

1
.
6

4
(−

0
.
1

7
)

9
7
.
6

3
(
+

3
.
5

0
)

ev
er

y
1

0
th

2
5

0
1

0
5

2
5

0
(

0
)

9
1

3
.
8

6
(−

1
1

3
.
4

3
)

1
3

8
.
0

1
(
−

6
8
.
2

6
)

6
1
.
1

2
(
+

3
.
3

8
)

1
8
.
1

6
(
+

0
.
1

7
)

1
.
4

3
(−

0
.
5

2
)

1
.
7

9
(−

0
.
3

5
)

1
.
4

3
(−

0
.
0

9
)

9
4
.
6

2
(
−

0
.
9

1
)

ev
er

y
1

0
th

2
5

0
3

1
0

2
5

0
(

0
)

8
6

4
.
1

2
(−

1
9

5
.
2

5
)

1
6

7
.
9

0
(

+
3
.
7

4
)

7
0
.
4

8
(
+

7
.
7

2
)

6
5
.
8

8
(
+

3
.
6

5
)

1
.
7

9
(−

1
.
4

7
)

2
.
7

3
(−

0
.
9

2
)

1
.
6

2
(−

0
.
1

8
)

9
6
.
9

2
(
+

3
.
8

5
)

ev
er

y
1

0
th

2
5

0
3

5
2

5
0

(
0

)
9

2
5
.
9

1
(−

1
0

4
.
3

1
)

1
3

4
.
7

6
(
−

6
0
.
9

3
)

5
8
.
5

9
(
+

1
.
0

3
)

5
7
.
8

4
(
−

0
.
3

0
)

1
.
3

0
(−

0
.
6

7
)

1
.
6

9
(−

0
.
4

3
)

1
.
4

0
(−

0
.
1

1
)

9
4
.
8

7
(
−

0
.
3

8
)

ev
er

y
1

0
th

1
7

5
1

0
5

1
7

5
(

0
)

1
1

2
2
.
0

3
(
−

3
5
.
3

6
)

5
8
.
9

3
(
−

4
6
.
4

9
)

6
5
.
3

6
(
+

5
.
1

4
)

1
8
.
9

0
(
+

0
.
6

9
)

1
.
6

0
(−

0
.
4

7
)

1
.
9

6
(−

0
.
1

4
)

1
.
4

4
(−

0
.
0

2
)

7
9
.
0

1
(
+

4
.
6

9
)

ev
er

y
1

0
th

1
7

5
3

5
1

7
5

(
0

)
1

1
2

6
.
3

2
(
−

3
2
.
4

4
)

5
7
.
4

2
(
−

4
7
.
4

5
)

6
5
.
2

9
(
+

4
.
5

9
)

6
1
.
2

2
(
+

1
.
9

5
)

1
.
6

7
(−

0
.
4

2
)

1
.
9

3
(−

0
.
1

5
)

1
.
4

4
(−

0
.
0

2
)

7
7
.
4

9
(
+

4
.
3

4
)

ev
er

y
1

0
th

1
0

0
1

0
1

0
1

0
0

(
0

)
1

2
5

7
.
5

9
(
−

1
3
.
6

2
)

4
3
.
6

4
(
−

1
2
.
4

8
)

6
9
.
8

2
(
+

3
.
6

1
)

2
0
.
7

5
(
+

0
.
6

9
)

3
.
0

9
(−

0
.
3

8
)

3
.
3

8
(−

0
.
0

6
)

1
.
6

2
(+

0
.
0

1
)

4
4
.
1

8
(
+

1
.
8

5
)

ev
er

y
1

0
th

1
0

0
1

0
5

1
0

0
(

0
)

1
2

5
9
.
9

7
(
−

0
.
9

0
)

4
1
.
7

1
(
−

1
1
.
2

3
)

6
5
.
3

3
(
+

2
.
1

7
)

1
8
.
8

8
(
+

0
.
3

0
)

2
.
0

1
(−

0
.
1

3
)

2
.
0

3
(−

0
.
0

5
)

1
.
4

1
(−

0
.
0

1
)

4
4
.
0

2
(
+

1
.
0

1
)

ev
er

y
1

0
th

1
0

0
3

1
0

1
0

0
(

0
)

1
2

6
5
.
4

5
(
−

1
1
.
2

0
)

4
1
.
3

6
(
−

4
.
5

3
)

6
9
.
3

1
(
+

2
.
6

5
)

6
4
.
9

0
(
+

1
.
2

9
)

3
.
2

0
(−

0
.
3

4
)

3
.
2

4
(−

0
.
1

4
)

1
.
5

9
(−

0
.
0

1
)

4
3
.
1

3
(
+

1
.
6

9
)

ev
er

y
1

0
th

1
0

0
3

5
1

0
0

(
0

)
1

2
6

1
.
0

3
(
−

0
.
4

2
)

4
3
.
3

6
(
−

6
.
8

6
)

6
4
.
8

7
(
+

2
.
2

8
)

6
0
.
9

8
(
+

1
.
0

3
)

2
.
0

2
(−

0
.
1

6
)

1
.
9

9
(−

0
.
0

6
)

1
.
4

0
(

0
.
0

0
)

4
3
.
9

5
(
+

1
.
1

6
)

h
ig

h
d

en
si

ty
3

0
0

0
1

0
1

0
3

0
0

0
(+

5
2

8
)

4
2
.
7

0
(
−

9
.
2

0
)

8
.
7

4
(
−

3
.
2

6
)

1
4
.
3

9
(−

6
2
.
9

4
)

1
1
.
6

1
(−

1
1
.
0

7
)

0
.
4

6
(−

2
.
1

0
)

0
.
5

0
(−

3
.
1

6
)

1
.
0

9
(−

0
.
7

8
)

9
9
.
1

9
(
−

0
.
5

0
)

h
ig

h
d

en
si

ty
3

0
0

0
1

0
5

3
0

0
0

(+
8

0
1

)
4

2
.
6

0
(
−

7
.
8

4
)

8
.
8

4
(
−

1
.
7

5
)

1
3
.
0

7
(−

5
9
.
7

7
)

1
1
.
3

9
(−

1
0
.
0

0
)

0
.
3

5
(−

1
.
2

4
)

0
.
3

8
(−

1
.
8

6
)

1
.
0

8
(−

0
.
4

9
)

9
8
.
2

6
(
−

0
.
5

3
)

h
ig

h
d

en
si

ty
2

0
0

0
1

0
1

0
2

0
0

0
(

0
)

4
4
.
8

4
(
−

9
.
7

1
)

8
.
8

6
(
−

0
.
6

6
)

6
1
.
8

9
(−

1
8
.
9

3
)

1
8
.
5

5
(
−

5
.
6

2
)

0
.
7

1
(−

1
.
8

0
)

1
.
4

5
(−

2
.
1

6
)

1
.
3

2
(−

0
.
5

0
)

9
8
.
7

6
(
+

6
.
5

4
)

h
ig

h
d

en
si

ty
2

0
0

0
1

0
5

2
0

0
0

(
0

)
4

5
.
1

9
(
−

6
.
3

3
)

8
.
9

0
(
−

0
.
2

0
)

5
9
.
9

1
(−

1
4
.
4

1
)

1
7
.
9

7
(
−

3
.
8

4
)

0
.
5

8
(−

1
.
0

3
)

1
.
2

4
(−

0
.
9

9
)

1
.
2

9
(−

0
.
2

7
)

9
7
.
5

9
(
+

1
.
5

2
)

h
ig

h
d

en
si

ty
1

5
0

0
1

0
1

0
1

5
0

0
(

0
)

4
8
.
5

7
(
−

7
.
4

5
)

8
.
9

3
(
−

0
.
2

4
)

8
1
.
6

0
(
−

3
.
4

7
)

2
5
.
6

2
(
−

0
.
2

0
)

1
.
0

1
(−

1
.
3

7
)

2
.
2

3
(−

1
.
3

9
)

1
.
5

2
(−

0
.
2

4
)

9
8
.
3

4
(+

2
3
.
0

6
)

h
ig

h
d

en
si

ty
1

5
0

0
1

0
5

1
5

0
0

(
0

)
5

0
.
9

7
(
−

2
.
0

7
)

9
.
4

3
(

+
0
.
7

0
)

8
1
.
3

5
(
+

0
.
6

4
)

2
4
.
2

2
(
+

0
.
5

1
)

1
.
0

3
(−

0
.
5

4
)

2
.
0

3
(−

0
.
2

1
)

1
.
4

9
(−

0
.
0

1
)

9
1
.
8

4
(+

1
3
.
2

9
)

h
ig

h
d

en
si

ty
1

2
5

0
1

0
1

0
1

2
5

0
(

0
)

5
4
.
7

9
(
−

2
.
2

9
)

8
.
8

1
(
−

0
.
3

8
)

8
8
.
8

5
(
+

2
.
5

6
)

3
0
.
3

9
(
+

3
.
7

4
)

1
.
5

9
(−

0
.
7

8
)

3
.
5

2
(−

0
.
1

2
)

1
.
7

8
(+

0
.
0

5
)

8
2
.
1

0
(+

1
7
.
5

4
)

h
ig

h
d

en
si

ty
1

2
5

0
1

0
5

1
2

5
0

(
0

)
5

3
.
0

7
(
−

1
.
4

3
)

9
.
0

6
(
−

0
.
0

3
)

8
7
.
1

0
(
+

3
.
5

7
)

2
5
.
8

4
(
+

1
.
3

4
)

1
.
3

0
(−

0
.
3

0
)

2
.
2

2
(−

0
.
0

2
)

1
.
5

0
(+

0
.
0

2
)

7
4
.
9

8
(
+

8
.
1

2
)

h
ig

h
d

en
si

ty
1

0
0

0
1

0
1

0
1

0
0

0
(

0
)

5
6
.
6

1
(
−

1
.
1

9
)

9
.
0

8
(
−

0
.
4

4
)

9
0
.
9

6
(
+

3
.
7

6
)

3
1
.
6

2
(
+

4
.
3

9
)

1
.
8

4
(−

0
.
5

3
)

3
.
8

6
(+

0
.
2

3
)

1
.
8

2
(+

0
.
1

2
)

6
2
.
2

5
(
+

9
.
8

8
)

h
ig

h
d

en
si

ty
1

0
0

0
1

0
5

1
0

0
0

(
0

)
5

4
.
6

9
(
−

0
.
6

6
)

9
.
3

9
(

+
0
.
4

6
)

8
8
.
6

0
(
+

3
.
5

3
)

2
6
.
5

4
(
+

1
.
4

8
)

1
.
4

2
(−

0
.
2

1
)

2
.
2

7
(+

0
.
0

5
)

1
.
4

8
(+

0
.
0

3
)

5
7
.
9

0
(
+

3
.
8

3
)

lo
w

d
en

si
ty

5
0

0
1

0
1

0
5

0
0

(
0

)
1

0
6
.
3

8
(
−

1
8
.
1

8
)

1
3
.
7

8
(

+
0
.
1

7
)

6
9
.
7

6
(
+

5
.
0

0
)

2
1
.
6

8
(
+

1
.
9

5
)

1
.
2

9
(−

2
.
2

5
)

3
.
1

9
(−

0
.
5

7
)

1
.
5

4
(

0
.
0

0
)

9
8
.
0

7
(+

2
3
.
4

2
)

lo
w

d
en

si
ty

5
0

0
1

0
5

5
0

0
(

0
)

1
2

1
.
1

2
(
−

2
.
1

3
)

1
4
.
3

5
(

+
0
.
5

8
)

6
0
.
3

3
(
+

0
.
9

3
)

1
8
.
0

5
(
+

0
.
0

5
)

1
.
7

3
(−

0
.
5

5
)

1
.
9

5
(−

0
.
1

4
)

1
.
3

1
(

0
.
0

0
)

7
8
.
4

8
(
+

8
.
2

5
)

lo
w

d
en

si
ty

5
0

0
3

1
0

5
0

0
(

0
)

1
1

5
.
9

3
(
−

8
.
5

2
)

1
4
.
7

7
(

+
1
.
5

1
)

6
7
.
2

3
(
+

2
.
4

9
)

6
4
.
3

9
(
+

1
.
9

7
)

1
.
9

4
(−

1
.
6

5
)

3
.
1

6
(−

0
.
4

8
)

1
.
4

9
(−

0
.
0

1
)

9
1
.
7

7
(+

1
9
.
7

8
)

lo
w

d
en

si
ty

5
0

0
3

5
5

0
0

(
0

)
1

2
1
.
7

7
(
−

1
.
1

2
)

1
4
.
9

9
(

+
0
.
2

2
)

5
8
.
3

1
(
−

0
.
9

2
)

5
7
.
4

5
(
−

0
.
4

8
)

1
.
8

5
(−

0
.
4

6
)

1
.
8

7
(−

0
.
2

0
)

1
.
3

0
(−

0
.
0

1
)

7
5
.
9

0
(
+

5
.
4

2
)

lo
w

d
en

si
ty

2
5

0
1

0
1

0
2

5
0

(
0

)
1

3
0
.
4

7
(
−

3
.
7

9
)

1
2
.
9

5
(
−

0
.
3

0
)

7
2
.
4

0
(
+

4
.
8

6
)

2
2
.
7

9
(
+

2
.
3

4
)

3
.
1

7
(−

0
.
5

6
)

3
.
9

3
(+

0
.
0

3
)

1
.
4

9
(+

0
.
0

1
)

4
0
.
1

4
(
+

3
.
8

8
)

lo
w

d
en

si
ty

2
5

0
1

0
5

2
5

0
(

0
)

1
2

9
.
9

9
(
−

0
.
4

0
)

1
3
.
3

3
(
−

0
.
1

1
)

6
4
.
6

7
(
+

3
.
1

0
)

1
9
.
2

0
(
+

0
.
5

8
)

2
.
2

3
(−

0
.
1

5
)

2
.
1

3
(−

0
.
0

4
)

1
.
2

9
(+

0
.
0

1
)

3
7
.
0

3
(
+

0
.
6

1
)

lo
w

d
en

si
ty

2
5

0
3

1
0

2
5

0
(

0
)

1
3

1
.
2

7
(
−

1
.
4

1
)

1
2
.
4

9
(
−

1
.
4

3
)

7
0
.
6

5
(
+

5
.
0

7
)

6
7
.
2

2
(
+

3
.
8

2
)

3
.
3

4
(−

0
.
5

6
)

3
.
7

3
(−

0
.
0

2
)

1
.
4

6
(

0
.
0

0
)

3
7
.
6

2
(
+

2
.
1

0
)

lo
w

d
en

si
ty

2
5

0
3

5
2

5
0

(
0

)
1

2
9
.
4

6
(
−

0
.
9

1
)

1
4
.
1

1
(

+
0
.
4

0
)

6
4
.
3

8
(
+

2
.
5

1
)

6
1
.
5

5
(
+

1
.
7

5
)

2
.
2

4
(−

0
.
2

6
)

2
.
1

2
(+

0
.
0

2
)

1
.
2

8
(+

0
.
0

1
)

3
7
.
2

4
(
+

2
.
6

3
)

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

334

