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Abstract: Cloud computing has become a revolutionary paradigm by provisioning on-demand and low cost computing 
resources for customers. As a result, scientific workflow, which is the big data application, is increasingly 
prone to adopt cloud computing resources. However, internal failure (host fault) is inevitable in such large 
distributed computing environment. It is also well studied that cloud data center will experience malicious 
attacks frequently. Hence, external failure (failure by malicious attack) should also be considered when 
executing scientific workflows in cloud. In this paper, a fault-tolerant scheduling (FTS) algorithm is 
proposed for scientific workflow in cloud computing environment, the aim of which is to minimize the 
workflow cost with the deadline constraint even in the presence of internal and external failures. The FTS 
algorithm, based on tasks replication method, is one of the widely used fault tolerant mechanisms. The 
experimental results in terms of real-world scientific workflow applications demonstrate the effectiveness 
and practicality of our proposed algorithm. 

1 INTRODUCTION 

Cloud computing is the popular and promising 
computing platforms for users or customers, and its 
on-demand computational resources can be obtained 
easily in the form of virtual machine (VM) (Foster et 
al., 2008; Mell and Grance, 2009; Sun et al., 2016). 
Workflow is common formed by a number of tasks 
and the control structures, which typically modeled 
as a directed acyclic graph (DAG) (Kyriazis et al., 
2008). It is used to model scientific computing 
applications, such as physics, bioinformatics, 
astronomy, numerical weather forecast and so on (Li 
et al., 2017). With the growth complexity of these 
applications, scientific workflows are become big 
data applications and require large-scale 
infrastructures to conduct in a reasonable time (Li et 
al., 2016; Rodriguez and Buyya, 2014]. 
Accordingly, scientific workflows are prone to 
exploit the cloud computing resources (Kashlev and 
Lu, 2014; Zhao et al., 2011).  

Although executing scientific workflows on 
cloud platform bring many advantages, cloud 
computing, similar to other distributed computing 

system, is also easily to emerge resource failures. 
Some of them result from internal failure (i.e., host 
fault) (Jeannot et al., 2012; Zhu et al., 2016; Yao et 
al., 2017, Qiu et al., 2017). According to the report 
that a system consists of 10 thousand physical 
servers, one will fail once a day (Dean, 2009). 
Moreover, about 1-5 percentage of disk drives die 
and hosts crash at least twice with roughly 2-4 
percentage every year (Zhu et al., 2016). Thus, the 
workflow application is likely to delay even if only 
one server fails during the task executing process. 
Moreover, various security threats (such as spoofing 
and alteration) are the great concern for cloud users 
and providers (Zeng et al., 2015; Li et al., 2016; 
Chen et al., 2017). For example, alteration is one of 
the malicious attacks that can lead to serious task 
faults by changing the execution data. Hence, 
external failure (i.e., failure by malicious attack) 
should also be considered when executing scientific 
workflow applications. Fortunately, integrity 
service, a security check method, can be utilized to 
ensure that no one modify or tamper with the data 
without being detected during the process of task 
executing (Xie and Qin, 2006, 2008). Hence, it is 
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also necessary to deploy security service to check 
the integrity of running data for workflow tasks.  

The task resubmission and replication methods 
are two extensively utilized fault tolerance methods 
(Chen et al., 2016; Vinay and Dilip Kumar, 2017). 
As for the resubmission, it resubmits a task 
execution after a failure happens. The resubmission 
mechanism is generally used during the course of 
task execution and can enhance the resource 
utilization of computing system. Nevertheless, 
resubmission method will result in much late finish 
time for tasks and may fail to meet the deadline 
constraint of workflow (Vinay and Dilip Kumar, 
2017). Alternatively, tasks can also be duplicated to 
avoid failures, and the replications of a task can be 
executed simultaneously (Chen et al., 2016). The 
replication is also realized in a primary-backup 
mode, where the backup starts executing when the 
primary fails (Ghosh et al., 1997; Manimaran and 
Murthy, 1998; Zhu et al., 2011, 2016; Sun et al., 
2017). Therefore, the replication method is 
applicable for the task scheduling phase and is good 
for saving execution time of task. 

In the cloud computing environment, task 
failures may result from internal failure or external 
failures. Moreover, workflow scheduling in cloud 
usually takes the deadline into consideration. So, 
resubmission method is not applicable for cloud 
workflow scheduling. In this paper, we propose a 
fault-tolerant scheduling (FTS) algorithm for 
scientific workflow in cloud computing 
environment, the aim of which is to optimize the 
workflow cost with the deadline constraint even in 
the presence of various failures. The task replication 
scheme is integrated into the FTS algorithm, and the 
number of replications depends on the internal and 
external failures probabilities. The experimental 
results, on the basis of real-world scientific 
workflow applications, demonstrate the effective-
ness and practicality of our proposed algorithm. The 
main contributions of this work are given as follows: 

• We propose a fault-tolerant scheduling 
algorithm for scientific workflow in cloud to 
optimize the workflow execution cost while 
meeting the deadline constraint. 

• The proposed FTS algorithm, which is based 
on task replication, can ensure the successful 
execution of task in the presence of internal 
failure (i.e., host failure) or external failure 
(i.e., failure by malicious attack).  

• In terms of real-world scientific workflow 
applications, our experiments demonstrate the 
effectiveness and practicality of our proposed 
FTS algorithm. 

The remainder of this paper is organized as 
follows. Section 2 summarizes the related work. 
Section 3 describes the models and problem 
formulation. Section 4 introduces the algorithm 
implementation. Section 5 analyses the experimental 
results. Finally, the conclusions and future work are 
given in Section 6. 

2 RELATED WORK 

The problems of workflow scheduling in cloud have 
been well studied recently. Zhao et al. (2011) 
present the key challenges and research opportuni-
ties in running scientific workflow on cloud. Then, a 
cloud scientific workflow management system is 
proposed, which integrates Swift system with the 
OpenNebula cloud computing platform (Zhao et al., 
2012). In commercial multi-cloud environment, Fard 
et al. (2013) introduce a pricing and truthful model 
for workflow scheduling to minimize the workflow 
makespan and monetary cost simultaneously. 
Rodriguez and Buyya (2014) propose a scientific 
workflow scheduling mechanism according to 
Infrastructure as a Service (IaaS) that optimizes the 
entire workflow scheduling cost with the deadline 
constraint. Li et al. (2017) present a cost and energy 
aware workflow scheduling algorithm, which is 
based on four optimization steps, to minimize the 
workflow cost and reduce the energy consumption 
under the constraint of workflow deadline. 
Furthermore, many studies have concentrated on 
multiple objective workflow scheduling problems in 
cloud. Durillo et al. (2012) propose a multi-objective 
list scheduling heuristic for workflow in cloud 
computing environment. As an alternative, Zhu et al. 
(2016) develop an evolutionary multi-objective 
optimization (EMO) algorithm for scientific work-
flow scheduling in the same scenario. However, the 
aforementioned workflow management system, 
single objective and multi-objective scheduling 
algorithms neglect the tasks failure problem that will 
influence the quality of service (QoS) of workflow. 

Since the occurrences of internal faults are 
usually unpredictable in computer systems, fault 
tolerance must be considered when devising 
workflow scheduling algorithms. Ghosh et al. (1997) 
provide a fault-tolerance technique in dynamic 
systems that can help system designers determine 
how many processors should be needed. Manimaran 
and Murthy (1998) propose a fault-tolerant 
algorithm to dynamically schedule real-time tasks in 
the multiprocessor system. Zhu et al. (2011) present 
a fault-tolerant scheduling algorithm that can  
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Table 1: Notations. 

Symbol Semantics ݐ௜ Task ݐ௜ of workflow ܦ(ݐ௜) The size of input data of task ݐ௜ ܹ(ݐ௜) Workload of task ݐ௜ ݁ݎ݌(ݐ௜) Predecessor set of task ݐ௜ ܿܿݑݏ(ݐ௜) Successor set of task ݐ௜ ݊ The number of tasks of workflow ܸܯ(݇) The ݇thVM type  ܲ(݇) Processing capacity of ܸܥ (݇)ܯ(݇) The cost per unit time of ܸܤ (݇)ܯ The bandwidth between VMs λ Failure coefficient  ߚ Weight parameter ௙ܲ௔௨௟௧(ݐ௜) Fault probability of task ݐ௜ ݊௖௢௣௬(ݐ௜) The number of copies of task ݐ௜ ௧ܶ௥௔௡௦(ݐ௜) Transmission time of task ݐ௜ ௘ܶ௫௘௖(ݐ௜, ,௜ݐ)௜ ௥ܶ௘௡௧ݐ End time of task (௜ݐ)௜ ௘ܶ௡ௗݐ Start time of task (௜ݐ)௜ ௦ܶ௧௔௥௧ݐ Execution time of task ((݇)ܯܸ ,௜ݐ൫ݐݏ݋ܿ (݇)ܯܸ ௜ onݐ VM rent time of task (݇)ܯܸ  The makespan of workflow ݊ܽ݌ݏ݁݇ܽ݉ The cost of workflow ݐݏ݋ܿ (݇)ܯܸ ௜ onݐ ൯ VM rent cost of task(݇)ܯܸ

tolerate one node failures for real-time tasks in 
heterogeneous cluster environment. However, these 
fault-tolerant scheduling algorithms cannot be directly 
applied to cloud computing environment or workflow 
scheduling problem. In (Plankensteiner and Prodan, 
2012), a resubmission heuristic strategy is proposed 
to support fault tolerant execution of scientific 
workflows. Wang et al. (2015) present a fault-
tolerant mechanism which extends the primary-
backup model to cloud computing system. Chen et 
al. (2016) propose three clustering strategies of fault 
tolerant to improve the QoS of workflow. Zhu et al. 
(2016) construct a real-time workflow fault-tolerant 
model that extends the traditional primary-backup 
model based on many cloud computing 
characteristics, and the task allocation and message 
transmission mechanism are developed to ensure 
task faults can be done in the process of workflow 
executing. However, the fault-tolerant methods 
mentioned above only consider the internal faults, 
but they ignore the external faults. 

The security problem in workflow scheduling 
has been studied to deal with external malicious 
attacks in cloud. Chen et al. (2017) investigate the 
problems of workflow scheduling with security-
sensitive intermediate data. Li et al. (2016) propose 
a security and cost aware scheduling algorithm for 
scientific workflow, the aim of which is to optimize 
the workflow cost under the deadline and risk rate 

constraints. Zeng et al. (2015) propose a security-
aware and budget-aware (SABA) workflow 
scheduling scheme to minimize makespan within 
both the security and budget constraints. However, 
existing algorithms only consider the security 
constraints for workflow scheduling and are 
incapable to solve the failure problem by malicious 
attack. 

Unlike the aforementioned approaches, in this 
study, we task both internal and external failures into 
count simultaneously and propose a fault-tolerant 
scheduling (FTS) algorithm for scientific workflow 
in cloud computing environment. The FTS algorithm 
is based on tasks replication method (one of the 
widely used fault tolerant mechanisms), and the aim 
of which is to minimize the workflow cost with the 
deadline constraint even in the presence of various 
failures. The experimental results in terms of four 
real-world scientific workflow applications 
demonstrate the effectiveness and practicality of our 
proposed algorithm. 

3 MODELS AND PROBLEM 
FORMULATION 

In this section, first we describe some models used 
in this paper, including workflow model, cloud 
model and fault model. Then, the problem 
formulation of fault-tolerant scientific workflow 
scheduling is introduced. The major notations and 
their semantics in this paper are summarized in 
Table 1. 

3.1 Workflow Model 

The model of workflow is usually represented by the 
DAG (directed acyclic graph) model, that is		ܹܨ =(ܶ, (ܧ , where ܶ = ,଴ݐ} ,ଵݐ … , ,௜ݐ … , {௡ିଵݐ  is the 
workflow tasks set, ܧ = ,௜ݐ)} ,௜ݐ|(௝ݐ ௝ݐ ∈ ܶ} is the set 
of edges between tasks. Let ݁ݎ݌(ݐ௜)  and ܿܿݑݏ(ݐ௜) 
represent the set of predecessor and set of successor 
of task ݐ௜  respectively. Then, suppose a DAG has 
exactly one entry task and one exit task, and a task is 
called entry task ݐ௘௡௧௥௬, if and only if ݁ݎ݌൫ݐ௘௡௧௥௬൯ =∅ ; a task is called exit task 	ݐ௘௫௜௧ , if and only if ܿܿݑݏ(ݐ௘௫௜௧) = ∅ . Moreover, symbol (௜ݐ)ܹ		  is the 
workload of task ݐ௜ , which is quantified in unit of 
compute unit, and ܦ(ݐ௜) represents the size of the 
input data of tasks ݐ௜. In addition, each workflow has 
a deadline 		 ௗܶ௘௔ௗ௟௜௡௘  which is defined as the 
constraint of execution time.
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Table 2: m4 series of VMs in Amazon EC2. 

VM number VM type Compute Unit Cost per Hour ($) 
1 m4.large 2 0.1 
2 m4.xlarge 4 0.2 
3 m4.2large 8 0.4 
4 m4.4large 16 0.8 
5 m4.10large 40 2 
6 m4.16large 64 3.2 

 

3.2 Cloud Model 

Through virtualization technology, each server in 
cloud systems can be virtualized to a set of 
heterogeneous VMs. Hence, the VM is the basic 
processor unit in cloud instead of server. Suppose 
the cloud systems offer a set of VM resources in the 
form of ܯܸ		 = ,(1)ܯܸ} … , ,(݇)ܯܸ … , {(ܭ)ܯܸ  to 
users in the pay-per-use model. For example, 
Amazon EC2 provides six types of m4 series VMs 
which is shown in Table 2 (Amazon EC2, 2017). 
Specially, a VM instance ܸܯ(݇) is mainly specified 
by processing capacity ܲ(݇) (in compute unit) and 
cost per hour		ܥ(݇). Without loss of the generality, 
Amazon EC2 charge users by the hourly-based 
pricing model that means users have to pay for the 
whole leased hour even if the VM leased just one 
minute (Rodriguez and Buyya, 2014; Li et al., 
2017). Empowered by the virtualization technology, 
an infinite amount of VMs can be accessed in cloud 
computing platform, and so users can rent the 
arbitrary number of VMs. Moreover, all VMs 
located in the one cloud data center so that the 
bandwidth between VMs is supposed to be equal (Li 
et al., 2016; Yao et al., 2017). 

3.3 Fault Model 

We take the internal and external faults 
simultaneously into account in cloud workflow 
scheduling problem. As for internal failure, host 
failure is focused, which can bring about failures 
including VMs and workflow tasks. So, a fault-
detection mechanism is used to detect host failure 
(Ghosh et al., 1997; Manimaran and Murthy, 1998). 
Furthermore, failures on hosts may be transient or 
permanent, independent, which means that a fault 
occurred on one host will not affect other hosts. 
Since the probability that two hosts fail 
simultaneously is small, we assume that at most one 
host fails at a time (Zhu et al., 2011, 2016).  

Security threats (Snooping, spoofing and 
alteration) are a big concern in cloud computing 
system. As far as we known, snooping and spoofing 

attacks only incur significant data losses of 
workflow. However, only alteration is an 
unauthorized attack that can lead to invalid tasks 
execution, which is termed the external failure. 
Then, we can apply integrity service to check 
whether the task executing successfully (Xie and 
Qin, 2006; Li et al., 2016). There are many hash 
functions for integrity services such as TIGER, 
RIFDMD-160, SHA-1, RIFDMD-128, MD5, etc 
(Xie and Qin, 2006, Li et al., 2016; Chen et al., 
2017). Each hash function is assigned a security 
level in the range 0 to 1. However, adding the 
security services to applications inevitably produces 
time overhead, which will increase the makespan 
and cost of applications. Among the above hash 
functions, the TIGER method, with the highest 
security level, has the most security overhead. 
Moreover, the time overhead of security service is in 
direct proportion to the size of data (Li et al., 2016; 
Chen et al., 2017). In order to check the executing 
data whether is altered by malicious users during the 
task executing, we use the TIGER method as the 
integrity service. Then, the time of task ݐ௜ using the 
TIGER method to check the execution data is 
computed by Eq. (1). 

௦ܶ௘௖௨(ݐ௜) = ߚ ∙  (1)                     (௜ݐ)ܦ

where ߚ is the weight parameter of TIGER security 
service and ܦ(ݐ௜)  is the size of execution data of 
task ݐ௜ . As for scientific workflow, e.g., NCFS 
workflow, the size of input data may range from 
0.5GB to 8.7GB (Zeng et al., 2015). Hence, the 
security time overhead cannot be overlooked when 
devising the workflow scheduling algorithm.  

3.4 Problem Formulation 

The aim of this paper is to minimize the workflow 
cost with the deadline constraint even in the 
presence of failures. Then, an efficient scheduling 
scheme of mapping workflow tasks onto VMs 
should be found. Then, Let the start time and end 
time of a task ݐ௜  as ௦ܶ௧௔௥௧(ݐ௜) and ௘ܶ௡ௗ(ݐ௜), and the 
start time of ݐ௜ is represented by Eq. (2). 
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௦ܶ௧௔௥௧(ݐ௜) = max	௧ೕ∈௣௥௘(௧೔){ ௘ܶ௡ௗ൫ݐ௝൯}           (2) 

Note that if ݐ௜ = (௜ݐ)௘௡௧௥௬, then ௦ܶ௧௔௥௧ݐ = 0. A task ݐ௜  can start its execution if and only if it receives 
input data from all its predecessors. Then, the 
transmission time is computed by 

௧ܶ௥௔௡௦(ݐ௜) =  (3)                              ܤ/(௜ݐ)ܦ

where ܤ  is the bandwidth between two VMs in 
cloud computing platform. Then, the task ݐ௜  begins 
to execute, and the execution time is given by 

௘ܶ௫௘௖(ݐ௜, ((݇)ܯܸ =  (4)            (݇)ܲ/(௜ݐ)ܹ

Thus, the end time of task ݐ௜ is computed as follows. 

௘ܶ௡ௗ(ݐ௜) = ௦ܶ௧௔௥௧(ݐ௜) + ௧ܶ௥௔௡௦(ݐ௜)  
   + ௘ܶ௫௘௖(ݐ௜, ((݇)ܯܸ + ௦ܶ௘௖௨(ݐ௜)      (5) 

We know that the end time of task ݐ௘௫௜௧  is the 
makespan of workflow, then  ݉ܽ݇݁݊ܽ݌ݏ = ௘ܶ௡ௗ(ݐ௘௫௜௧)                             (6) 

Based on the above definitions, the VM rent time of 
task ݐ௜ executed on ܸܯ(݇) is given by  

௥ܶ௘௡௧൫ݐ௜, ൯(݇)ܯܸ = ௧ܶ௥௔௡௦(ݐ௜) + ௘ܶ௫௘௖൫ݐ௜, ൯(݇)ܯܸ + ௦ܶ௘௖௨(ݐ௜)            (7) 

However, Amazon EC2 typically charges the 
users by an hourly-based pricing model. Then, the 
cost of one copy executed on ܸܯ(݇) is represented 
as follows. ܿݐݏ݋൫ݐ௜, ൯(݇)ܯܸ = ڿ ௥ܶ௘௡௧(ݐ௜, ۀ((݇)ܯܸ ∙  (8)    (݇)ܥ

In the cloud computing environment, task failures 
are inevitable, and we use the replication method to 
ensure the fault-tolerant. Hence, suppose ݊௖௢௣௬(ݐ௜) 
is the number of replications of task ݐ௜ . Then, the 
cost of task ݐ௜ is calculated by  ܿݐݏ݋(ݐ௜) = ݊௖௢௣௬(ݐ௜) ∙ ,௜ݐ൫ݐݏ݋ܿ  ൯       (9)(݇)ܯܸ

Thus, he cost of workflow can be computed by  ܿݐݏ݋ = ∑ ்∋௧೔(௜ݐ)ݐݏ݋ܿ                  (10) 

Finally, the workflow scheduling problem can be 
formally defined as follows: find a schedule scheme 
to minimize ݐݏ݋ܿ		 , and the ݉ܽ݇݁݊ܽ݌ݏ  is equal or 
less than		 ௗܶ௘௔ௗ௟௜௡௘, which is described as follows. 

Minimize: c(11)                                    ݐݏ݋ 

Subject to: ݉ܽ݇݁݊ܽ݌ݏ ≤ ௗܶ௘௔ௗ௟௜௡௘     (12) 

4 ALGORITHM 
IMPLEMENTATION 

In this section, we propose a fault-tolerant 
scheduling algorithm for scientific workflow to 
address the faults happened in internal and external 
cloud computing environment. The FTS algorithm is 
capable of reducing workflow cost while meeting 
the deadline. In this section, we present the 
implementation of proposed algorithms in detail as 
follows. 

With the aim of meeting the deadline constraint 
of workflow, we first introduce a concept of sub-
makespan. The sub-makespan stands for the 
assigned execution time of a task, which is similar to 
the makespan of the workflow. Obviously, if the 
execution time of each task is no more than its sub-
makespan, then the makespan of workflow will not 
exceed the deadline.  

First, we map each task to the maximum 
compute unit ܸ(ܭ)ܯ. Then, the minimum execution 
time of task is calculated by  

௘ܶ௫௘௖(ݐ௜, ((ܭ)ܯܸ =  (13)        (ܭ)ܲ/(௜ݐ)ܹ

In this case, we can derive the minimum makespan 
of workflow ݉ܽ݇݁݊ܽ݌ݏ௠௜௡  when all tasks of 
workflow execute on ܸ(ܭ)ܯ . Without loss of 
generality, we assume that the specified deadline ௗܶ௘௔ௗ௟௜௡௘ will no less than the minimum makespan, 
that is ௗܶ௘௔ௗ௟௜௡௘ ≥ ୫୧୬݊ܽ݌ݏ݁݇ܽ݉ . We define the 
sub-makespan of task ݐ௜  as ௦ܶ௨௕௠(ݐ௜)  which is 
represented as follows (Li et al., 2017). 

௦ܶ௨௕௠(ݐ௜) = ( ௧ܶ௥௔௡௦(ݐ௜) + ௘ܶ௫௘௖൫ݐ௜, + ൯(ܭ)ܯܸ ௦ܶ௘௖௨(ݐ௜)) ∙ ௗܶ௘௔ௗ௟௜௡௘/݉ܽ݇݁݊ܽ݌ݏ୫୧୬      (14) 

FTS Algorithm 
BEGIN 
01. for each task ݐ௜ ∈ ܶ 
02.   Calculate the minimum ௘ܶ௫௘௖(ݐ௜,  ;((ܭ)ܯܸ
03. end for  
04. Calculate the minimum makespan ݉ܽ݇݁݊ܽ݌ݏ୫୧୬; 
05. for each task ݐ௜ ∈ ܶ 
06.   Calculate the sub-makespan based on Eq. (14); 
07.   Find the feasible set ܸܯ௙௘௔௦௜௕௟௘(ݐ௜); 
08.   for each ܸܯ(݇) ∈  (௜ݐ)௙௘௔௦௜௕௟௘ܯܸ
09.      Find an optimal ܸܯ௢௣௧(݇) that satisfy Eq. (20); 
10.   end for 
11. end for 
12. Compute the ݉ܽ݇݁݊ܽ݌ݏ according to Eq. (6); 
13. Compute the ܿݐݏ݋ according to Eq. (10); 
END 

Figure 1: The pseudo code of FTS algorithm. 
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Workflow executing in cloud computing 
environment is not risk-free. As for external failure, 
the failure occurrence is approximated by a Poisson 
distribution (Qiu et al., 2017). Then, the fault 
probability of task ݐ௜  executed on cloud computing 
platform is modeled by an exponential distribution 
given as follows (Fard et al., 2012). 

௙ܲ௔௨௟௧(ݐ௜) = 1 − exp	(−ߣ ∙ ௥ܶ௘௡௧(ݐ௜,  (15)    (((݇)ܯܸ

where ߣ is the failure coefficient of cloud computing 
environment. 

To guarantee the successful execution of all 
tasks, we utilize the replication method to duplicate 
multiple copies of tasks to execute simultaneously. 
Then, we assume that parameter ߝ is a small positive 
integer that is approximate to zero. Then, we have ( ௙ܲ௔௨௟௧(ݐ௜))௡೎೚೛೤೐ೣ೟ (௧೔) ≤  (16)                  ߝ

where ݊௖௢௣௬௘௫  ௜ copies which isݐ is number of task (௜ݐ)
used to against the external failure. Also the task 
may be fault due to internal failure, i.e. host or 
server fault. Since the probability that two hosts fail 
simultaneously is small, hence suppose at most one 
host fails at a time. Then, we add another one copy 
to solve this problem. Thus, the total copies of task ݐ௜ calculated by Eq. (17). ݊௖௢௣௬(ݐ௜) = ݊௖௢௣௬௘௫ (௜ݐ) + 1              (17) 

Eq. (17) can be explained as follows: cloud 
computing environment may suffer from internal 
and external failures, and a task replication method 
is used to ensure the task successful execution. First, ݊௖௢௣௬௘௫ (௜ݐ)  copies of tasks are aim at the external 
malicious attack. In additional, one extra copy is to 

guarantee the internal host fault. Hence, ݊௖௢௣௬(ݐ௜) 
copies of tasks execute on VMs simultaneously with 
one copy of task will be successful at least. 
Moreover, note that if ݊௖௢௣௬(ݐ௜) = 2 , then our 
multiple replication method is similar to well-known 
primary-backup model (Ghosh et al., 1997; 
Manimaran and Murthy, 1998; Zhu et al., 2016).  

Then, we transfer the optimization problem as 
follows. 

  Minimize: ܿݐݏ݋(ݐ௜)                                     (18) 

Subject to: ௥ܶ௘௡௧(ݐ௜, ((݇)ܯܸ ≤ ௦ܶ௨௕௠(ݐ௜)   (19) 

Eq. (16)                                      (20) 

The new problem means that as for each task, we 
find a ܸܯ(݇)  for task ݐ௜  to satisfy Eqs. (19) and 
(20), and  minimize the ܿݐݏ݋(ݐ௜). Eqs. (19) and (20) 
represent the sub-makespan constraint and the 
conditions for successfully executing respectively. 
First, we find a VM set ܸܯ௙௘௔௦௜௕௟௘(ݐ௜)  of task ݐ௜ 
which can satisfy the Eq. (19). Then, from the set ܸܯ௙௘௔௦௜௕௟௘(ݐ௜) , the optimal ܸܯ௢௣௧(݇)  is selected 
that the Eq. (20) is met and the cost of task ݐ௜  is 
minimized. Here, the enumeration is used to find the 
optimal VM type effectively. The time complexity 
of enumeration depends on the number of VMs. 
Overall, the pseudo code of our proposed FTS 
algorithm is described in Fig. 1. We can see that the 
time complexity of computing minimum execution 
time is ܱ(݊)  (lines 1-3). Then, the worst time 
complexity of calculating the optimal VM type is ܱ(݊ଶ) (lines 5-11). As a result, the time complexity 
of FTS algorithm is ܱ(݊ଶ). 

 

(a) Montage (b) LIGO   (c) SIPHT (d) CyberShake 

Figure 2: Structures of real-world scientific workflows. 

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

100



 

 

(a) Montage (b) LIGO 

 

(c) SIPHT (d) CyberShake 

Figure 3: Workflow cost with different deadlines. 

5 SIMULATION EXPERIMENTS 

In this section, we simulate a series of experiments 
to evaluate the performance of our FTS approach. 
First, we introduce the experiment setup. Then, the 
simulation results on the basis of four real-world 
workflows are discussed. 

5.1 Experiment Setup 

The simulation is run on a machine with an Intel 
Core i7 4 cores and 4 GB of RAM. All algorithms 
are implemented in Python 3.5. Four scientific 
workflow models from different areas, such as 
Montage, LIGO, SIPHT and CyberShake, are used 
in our experiments are shown in Fig. 2 (Zhu et al., 
2016; Li et al., 2016, 2017). For each task in a 
workflow, the size of input/output data and the 
workload are all according to the uniform 
distribution in the range [10, 100] GB and [1, 64] 
CU respectively. The bandwidth between two VMs 
is 0.1GB/s. Let ݋݅ݐܽݎ =  ୫୧୬ is݊ܽ݌ݏ݁݇ܽ݉/݈݁݊݅݀ܽ݁݀
the rate of predefined deadline to minimum 
makespan. In order to set the proper deadline for 
each workflow, we must have ݋݅ݐܽݎ ≥ 1. 

We also consider other three workflow 
scheduling scenario to compare with FTS approach. 
The comparison algorithms are presented as follows. 

No Fault: That means no internal and external 
failures exist in the cloud computing environment, 
and users need not to employ any fault-tolerant 
strategies. 

Internal Fault: In this case, only host fault will 
happen during the tasks executing. 

External Fault: Users only consider the 
malicious attack failure in this assumption. Then, the 
security time overhead should be integrated into the 
makespan and cost computation. 

5.2 Simulation Results 

The experiment results of four scientific workflows 
on cost under different deadlines are shown in Fig. 
3, where the ratio is from 1 to 5 with the increment 
of 0.5, ߣ = 0.005 and ߝ = 10ିସ . We can see from 
the four figures that the workflow cost become 
lower as the ratio increases. This is because that a 
larger workflow deadline will generate larger sub-
makespan for tasks, then a task will map to the low 
performance VM with low cost. Moreover, No Fault 
algorithm has the lowest cost. The cost of Internal 
Fault algorithm is double of the No Fault algorithm, 
for it always have two copies tasks to execute. The 
cost of External Fault algorithm is roughly same to 
Internal Fault algorithm. Our proposed FTS 
algorithm performs worst in scheduling cost. This is 
due to the fact that internal and external faults are 
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(a) Montage (b) LIGO 

 

(c) SIPHT (d) CyberShake 

Figure 4: Workflow cost under different ߣ.  

 

(a) Montage  (b) LIGO 

 

(c) SIPHT   (d) CyberShake 

Figure 5: Workflow cost under various ε. 
considered at the same time in FTS algorithm. In 
order to meet the reliability execution of workflow, 
multiple copies of a task, up to the failure 
coefficient, are needed to execute. Although FTS 
algorithm has the most workflow cost, only it can 

ensure the successful execution of workflow even in 
the presence of host fault and malicious attack 
simultaneously in the cloud computing environment.  

We plot the workflow cost under different ߣ for 
FTS algorithm and the peer algorithms are presented 
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in Fig. 4, where ݋݅ݐܽݎ = 2.5 and ߝ = 10ିସ. As we 
can see from the figures, No Fault algorithm and 
Internal Fault algorithm are independent of ߣ. With 
the larger λ, the cost of FTS algorithm and External 
Fault algorithm increase with the same pace. This 
results from the fact that a larger value of ߣ means 
the cloud computing platform will suffer from more 
external malicious attacks. Then, a user should 
schedule more copies of tasks to VMs that induce 
more cost. Similarly, the FTS algorithm performs 
the worst on execution cost, the reason of which is 
that FTS can tackle the internal and external faults 
more efficiently than any other comparison 
algorithms. 

Fig. 5 illustrates the workflow cost of four 
algorithms under different self-defined ߝ , where ݋݅ݐܽݎ = 2.5  and ߣ = 0.005 . From the four 
workflow structures, it can be seen that the curves of 
No Fault algorithm and Internal Fault algorithm are 
flat. The rationale is that No Fault algorithm and 
Internal Fault algorithm are independent with the 
parameter ߝ. The cost curves of FTS algorithm and 
External Fault algorithm are decreasing when 
parameter ߝ  become large. The reason is that less 
task copies will demand when parameter ߝ is large 
according to Eq. (16), which introduces less VM 
cost. Moreover, the cost of FTS algorithm and 
External Fault algorithm perform equal with the cost 
of Internal Fault algorithm and No Fault algorithm 
respectively when ߝ = 0.01  and ߝ = 0.1 . As for 
External Fault algorithm and No Fault algorithm, 
when the ߝ  is large enough, the failure probability 
produced by the current failure coefficient ߣ  is 
already less than ߝ , hence no additional copy is 
needed. Thus, External Fault algorithm and No Fault 
algorithm have the same workflow cost. Also, the 
same explanation can be used for FTS algorithm and 
internal algorithm. 

6 CONCLUSION AND FUTURE 
WORK 

This paper we proposed a fault-tolerant scheduling 
for scientific workflow in cloud computing 
environment. The purpose of FTS algorithm is to 
minimize the workflow cost with the deadline 
constraint, which is based on tasks replication 
method (one of the widely used fault tolerant 
mechanisms). As far as we known, it is the first time 
that both failure models (i.e. internal fault and 
external fault) are considered in cloud workflow 
scheduling problem. The simulation results with 

real-world scientific workflow models show that 
only FTS algorithm can ensure the successful 
execution of workflow, although it has the most 
workflow cost. 

For the future work, we will extend our fault-
tolerant workflow scheduling strategy considering 
unstable computing environments. Another direction 
of our future work is to design an energy efficient 
fault-tolerant task scheduling algorithm from the 
perspective of cloud providers. 
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