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Abstract: Image features known as “gist descriptors” have recently been applied to the malware classification problem.
In this research, we implement, test, and analyze a malware score based on gist descriptors, and verify that
the resulting score yields very strong classification results. We also analyze the robustness of this gist-based
scoring technique when applied to obfuscated malware, and we perform feature reduction to determine a
minimal set of gist features. Then we compare the effectiveness of a deep learning technique to this gist-based
approach. While scoring based on gist descriptors is effective, we show that our deep learning technique
performs equally well. A potential advantage of the deep learning approach is that there is no need to extract
the gist features when training or scoring.

1 INTRODUCTION

In this research, we apply techniques from the dom-
ain of image processing to the malware classification
problem. The underlying idea is to treat malware bi-
naries as images and classify the samples based on
properties of the resulting images.

As the name suggests, a “gist” descriptor pro-
vides a high-level—and hence, low-dimensional—
representation of some important aspect of an image.
Gist descriptors are designed to match human con-
cepts with respect to various features of images. Intui-
tively, when used in malware analysis, gist descriptors
can enable us to see the “big picture,” so that we can
ignore minor variations and obfuscations that invaria-
bly occur within a malware family. That is, from the
high level perspective of gist descriptors, differences
within families will likely appear negligible in com-
parison to the differences between families. Techni-
ques that rely on a more detailed perspective (e.g.,
statistical analysis based on opcodes) might be more
easily defeated by the “noise” that exists within a mal-
ware family, particularly malware that is intentionally
obfuscated in some reasonably sophisticated way.

The remainder of this paper is structured as fol-
lows. In Section 2 we briefly discuss relevant back-
ground topics. Then in Section 3 we give our main
experimental results. In these experiments, we ana-
lyze the strength and robustness of a malware classifi-

cation technique that relies on gist descriptors as fea-
tures. For comparison, we also consider experiments
involving deep learning techniques based on the same
dataset of malware images, but without using gist des-
criptors. Section 4 concludes the paper and provides
suggestions for future work.

2 BACKGROUND

In practice, the most popular method of malware de-
tection is signature scanning, whereby pattern mat-
ching is used to detect specific signatures that have
been previously extracted from known malware sam-
ples. While signature scanning can be highly ef-
fective, such an approach can be defeated by making
minor modifications to malware, as such code modi-
fications will often break existing signatures.

Statistical and machine learning based malware
detection techniques are significantly more robust
than standard signatures, yet these approaches have
also been shown to be susceptible to code obfuscati-
ons that alter various statistical or structural proper-
ties of malware samples. Thus, a critically important
problem in malware research is to find efficient and
practical methods that provide strong results, and yet
are robust in the face of obfuscation techniques that
can be easily employed by malware writers (Bayer
et al., 2006; Moser et al., 2007; Sharif et al., 2008;
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You and Yim, 2010).
Image processing techniques have been suggested

as the basis for malware scoring. In such scoring
techniques, we visualize malware binaries as grays-
cale images and attempt to classify malware samples
based on image properties.

The motivation (and starting point) for the work
presented here is the paper (Nataraj et al., 2011),
where high-level image features known as “gist des-
criptors” are used to successfully classify malware.
Here, we analyze the strength and robustness of gist-
based malware classification, and we compare these
results to an image-based deep learning technique that
does not employ gist descriptors.

2.1 Gist Descriptors

In (Oliva and Torralba, 2001), Oliva and Torralba dis-
cuss a method for constructing a “spatial envelope” of
a scene or image in terms of various properties such
as “naturalness” and “openness.” These properties—
which are shown to be meaningful to humans—are
designed to capture the “gist” or essence of an image
by providing a connection between visual and seman-
tic information. The research in (Oliva and Torralba,
2001) is focused on the challenging problem of com-
puter vision.

Gist descriptors have proven useful in a wide vari-
ety of applications including, for example, web-scale
image search (Douze et al., 2009). A recent arti-
cle (Nataraj et al., 2011) shows that gist descriptors
can be used as the basis for an effective image-based
malware score. Specifically, the paper (Nataraj et al.,
2011) (which, as mentioned above, is the motivation
for our research here) claims to classify malware va-
riants belonging to 25 different families with an im-
pressive accuracy of almost 98%.

Figure 1 shows four variants of the malware fa-
mily Dialplatform.B viewed as images. In this case,
we clearly see common structure in the images, which
indicates there is significant potential for an image-
based malware scoring technique.

3 EXPERIMENTS AND RESULTS

In this section, we discuss our experimental design
and we provide a selection of our results. Additio-
nal related results can be found in the report (Selvin,
2017).

Figure 1: Variants of the malware family Dialplatform.B
viewed as images.

3.1 Implementation Details

To conduct the various experiments discussed in this
paper, we used the software, hardware, and datasets
listed in Table 1. The Malimg and Malicia datasets
are discussed in the next section.

Table 1: Experimental Setup.

OS Ubuntu 14.04
Python version 2.7
Python libraries numpy, tensorflow
Datasets Malimg, Malicia

3.2 Datasets

A dataset known as Malimg formed the basis for the
experiments reported in (Nataraj et al., 2011), and we
use this same dataset here. The Malimg data consists
of more than 9000 malware samples belonging to 25
families. Table 2 lists the various families and num-
ber of samples in each family within the Malimg da-
taset. All of these malware binaries were treated as
images and all 320 gist features were extracted from
each sample. We have used the same image characte-
ristics (e.g., height and width) and the same gist des-
criptors as was used in the paper (Nataraj et al., 2011),
and hence our results are directly comparable.

We have also tested this gist-based scoring techni-
que on the challenging Malicia dataset (Nappa et al.,
2015). The Malicia data contains 11363 malware
samples, primarily consisting of the ZBot, WinWeb-
Sec, and ZeroAccess families. Table 3 gives the num-
ber of samples in each of the major malware families
in the Malicia dataset, where “other” consists of all
remaining families, including 1646 samples for which
the family has not been identified.



Table 2: Malimg dataset.

Family Samples
Adialer.C 122
Agent.FYI 116
Allaple.A 2949
Allaple.L 1591
Alueron.gen!J 198
Autorun.K 106
C2LOP.gen!g 200
C2LOP.P 146
Dialplatform.B 177
Dontovo.A 162
Fakerean 381
Instantaccess 431
Lolyda.AA1 213
Lolyda.AA2 184
Lolyda.AA3 123
Lolyda.AT 159
Malex.gen!J 136
Obfuscator.AD 142
Rbot!gen 158
Skintrim.N 80
Swizzor.gen!E 128
Swizzor.gen!I 132
VB.AT 408
Wintrim.BX 97
Yuner.A 800
Total 9339

Table 3: Major families in Malicia dataset.

Family Samples
Cleaman 32
Cridex 74
Harebot 53
Smarthdd 68
WinWebSec 5820
ZBot 2186
ZeroAccess 1306
Other 1824
Total 11363

3.3 Gist-based Classification

In this section, we use the gist descriptor as features
for the well-known k-nearest neighbor (k-NN) algo-
rithm, with k = 1. That is, we classify each sample in
the test set based on its nearest neighbor in the trai-
ning set. Note that for this classification scheme, no
explicit training phase is required, as the classifica-
tion is computed based solely on the nearest neighbor
in the training set.

First, we classify samples in the Malimg dataset
using k-NN, based on the full 320 gist features. The

confusion matrix for this experiment is given in Fi-
gure 2. Note that in the confusion matrix, the diagonal
elements represent correct classifications, while the
off-diagonal elements correspond to incorrect classi-
fications.

The overall accuracy for a multiclass experiment
such as that summarized in Figure 2 is easily compu-
ted from the confusion matrix. Let ci, j be the element
in row i and column j of the confusion matrix, and
let n be the number of rows (and columns) in the ma-
trix. Then the multiclass accuracy is given by

accuracy =
n

∑
i=1

ci,i

/ n

∑
i=1

n

∑
j=1

ci, j.

That is, the accuracy is computed as the sum of all
elements on the main diagonal, divided by the sum of
all elements in the matrix. For the confusion matrix
in Figure 2, the elements on the main diagonal range
from 0.98 to 1.00, with just four exceptions. In this
case, we find that the accuracy is 97%. This is virtu-
ally identical to the results obtained in (Nataraj et al.,
2011) and serves to verify our implementation.

Similar experiments were conducted on the ZBot,
WinWebSec, and ZeroAccess families of the Malicia
dataset, with a set of 280 benign Windows executa-
bles also included. In these experiments, we tested
various splits of training and test data ranging from
30-70 (i.e., 30% of the data used for training and the
remaining 70% used for testing) up to a 90-10 split.
As above, we use k-NN with k = 1 for classification.
Figure 4 summarizes our results for different splits of
training and test data over the Malicia data. The best
results yield a classification accuracy of nearly 93%.
This provides additional confirmation of the inherent
strength of a gist-based approach to malware scoring
and classification.

3.4 Feature Reduction Results

Next, we briefly consider the problem of feature se-
lection. Since there is work involved in collecting fe-
atures, it is desirable to balance the number of features
(and their complexity) with the accuracy of the classi-
fication process. In fact, it is not uncommon to obtain
equivalent (or even better) results with a reduced fea-
ture set. In such cases, the eliminated features act as
noise.

All feature reduction experiments in this paper are
based on linear support vector classification (SVC).
Note that SVC is the multiclass version of the well-
known support vector machine (SVM) machine lear-
ning technique.

First, we consider recursive feature elimination
(RFE) on the Malicia dataset. For RFE, we compute a



Figure 2: Confusion matrix for k-NN based on all features.

linear SVC, then eliminate the feature with the smal-
lest weight and recompute the linear SVC on this re-
duced feature set—this process is repeated until only
a single (strongest) feature remains. By retraining at
each step, we are able to account for the interactions
within the reduced feature set.

We found that when applying RFE to the Malicia
dataset, the full 320 gist features yielded the best re-
sults, but with about 60 features we are able to obtain
nearly optimal results. For this dataset, a graph of the
accuracy versus the number of features selected ap-
pears in Figure 5.

We also experimented with univariate feature se-
lection (UFS). In UFS, an SVC is constructed for
each individual feature and the resulting accuracies
are used to rank the features.

Applying UFS on the Malicia dataset, we find that
with only the 60 highest ranked features, we can attain
an accuracy of almost 92%, which is within 1% of
that obtained with all 320 features. We conclude that
we can obtain near-optimal results using just 60 of
the 320 gist descriptors as features.

3.5 Robustness Experiments

Next, we consider attacks aimed at degrading the ef-
fectiveness of the gist-based score. First, we consider
experiments where we salt the malware samples with
spurious images. For this experiment, we test each of
the following three methods of salting images.

• Salt the samples of only one family with extrane-
ous images.

• Salt two closely related families with similar ex-
traneous images.

• Salt all families with the benign samples.

Intuitively, when only one family is salted with
an extraneous image we might expect that the over-
all classification results will actually improve slightly.
This follows, because the samples in the salted family
should now be more distinct from other families—and
hence there will likely be fewer misclassifications in-
volving this particular family—while all other fami-
lies remain unchanged. To test this hypothesis, we
salted only the Allaple.L family of the Malimg data-
set. This resulted in the classification accuracy for the
Allaple.L family improving from 98% to 100%.
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Figure 3: Precision and recall.
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Figure 4: Accuracy vs training/testing split (Malicia data-
set).

For our next experiment, we salted two related fa-
milies with similar extraneous images. In this case,
we might intuitively expect that the accuracy will de-
crease for both of these families, as they are now more
similar to each other than they were before salting,
and this increased similarity will likely result in more
misclassifications. For this experiment, we chose the
Allaple.L and Allaple.A families and salted all sam-
ples in both families with images selected from an
external image dataset. We found that the classifica-
tion accuracy for the Allaple.L and Allaple.A families
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Figure 5: Accuracy vs number of features (RFE for Malicia
dataset).

both declined significantly, as summarized in Table 4.
These results indicate that gist-based scoring is not
immune to this entirely straightforward obfuscation
attack. However, the decline in accuracy is relatively
modest, which shows that the gist-based score is so-
mewhat resilient, at least with respect to this simple
obfuscation strategy.

Next, we conducted an experiment where all mal-
ware samples were salted with benign executable fi-
les. Similar techniques have previously been used
to defeat many statistical-based—and machine lear-



Table 4: Accuracy before and after salting.

Family Accuracy
Before Salting After Salting

Allaple.A 100% 93%
Allaple.L 98% 85%

ning based—scores (Desai and Stamp, 2010; Lin and
Stamp, 2011; Singh et al., 2016). For this experiment,
we obtain an overall classification accuracy of 92%,
which represents a significant decline from the origi-
nal (unsalted) accuracy of 97%.

Finally, we test a slightly different salting strategy,
where the salting data is interleaved within the mal-
ware samples. Specifically, we interleaved selected
benign samples within the Allaple.A, Allaple.L, and
Fakerean families of the Malimg dataset. As in our
first salting experiments, the results are slightly stron-
ger, with an accuracy of 93%.

Overall, these experimental results indicate that
gist-based scoring is reasonably robust against these
specific salting attacks. However, more research is
needed, and we remain confident that the there exists
a straightforward attack strategy that can be highly ef-
fective against gist-based scoring.

Next, we apply softmax regression and deep lear-
ning to the image-based malware classification pro-
blem. In these experiments, we do not rely on gist
descriptors, but instead use only the raw bytes in the
image files as our feature. Our goal is to determine
whether techniques that require no preprocessing of
the data can be as successful as the gist-based score
considered above.

3.6 Softmax Regression

Logistic regression is a well-known algorithm that is
applicable to the binary classification problem. Soft-
max regression is a generalization of logistic regres-
sion that can deal with multiple classes—the sigmoid
function from logistic regression is replaced by the
softmax function. A set of weights and biases must
be determined and these, along with the input data,
are used by the softmax function. The output consists
of probabilities for each class.

For our softmax experiments, we again use the
Malimg dataset. These experiments were performed
with n families, where n ranged from one to five. In
Table 5 we list families—for n = 1, we used only the
Adialer.C family, for n = 2 we used both Adialer.C
and Agent.FYI, and so on.

For these softmax experiments, as the number of
families increases, the classification accuracy decre-
ases drastically—see Figure 6. These results are so-
mewhat surprising, with only 57% accuracy attained

Table 5: Number of samples per family.

Family Number of samples
Training Testing Total

Adialer.C 100 22 122
Agent.FYI 98 18 116
Allaple.A 2655 294 2949
Allaple.L 1432 159 1591
Allueron.gen 179 19 198
Total 4464 512 4976

when five families were tested. We conclude that
for any significant number of families, this softmax
classification approach performs much worse than the
gist-based score considered above.

1 2 3 4 5
0

20

40

60

80

100

Number of families

A
cc

ur
ac

y
(p

er
ce

nt
ag

e)

Figure 6: Softmax classification accuracy.

3.7 Deep Learning Experiments

Deep learning using many layers of neural networks
is an increasingly popular technique in a wide variety
of challenging problem domains, including image re-
cognition and segmentation (Krizhevsky et al., 2012).
For example, Google’s Inceptionv3 and Facebook Ar-
tificial Intelligence Research (FAIR) have had good
success rates by applying deep learning to problems
in the fields of image classification and object seg-
mentation, respectively (Szegedy et al., 2016; Pin-
heiro et al., 2015). In this section, we apply deep
learning to the malware classification problem, trea-
ting malware binaries as images. We then compare
our deep learning results to the gist-based malware
classification approach considered above.

3.8 TensorFlow for Deep Learning

Training a neural networks can be computationally in-
tensive. One of the reasons that neural networks have
gained popularity in recent years is due to advances
made in hardware and software that have rendered the



computational aspects of neural networks less daun-
ting (Oh and Jung, 2004). In particular, with recent
advances in GPU technology and software, it is now
practical to train neural networks on GPUs (Oh and
Jung, 2004; TensorFlow, 2017).

TensorFlowTM is an open source software library
by Google that is designed for numerical computation
on data flow graphs. TensorFlow is the successor of
the earlier closed source DistBelief (also from Goo-
gle) which was used for training and deploying neural
networks for pattern recognition (TensorFlow, 2017).

The unit of data in TensorFlow is a set of primi-
tive values in the form of an n-dimensional array. A
TensorFlow program builds a “computational graph,”
which is defined as a series of TensorFlow operati-
ons arranged into a graph form. A node may or may
not have a tensor as its input but it usually produces a
tensor as output. Once the computational graph is cre-
ated, it can be evaluated by executing it, which con-
sists of creating a session to encapsulate the control
and state of the TensorFlow runtime, and executing
the graph within it (TensorFlow, 2017).

TensorFlow was used to conduct the deep lear-
ning experiments in this section. The model used
here relies on transfer learning, which involves star-
ting with a model pre-trained on another problem.
Then, we retrain this existing model on a similar pro-
blem. The motivation for this approach comes from
the fact that training deep learning model from scra-
tch is generally extremely computationally intensive,
while simply modifying an existing model can be or-
ders of magnitude faster, depending on the dataset.

For the experiments reported here, the model was
pre-trained on the ImageNet Large Visual Recogni-
tion Challenge dataset, and is capable of differenti-
ating between 1000 different image classes, such as
Dalmatian, helmet, motorcycle, person, etc. (Google
Codelabs, 2017). We then retrained this model on the
raw malware images in the Malimg dataset.

In addition to the software listed in Table 1, for
the deep learning experiments discussed here, we em-
ploy the TensorFlow architecture on an NVIDIA DI-
GITS DevBox provided by Ford Motor Company. All
experiments described in this section use 4 GPUs on
the NVIDIA DIGITS DevBox As previously mentio-
ned, the training and test data for these experiments is
form the Malimg dataset, which contains more than
9000 grayscale images representing malware from 25
malware families, as summarized in Table 2, above.

3.9 TensorFlow Results

As a first experiment of our TensorFlow model, we
classified two very different families, Allaple.A and

Yuner.A, using a 90-10 split (i.e., 90% of images were
used for training and 10% for testing). When training,
we use 4000 iterations to retrain the model. These re-
sults are given in Table 6, and we note that all samples
were classified correctly.

Table 6: Accuracy results on Allaple.A and Yuner.A.

Images Accuracy
Training 3374 100%
Testing 375 100%

Next, as a more challenging test for our Ten-
sorFlow model, we classified two closely related fa-
milies, Allaple.A and Allaple.L, again using a 90-10
split and 4000 iterations to retrain the model. These
results are given in Table 7, and we again see that we
have achieved perfect classification. These are cer-
tainly impressive initial results for this deep learning
approach.

Table 7: Accuracy results on Allaple.A and Allaple.L.

Images Accuracy
Training 4086 100%
Testing 454 100%

Finally, we attempt to classify samples from all 25
Malimg malware families. For these experiments, we
test various splits of the training and test data, ranging
from 30-70 to 90-10 split. The resulting accuracies
are given in Figure 7.
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Figure 7: Accuracy vs training/testing split for TensorFlow
experiments with all 25 Malimg families.

From the results in Figure 7, we see that by ap-
plying deep learning directly to raw image files, we
can attain a testing accuracy in excess of 98%, which
is as good as the accuracy obtained based on gist des-
criptors as reported in (Nataraj et al., 2011), and as
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Figure 8: Accuracy vs training/testing split for TensorFlow
experiments with all 25 Malimg families (balanced).

confirmed by our results in Section 3.3, above.
As an aside, we note that according to Table 2,

the number of samples of the various malware types
in the Malimg dataset ranges from a high of 2949 for
the Allapple.A family to a low of just 80 for the Skin-
trim.N family. To determine a “balanced” accuracy,
we repeated our deep learning experiments, using 80
samples from each family. The results of these expe-
riments are summarized here in Figure 8, where we
see the the testing accuracy is significantly lower than
in the original unbalanced case. The large difference
between the unbalanced and balanced cases is most
likely due to the larger families being relatively easy
cases, as compared to the smaller families in the data-
set. This is worth noting since the unbalanced Malimg
dataset has been used in previous work (Nataraj et al.,
2011).

3.10 Discussion

One advantage of our deep learning strategy is that
it is likely to be much more efficient than relying on
gist descriptors. While training a neural network from
scratch can be extremely costly, our re-training appro-
ach only required about 60ms per sample. We believe
this is competitive with virtually any machine lear-
ning technique. Furthermore, when training and sco-
ring via deep learning, there is no need to extract gist
descriptors for use as features—even with feature se-
lection, we still required at least 60 gist descriptors
to obtain near-optimal results. This savings in feature
extraction time is likely to give the deep learning ap-
proach a signification advantage over the gist-based
score in actual practice.

4 CONCLUSION AND FUTURE
WORK

Our classification experiments based on gist descrip-
tors confirmed the results in (Nataraj et al., 2011) and
also showed that we could obtain equally strong re-
sults using only 60 gist features. In addition, we sho-
wed that the gist-based score is moderately robust in
the face of elementary obfuscations.

We conducted deep learning experiments that
yielded equally strong classification results as the
gist-based experiments. Since there is no need to ex-
tract gist features, this deep learning technique is li-
kely to offer superior performance when scoring large
numbers of samples, as would be necessary when
using such techniques in practice. For future work,
we plan to accurately quantify the efficiency advan-
tage of our deep learning approach, as compared to
techniques that rely on gist descriptors.

Additional future work will include more substan-
tial robustness testing. The gist-based score appears
to be somewhat robust, but to date, our experiments
along these lines have been limited and inconclusive.
A careful and detailed analysis of the robustness of
the gist-based score—as compared to our deep lear-
ning score—would be useful. At the least such an
analysis will help to focus future research in directi-
ons that are most likely to yield improvements over
the existing state of the art.
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