
MPT: Suite Tools to Support Performance Tuning in NoSQL Systems

M. El Malki, H. Ben Hamadou, N. El Malki and A. Kopliku
IRIT: Institut de Recherche en Informatique de Toulouse, France

Keywords: NoSQL, Cassandra, Mongodb, Monitoring, Tuning Performance.

Abstract: NoSQL databases are considered as a serious alternative for processing data whose volume reaches limits that

are difficult to manage by relational DBMS. So far, they are praised for the capability to scale, replication and

their capability to deal with new flexible data models. Most of these systems are compared to read/write

throughput and their ability to scale. However, there is a need to get more in depth to monitor more precise

metrics related to RAM, CPU and disk usage. In this paper, we propose a benchmark suite tools that enables

data generation, monitoring and comparison. It supports several NoSQL systems including: column-oriented,

document-oriented as well as multistores. We present some experimental results that show its utility.

1 INTRODUCTION

Within the last years, the incredible increase of data

has contributed to the development of new data

management systems known as Not Only SQL

(NoSQL) systems. They are based on four data

models (Corbellini et al., 2017): column-oriented,

graph-oriented, document-oriented and key-value

oriented (Cattel. 2017). In few years, NoSQL systems

have become a reliable alternative to relational

systems. They are well known for their horizontal

scaling and their ability to absorb extremely large

variable data with in fault-tolerant environments.

NoSQL systems provide a high availability

environment, i.e., the system makes sure that there is

a response for every query.

However, to ensure such availability, NoSQL

systems incorporate highly optimized read/write

mechanisms, which require important memory

resources (Talha Kabakus et al., 2016; Xiang et al.,

2010).

The read mechanism is tightly related to the

writing mechanism configuration (Xiang et al., 2010).

A maximum optimization of the writing

performances affects the reading performances and

vice versa (Cattel, 2011). Therefore, many systems

allow performance tunings that enable database

administrators/data architects to tune the performance

of the NoSQL system with respect to read/write or

querying workloads. Tuning is usually done and

tested before deployment of solutions. This step

stands to evaluate major of NoSQL system

performances; system resources utilization i.e.

adjusting the memory and the resources usage, in

order to achieve the expected performance.

It becomes important to have benchmarks that can

enable comparison and monitoring on different

NoSQL systems. We need these benchmarks within

each system to check tuning performance and we

need them to compare the different NoSQL systems.

We also need to be able to measure performance in

multistores (Valduriez et al., 2015).

Unfortunately, performance tuning faces two

additional constraints:

 Multistores Support. According to numerous

studies, NoSQL systems have been developed

for specific tasks. It is though often necessary

to combine multiple stores together, such

systems are called multistores (Lu, et al,

2017).

 Data Synchronizations Issues within the

Cluster. NoSQL systems are designed to be

fault-tolerant. Indeed, the loss or the

temporary absence of a node within the cluster

is not automatically detectable by the user.

While read/write operations are ensured on the

other nodes. Nevertheless, the recovery of the

unavailable node requires its synchronization

with the other nodes, i.e. a coordination

process so that all nodes have a copy of the

most recent data. This process can be

performed manually (DBA administrator) and

it should be performed locally at each node.

This process may add extra overhead due to

El Malki, M., Ben Hamadou, H., El Malki, N. and Kopliku, A.
MPT: Suite Tools to Support Performance Tuning in NoSQL Systems.
DOI: 10.5220/0006687601270134
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 127-134
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

127

the unnecessary resources usage and

dramatically impact read/write performances.

Therefore, the last challenge consists in

proposing a continuous nodes maintenance by

automating the recovery operations i.e. repair

process.

In this paper, we present a benchmarking tool that

enable DBA to tune and monitor the NoSQL

performances with guarantee to best resources

usages. Our suite tools is built to offer for both

academia and industrial a useful benchmarking tools

with a reference dataset and a set of exploratory

queries. To the best of our knowledge, we introduce

our benchmarking suite as one of the fewer solutions

that supports multistores systems. More precisely the

benchmark provides:

 performance tuning interface: setting

configuration parameters

 monitoring tool: displaying metrics in real-

time fashion

 benchmarking tool: data loading and

exploratory queries execution.

Figure 1: Functionalities Supported.

In this paper, we introduce the motivations behind

the experimental works showing the use cases of the

benchmark. We study the impact of tuning

parameters while dealing with read/write

performances. We set different configurations

parameters in order to tune: cache memory, write

buffers, heap size (1/2thHeap Size, 1/4th heap size). In

each case, we study their impacts on different metrics

such as CPU usage, read/write throughput, memory

usage

The paper is organized as follows. In the next

section, we present the related works. In Section 3 we

describe our benchmark and finally we present our

experimental work and the conclusion.

2 RELATED WORK

Recently several benchmarks have been developed

within the NoSQL systems (Murugesan et al., 2014;

Cooper et al., 2015; Dehdouh et al. 2015; Chevalier

et al., 2015). Among these tools, significant focus is

devoted to the study of the three V's (volume, variety,

veracity of data) and the comparison of logical data-

models. In this paper, we focus on performance

tuning on NoSQL systems. Works can be

distinguished based on the nature of:

 performance tuning;

 data synchronization (data repair).

2.1 Performance Tuning

In this subsection, we investigate performance tuning

works by studying two domains: academic works and

industrial tools.

In the context of academic works, we start by

citing the work presented in (Sathvik, 2013), that

studies the tuning performances within the column-

oriented model, Cassandra (Veronika et al., 2013). It

determines the metrics related to the memory usage

and exposes their impact on the read/write

mechanisms (Sathvik, 2013). These same metrics

were integrated by (Prassana 2012) within a tool that

provides a graphical visualization of these metrics. In

(Murugesan et al., 2013) the authors analyse the

different logging methods offered by comparing them

to standard method.

Several other works have also focused on

studying performances in Cloud platforms (Wu et al.,

2013) and Hadoop frameworks (Dede et al., 2013).

(Wu et al., 2013) diskusses the difficulties and the

complexity of monitoring cloud platforms and the

authors propose a scalable monitoring platform,

based on two integration methods, called data

extraction and data storage, using Ganglia and Cacti

(Wu and al., 2013). In (Gabriel et al., 2015), the

authors draw up a description of the monitoring tools

focuses on tools tailored for Hadoop.

As it concerns industrial tools, we noticed that

there was a real interest for developing monitoring

tools, regardless of the benchmarks tuning.

We also figured out that the monitoring tools

specifically designed for Cassandra are not actually

very common. Moreover, Cassandra exposes

essential metrics for cluster monitoring via JMX

(Sam R. Alapati, 2018), which makes it possible to be

used by monitoring tools based on JMX like Ops

Center and Devcenter, which help to keep tracks of

the resources (Memory, CPU, cache) usage. These

tools have been specifically developed for Cassandra

Configuration

Monitoring	:
q Performances	

tuning

Benchmarking
q Table	creation
q Data	insertion
q Data	quering

Multituning

MongoDB

Supported	tasks
Supported	

NoSQL	systems

Cassandra

Datalake
Cassandra	&	
MongoDB

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

128

by the Datastax editor with a commercial version for

professional use. As it comes to MongoDB, it has

embedded basic monitoring capabilities as mongostat

and mongotop (MongoDB User Guide, 2016). Also,

there are several plugins that allow the integration of

MongoDB in most of the popular performances

monitoring tools, to mention Munin, Ganglia, Cacti,

Zabbix or Nagios. These solutions are not specific to

MongoDB but they are adapted to be compatible

with.

Table 1: Benchmarking NoSQL tools.

tool Configuration Benchmarking Monitoring

OPScenter x x

NAGIOS x

JCONSOLE x

Cassandra
STRESS

x x

YCSB x
Our solution x x x

However, despite the fact that all of the above

mentioned tools offer important performance

monitoring interfaces for major of NoSQL systems’,

they were built to run exclusively on a specific

NoSQL system or there is a need to run them

separately on each of the desired systems. Moreover,

in the context of multistore, it is necessary to have a

monitoring tool able to support several DBMS at

once. To our knowledge, a tool capable of monitoring

so-called multistore solutions has not been proposed

yet (Table 1).

Moreover, by studying performance tuning, we

must also considerer cumbersome NoSQL issues

such as data synchronization.

2.2 Data Synchronization
(Data Repair)

Related woks on NoSQL architectures emphasize the

fact that NoSQL systems do not support transaction

management (Abadi t al., 2014). The CAP theorem,

on which NoSQL systems are based, does not ensure

data coherency between the different nodes (Abadi t

al., 2014). In the case where data is highly distributed

over multiple datacenters, an update operation may

take significant delay to be replicated on different

datacenters. Furthermore, data centers may not have

the same version of data at the same time. This kind

of problem occurs mainly when one data node

becomes unavailable for a while. The latter must

synchronize the latest versions of data that have been

modified during its unavailability.

To our knowledge, there is a lack of academic

works that enable automatic repair process. This

industrials solutions as Cassandra stress and

Opscenter are commercial solutions.

The concern of our article is to present a

benchmark that allows evaluations of the

performance while tuning different configuration

parameters, i.e. before the deployment phase.

3 NoSQL SYSTEMS

In this section we describe two systems used in our

solution, the column-oriented model with Cassandra

and the document-oriented model with MongoDB.

3.1 Cassandra

Cassandra is a column-oriented data system based on

a master-master architecture. It is optimized for fast

and highly read/write operations. In what follows we

give a description on the read/write mechanisms

inside Cassandra.

Path Write. During a writing operation, the data is

firstly written into a log called commitlog, and it is

also written into a memory structure called memtable.

A writing operation is validated if both of the

previous operations have been successfully

processed. This same process is done in every node.

Secondly, memtables are sequentially flushed to the

disk, onto SSTables structures. This operation called

flush is invoked when the memtable content exceeds

the configurable threshold.

Moreover, SSTables are immutable, and each one

can have different versions accumulated on disk.

These different versions must periodically be

consolidated. The merging process is called

compaction; it can significantly impact the reading

performance according to adopted compaction

strategy.

Read Path. For each read requests, the coordinator is

responsible to assign the request to the nodes that

offer higher availability in order to return data with

the latest version, the result of an active memtable and

different SStable must be combined. The read process

is performed via two main steps. On the first step, it

verifies if the data is available on row cache memory.

If not, it must, on the second step, merge the different

SStable to return the most recent version.

MPT: Suite Tools to Support Performance Tuning in NoSQL Systems

129

3.2 MongoDB

MongoDB is a document-oriented database with a

high horizontal scalability. The main idea of

MongoDB is to freely evolve and make shards to

improve read/write performances. Unlike Cassandra,

MongoDB is based on a master-slave architecture and

the OS takes in charge the cache writing. Indeed, the

memory usage of MongoDB is under the control of

the operating system's virtual memory. In other

words, MongoDB will use memory as much as it is

available, and it will switch to disk if needed.

Deployments with enough RAM memory for the

application's data will achieve best performances.

Since version 3, MongoDB has introduced a new

storage engine called WiredTiger, which allows the

specification of a maximum cache size, which did not

exist in the old storage engines (MMAPv1, TokuMX,

Rocks).

Like Cassandra, the write process is not

instantaneous. Data is first written in the log files

(commitlog) and then is written to the disk with

respect to the configuration parameters.

In the NoSQL systems, numerous configuration

strategies can be envisaged. The adequate

configuration choice must reply to the expected

workloads. The monitoring tools help to ensure the

best strategy. In the following, we describe our tool

suite to improve tuning performances.

4 BENCHMARKING TOOL MPT

The name of the proposed benchmark suite is MPT

(Management Performance Tool). It is designed to

support the resources management and used in a

NoSQL multistore. The particularity of MPT is the

fact that it is able to adjust, monitor and compare two

NoSQL systems’ performances: columns-oriented

and documents-oriented. The tool also evaluates the

systems separately.
MPT includes the following main components:

 Configuration Tool: it allows the

configuration of the parameters related to the

read/write mechanisms.

 Benchmarking Tool: it compares the memory

usage within two NoSQL systems.

 Monitoring Tool: it tracks the metrics related

to the resources’ usage in both systems.

4.1 Configuration Tool

Since setting the configuration files may be

sometimes a cumbersome task, MPT allows

administrators to manipulate them in a graphical

mode and thus set the different parameters so they can

be evaluated easily.

As there are many configuration parameters, we

focus on those having a direct impact on the

performance of the read/write operations, i.e.

performance and system resource usage tuning,

including commit log, compaction, memory, disk I/O,

CPU, reads, and writes. MPT is able to distinguish

between common parameters for both systems and

specific ones. More precisely, regarding the common

parameters, we are concerned with the following

aspects.

Cache Memory. There are two types of cache:

row_cache and key_cache. Row cache temporarily

keeps the data written into the Heap memory and

therefore, during a reading operation, it allows a

quick response without accessing the disk. However,

as the cache size is limited, i.e. in Cassandra 2.2 and

later, it is fully stored into off-heap memory using a

new implementation that relieves on garbage

collection pressure in the JVM. The subset stored in

the row cache use a configurable amount of memory

for a specified period of time. It is necessary to

determine the cycle for flushing data to disks. The

related parameters are:

 key_cache_keys_to_save

 key_cache_size_in_mb

 key_cache_save_period

For the specific parameters for each system, we

focus on the following aspects. We start by the

parameters related to Cassandra configuration.

Compaction and Compression Strategies. These

two aspects are the main resource usage regulators in

Cassandra and they can often cause a fail if the

following parameters are not properly set:
MemTable allocation type

 MemTable cleanup threshold

 File cache size

 MemTable flush writer

 MemTable heap/offheap space

 Memtable_heap_space_in_mb

 Compaction_throughput_mb_per_sec

 Concurrent_compactors

After defining the different specific configuration

parameters for Cassandra, we introduce now the ones

related to MongoDB.

Storage Engine. MongoDB offers the possibility

to choose among one from four storage engines. Only

the latest storage engine Wiredtiger offers the

possibility to set the cache memory. The other three

ones delegate the memory management to the OS

system. We dress the different setting parameters in

Table 2.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

130

Table 2: Parameter’s configuration related tuning

performance.

 Metrics Nom metrics

C
as

sa
n
d

ra
/C

as
sa

n
d

ra

Key Cache key_cache_keys_to_save

key_cache_size_in_mb

key_cache_save_period

MemTable MemTable allocation type

MemTable cleanup threshold

File cache size

MemTable flush writer

MemTable heap/offheap space

Compaction_throughput_mb_per_sec

Concurrent_compactors

Commitlog CompletedTasks

PendingTasks

TotalCommitLogSize

4.2 Benchmark Tool

In this section, we describe the main functions of the

suite tool, which allows benchmarking the memory

usage.

The tool tracks in real-time the memory used by

the NoSQL system process. This metric enables us to

study the memory at different phases:

(i) The Table Creation Phase. The user can

specify the number of tables to be created and

thus follow step by step the memory allocation

for each table. The data schema follows the flat

logic model (Chevalier et al., 2015) i.e. all

attributes are flat without any nesting level

according the following schema: {id, name,

username, old, city, mobile}. The

attribute id is used as a partitioning key.

(ii) Data Loading. The user can track the memory

allocated and used for the population process of

each table. The inserted data is generated

randomly. The tool integrates a data generator

where the number of rows is a random number

between 107 and 1012. The data is generated

once for both systems.

(iii) Data Querying. The tool provides 12 queries.

 4 queries with a simple selection;

 4 queries with a “where” clause on the

partitioning keys.

 2 queries with a “where” clause on keys that

are not part of the partitioning key.

 2 queries with a “group by” clause

The user can specify the query to evaluate and

track the allocated memory for each queried table.

The comparison of the NoSQL logic models is not the

subject of this study, many works have already

conducted in this direction (Chevalier et al., 2015).

4.3 Monitoring Tool

Using JMX, Cassandra and MongoDB provide

metrics related to each node in text/log formats. We

extract these metrics and present them as a graph.

Thus, the user can specify the desired metrics and

follow in real time the metrics evolution.

The user can also specify the metrics to be

displayed for the whole cluster. We choose to not

centralize the data and to monitor each node

behaviour at the same interface.

The extracted metrics are reported in table Table

2.

4.4 GUI

The home interface of the GUI allows choosing the

system to be evaluated, Cassandra, MongoDB or the

multistore.

Thereafter, there are two tabs, a tab for

configuration and a tab for benchmarking monitoring.

The configurations tab allows the user to set the

parameter values in the configuration subsection. The

second tab contains the memory usage graphs, which

are structured as follows:

 A graph for “table creation” phase, which

displays the memory in MB, used for each

created table.

 A graph for “loading” phase that displays the

memory used for the data inserted onto each

table.

 A graph for “reading” phase that displays the

memory used for each queried table, in MB.

 A Simulation graph, which combines the

results of the three previous graphs.

 A graph to track the performance tuning

behaviour.

Figure 2: interface of our solution MPT.

MPT: Suite Tools to Support Performance Tuning in NoSQL Systems

131

4.5 Automatic Synchronization
(Repair) Process

In order to synchronize t-he data, NoSQL systems

integrate a synchronization tool generally called

Repair. It consists of manually executing a repair

operation at each node. This repair process is based

on Mercle tree, i.e. comparing each partition of table

/document with other partitions of other replicas. This

process significantly increases the CPU usage due to

the important number of comparisons. This CPU

usage is more important if other read/write processes

are running at the same time. In our solution, we have

built a script to automatize the repair process. It is

executed at Cassandra start and it is based on the

following rules:

 A repair operation is launched in continuous

each ten days. This interval is used to do not

impact the others process as the compaction.

 A repair operation is not launched if read/write

is running.

 A repair operation is not launched if

compaction operation is running.

 Only one repair operation can be lunched at

the same time.

5 EXPERIMENTS

In this section, all the experiments were conducted

using a single node server that is a 𝑖5 3.4𝐺𝐻𝑧

processor coupled with 8𝐺𝐵 of RAM and two 2𝑇𝐵

𝑆𝐴𝑇𝐴 disks that runs under 𝐶𝑒𝑛𝑡𝑂𝑆 7, used to

evaluate 𝑀𝑜𝑛𝑔𝑜𝐷𝐵 𝑣3.4.2. we use anther server with

the same characteristics to evaluate Cassandra v3.1.0.

We used the data loading component benchmark of

the tool suite (1) to create table and documents, (2) to

load generated data into MongoDB/Cassandra and (3)

to query data. The data is generated using csv format

for Cassandra and json format for MongoDB.

This is done for illustrative purposes to show that

we can generate, load and query data with our

benchmark. Also, we show that we can monitor each

benchmark phase and all metrics related to

performance tuning. Precisely, we evaluate:

Memory usage with ¼th heap size and ½th heap

size in both systems Cassandra and MongoDB.

Comparing our solution with another monitoring

tool, Jconsole.

5.1 Memory Usage in Cassandra

In this first experiment, we study the performances by

limiting cache memory at ¼ of heap memory i.e. 2

GB. The results are obtained in real time.

In Figure 3-5 describe the allocated memory

(RAM) for the regarding three phases (Figure 3 & 4):

table creation, data loading and data querying. Each

figure shows the memory usage per table. In the graph

related to table creation phase, we note a maximum

of 75 MB at the end of this phase. A maximum of 60

MB during the phase of data writing (Figure 5) and a

maximum of 40 MB during data reading phase.

Figure 3: Overall Memory usage for three phases

(Memory/table).

Figure 4: Memory usage at creating phase (Memory/table).

Figure 5: Memory usage at writing phase (Memory/table).

5.2 Comparing MPT with JConsole

In this experiment, we compare memory usage using

another monitoring tool JConsole. As a reminder,

JConsole is a monitoring tool known in Java

environments since several years. We compare results

provided by JConsole tool and the results provided by

our tool. The results are reported in the Figure 5 and

Figure 6.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

132

We conduct the same experiment i.e. evaluation

of three phases with ¼ of heap and ½ of heap.

The Figure 6 shows that the max is 3.1GB for ½th

heap i.e. 4 GB and 1.6 GB for ¼ of heap i.e. 2GB.

Unlike our solution, distinguishing between results of

each phase can be extremely difficult. In simulation

Figure 3, we can see that it is possible to monitor

separately the three phases.

JConsole does not handle memory usage for

specific applications but it indicates memory usage

for all Cassandra processes that turn at the same time.

Thus, JConsole does not offer the same flexibility

than our solution and it is impossible to adjust

performance according the application. Note that the

results are given as times series and not by

table/document.

Figure 6: Usage memory using JConsole with 2GB.

Figure 7: Usage memory using JConsole with 4GB.

Another advantage for our solution when compared

to JConsole is the fact that it cannot evaluate

Cassandra/ MongoDB metrics as we can represent in

the following experiment (Figure 8). In this

experiment, we show that our solution is capable to

report the metrics related to the performance tuning.

For example, In the Figure 8, we report in KB the size

of data flushed per number of table during the

compaction operation. The volume of data compacted

is more important due to number of flush writer. We

reach 750 MB at table number 300.

Figure 8: Metrics of data compacted in Cassandra.

This result is directly related to operation of

memory release that we can observe in In Figure 3.

In fact, in Figure 3, we can also shows the memory

for release operations. The number of memtable flush

is significantly decreases when cache memory free

decreases. The number of flush writer starts at each

100 memtables to achieve 30 memtables. This is

explained by two different mechanisms. The first is

related to the limited lifetime of Cassandra tables.

Memtables must be written in SST before memory

release. The second mechanism is related to the

manipulation of the JVM memory. The garbage

collector is trigged to release the old java objects.

In Figure 7, we observe the flush writer with ½th

of heap. The number of flushed memtables is less

important than the previous configuration. The

interval flushing is largest; we note a flush operation

at each 210 memtables. This is explained by a cache

memory that is found to be more important.

These results impact the read/write mechanisms

and the CPU utilization.

5.3 CPU Usage Performances

In this experiment we evaluate and compare CPU

utilization.

In Figure 9, we report the CPU utilization with ¼th

of heap size. We can see that we exceed 70 % of CPU

usage during table creation phase. The utilization of

CPU becomes less important to reach a maximum of

35% in loading phase and 12% at reading phase.

In Table 3, we report all results in both

configuration (1/4th and ½th heap). We note that the

CPU usage decreases while increasing the heap

memory.

Table 3: Comparing CPU utilisation.

 ¼ th heap ½ th heap

min 3.5% 2.8%

max 72% 44%

average 17% 10%

Figure 9: Usage CPU with heap of 2 GB.

MPT: Suite Tools to Support Performance Tuning in NoSQL Systems

133

6 CONCLUSION

This paper presents a suite of tools that enable

benchmarking and monitoring for NoSQL systems by

considering the columns-oriented model, Cassandra

and documents-oriented model, MongoDB. We build

a complete suite of tools integrating a configuration

tool, a benchmarking tool as well as a monitoring

tool. We also proposed an automation process of data

synchronization.

We conduct experiments to show the need and the

requirements of this solution, and we evaluate the

performances on the read/write mechanisms. Our

experiments show that we can facilitate the real-time

monitoring of Cassandra and MongoDB metrics by

offering graphical reports.

As perspectives, we plan to publish the developed

tool online to allow researchers and industrials to

conduct all the experiments in a real-conditions. Also,

we plan to compare our tool with the native

alternative tools of existing NoSQL systems.

REFERENCES

D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A.

Bernstein, M. J. Carey, S. Chaudhuri, J. Dean, A. Doan,

M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J.

M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D.

Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F.

Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C.

Ooi, C. Ré, D. Suciu, M. Stonebraker, T. Walter, and J

Widom. 2014. The Beckman Report on Database

Research. SIGMOD 2014 -. 43, 3 61-70.

A. Jacobs, “The pathologies of big data,” Communications

of the ACM, vol. 52, no. 8, pp. 36–44, Aug. 2009

Abdullah Talha Kabakus and Resul Kara A performance

evaluation of in-memory databases, Journal of King

Saud University - Computer and Information Sciences

A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,

and H. Jacobsen.. BigBench: towards an industry

standard benchmark for big data analytics.

SIGMOD'13. 1197-1208

C. Bondiombouy, B. Kolev, O. Levchenko, P. Valduriez

Multistore Big Data Integration with CloudMdsQL T.

Large-Scale Data- and Knowledge-Centered Systems

2016 28: 48-74

Chevalier M, El Malki M, Kopliku A, Teste O, Tournier R

Benchmark for OLAP on NoSQL technologies

comparing NoSQL multidimensional data warehousing

solutions RCIS 2015, pp 480–485

Corbellini, Alejandro, MATEOS, Cristian, ZUNINO,

Alejandro, et al. Persisting big-data: The NoSQL

landscape. Information Systems, 2017, vol. 63, p. 1-23

Cooper BF Yahoo! cloud serving benchmark, 31 Mar 2010

https://s.yimg.com/ge/labs/v1/files/ycsb-v4.pdf.

Dede E, Govindaraju M, Gunter D, Canon RS,

Ramakrishnan L. Performance evaluation of a

mongodb and hadoop platform for scientific data

analysis. workshop on scientific cloud computing

G. Iuhasz and I Dragan An Overview of Monitoring Tools

for Big Data and Cloud Applications SNASC ‘15

Alapati S.R. (2018) Securing Cassandra. In: Expert Apache

Cassandra Administration. Apress, Berkeley

K. Dehdouh, O. Boussaid, and F. Bentayeb, “Columnar

nosql star schema benchmark,” in Model and Data

Engineering. Springer, LNCS 8748, pp. 281–288, 2014

K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,

“Parallel data processing with mapreduce: A survey,”

SIGMOD pp. 11–20, 2012.

Lu, Jiaheng, Holubova, Irena, Multi-model Data

Management: What's New and What's Next? EDBT

2017, pp. 602-605, Venice, Italy, March 21-24, 2017

MingLi Wu, Zhongmei Zhang and Yebai Li, "Application

research of Hadoop resource monitoring system based

on Ganglia and Nagios," 2013 IEEE 4th SES

MongoDb User guide : https://docs.mongodb

P. Murugesan and I. Ray, "Audit Log Management in

MongoDB," 2014 IEEE World Congress on Services,

Anchorage, AK, 2014, pp. 53-57.

Peng Xiang, Ruichun Hou and Zhiming Zhou, "Cache and

consistency in NOSQL," 2010 Science and Information

Technology, Chengdu, 2010, pp. 117-120.

Rick Cattell. 2011. Scalable SQL and NoSQL data stores.

SIGMOD Rec. 39, 4 -12-27

Sathvik Katam Performance Tuning of Big Data Platform

Cassandra Case Study Faculty of Computing. Blekinge

Institute of Technology

Stonebraker, M., 2010. SQL databases v. NoSQL

databases. Commun. ACM 53, 10–11.

TPC, Transaction Performance Councli, “TPC

http://www.tpc.org/

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

134

