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Abstract: The increase in households with grid connected Photovoltaic (PV) battery system poses challenge for the 

grid due to high PV feed-in as a result of mismatch in energy production and load demand. The purpose of 

this paper is to show how a Model Predictive Control (MPC) strategy could be applied to an existing grid 

connected household with PV battery system such that the use of battery is maximized and at the same time 

peaks in PV energy and load demand are reduced. The benefits of this strategy are to allow increase in PV 

hosting capacity and load hosting capacity of the grid without the need for external signals from the grid 

operator. The paper includes the optimal control problem formulation to achieve the peak shaving goals 

along with the experiment set up and preliminary experiment results. The goals of the experiment were to 

verify the hardware and software interface to implement the MPC and as well to verify the ability of the 

MPC to deal with the weather forecast deviation. A prediction correction has also been introduced for a 

short time horizon of one hour within this MPC strategy to estimate the PV output power behavior. 

1 INTRODUCTION 

In Germany, households with grid-connected 

photovoltaic (PV) systems have increased 

significantly over the years as a result of favorable 

feed-in tariff and subsidy policy. Households with 

PV installations are typically under 10 kWp and 

comprise about 15% of the total installed PV power 

in Germany (Wirth and Schneider, 2013). A low-

voltage (LV) distribution grid with a pool of such 

household prosumers can be considered to be a 

distributed renewable energy source. Apart from 

influencing the electricity price in the market and the 

renewable energy policies, such a situation poses a 

challenge to the technical aspect of the distribution 

grid. This is particularly a problem for the residential 

network where the mismatch in power generation 

and load demand result in a high PV feed-in.  

Distribution lines are designed to deliver power 

from distribution stations to the consumers. The 

power-flow reversal resulting from the integration of 

prosumers who feed energy into the grid causes the 

voltage to rise at the coupling point. The VDE AR-N 

4105 grid standard in Germany allows only a 

maximum 3% increase in the nominal voltage 

caused by PV penetration (Spring and Witzmann, 

2014). A case of an overvoltage problem in 

Germany due to high PV feed-in into the distribution 

grid has been presented in (Stetz et al., 2013). In 

order to keep the voltage within the permissible 

limit, the regulation in Germany suggests the feed-in 

to be restricted to 70% of the installed peak PV 

power capacity (Spring and Witzmann, 2014). But 

this often leads to power curtailments of useful PV 

power (Weniger et al., 2014; Castillo-Cagigal et al.,   

2011). In a conventional PV battery operation, the 

controller does not foresee PV energy production or 

load demand. The controller knows the State of 

Charge (SOC) of the battery only for the present 

time. As such, the battery is often completely 

charged before the peak PV energy production 

period, which results in a high PV feed-in and 

therefore cannot mitigate the voltage rise problem 

(Castillo-Cagigal et al., 2011). In such a situation, 

the feed-in limit can only be achieved by active 

power curtailment (Tonkoski et al., 2011) or reactive 

power control (Turitsyn et al., 2010; Weckx et al., 

2014).   

The use of a battery allows the household 

prosumers to achieve Demand-Side Management 

(DSM) for themselves at a local level, independent 

of the grid operator. DSM is a concept to improve 
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the energy consumption behavior of the consumers, 

primarily for economic operation and in order to 

maximize the consumption of renewable energy by 

balancing the mismatch in energy production and 

load demand. Real-Time Price (RTP), Time of Use 

(TOU) and Critical Peak Pricing (CPP) are seen as 

key DSM programs to reduce the peak load demand 

in the grid (Herter, 2007; Palensky, 2011; Yang et 

al., 2014). In recent years , the concepts of 

automated home systems have also emerged as a 

part of Demand-Response (DR) strategies for the 

optimal scheduling of electrical appliances in order 

to respond to the price-driven DSM programs 

(Costanzo et al., 2011; Di Giorgio and Liberati, 

2014; Moraiset et al., 2014).  

In this work, the optimal control problem has 

been formulated for a single grid electricity price 

and single feed-in tariff scenarios, which is very 

likely to remain a standard for a long time. 

Therefore, the optimal control problem presented in 

this paper is not dictated by price but rather by the 

predicted PV output power and the load-demand 

profile. From an economic operation  point of view 

and considering the cost benefits by using the 

battery from (Riffonneau et al., 2011), it is 

justifiable to assume that maximizing the use of the 

battery is cost-effective for the prosumer. In order to 

implement the optimal control problem and to deal 

with the forecast uncertainties, the MPC approach 

has gained increased attention in recent years. Its 

ability to update itself based on the measurement of 

the system and to re-optimize the power flow at each 

control-time interval – which is also known as the 

receding horizon approach – has been presented in 

(Wu et al., 2015; Parisio et al., 2014). Most of the 

optimal control problems are developed with an 

understanding that the receding horizon feature of 

the MPC can handle the forecast uncertainties, as 

mentioned by (Arnold and Andersson, 2011). 

Therefore, the MPC approach can be considered to 

be the state of the art for the implementation of 

optimal control problems. In this paper, the proposed 

MPC is applied to the existing system in the 

laboratory for preliminary tests and it is assumed 

that the size of the battery is enough to shave the 

peak PV energy to avoid active power curtailment or 

exceed the feed-in limit. 

2 METHODOLOGY 

The schematic of a household with a grid-connected 

PV battery system is shown in Figure 1. At any time 

interval, Pvi
 is the output power of the installed PV, 

PLi
 is the load demand, Pbci

 is the battery charging 

power, Pbdci
 is the battery discharging power, Pgfi

 is 

the power fed into the grid, and Pgci
 is the grid 

power consumption. The sign convention of 

respective variables for the optimal power problem 

is consistent throughout this paper, as shown in 

Figure 1. The grid is used as a virtual storage to take 

in any surplus energy from the PV and as a backup 

when the load demand exceeds the battery converter 

size or when the stored battery energy is not 

sufficient. The power flow within the system 

satisfies the power-flow balance which can be 

expressed as  
 

Pvi
- PLi

=Pgfi
+Pbci

+Pbdci
+Pgci

 (1) 

2.1 Battery Storage Dynamics  

A linear power-flow model was used to represent the 

dynamic behavior of the battery and to thus measure 

the battery SOC. The battery model is discretized as 
 

xi+1 = xi + ηch ∙ Pbci
∙ Δt + (1 ηdch⁄ ) ∙ Pbdci

∙

Δt − Lbatt,loss  ∙ Δt   
 

(2) 

 

The battery energy for the time interval i+1 is 

calculated as the sum of battery energy xi and the 
 

Figure 1: Schematic of the grid-connected PV battery system. 
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battery power flow Pbci
 or Pbdci

 at time interval i. Δt 

is the duration of the time interval. In this paper, the 

duration of the time interval for the optimal control 

problem is defined as 10 minutes. The efficiency of 

the charging and discharging processes is defined by 

variables η
ch

  and η
dch

 respectively. The battery 

converter components consume power from the 

battery and are represented by Lbatt,loss  which was 

considered to be constant throughout the battery 

operation. For the optimal control problem, if Ebatt 

is the nominal capacity of the battery, the battery 

SOC’s percentage is expressed as  
 

SOCi+1 =(xi+1 Ebatt⁄ )×100 (3) 
 

In order to avoid the concurrent charging and 

discharging of the battery, a logical condition of  

Pbci
∙ Pbdci

= 0 arises. It is represented as a linear 

inequality by using binary variables as follows: 
 

Pbci
= {

0 ≤  Pbci
 ≤  PMax    , if  δbc=1 

                                                             
 0                        , otherwise   

  (4) 

  

Pbdci
= {

-PMax ≤  Pbdci
 ≤ 0  ,  if δbdc=1  

                                                             
0                          ,otherwise 

  (5) 

   

For the optimal control problem, Eq. 4 and Eq. 5 can 

be reformulated as  
 

0 ≤  Pbci
≤  PMax∙δbci

     (6) 
 

-P
Max

∙δbdci
 ≤ Pbdci

 ≤  0     (7) 
                     

Here, PMax is the maximum rated power of the 

battery converter. Eq. 4 and Eq. 5 indicate that 

battery charging or discharging only occur when the 

corresponding binary variables δbc or δbdc  are 1 

respectively. Therefore, the concurrent charging and 

the discharging of the battery is avoided by defining 

a binary inequality constraint as 
 

δbci
+ δbdci

 ≤ 1   (8) 
 

Eq. 8 shows that either δbci
 or δbdci

 can have the 

value of 1. Battery operation is restricted by its rated 

capacity to store the maximum level of energy as 

well as the Depth of Discharge (DOD) provided by 

the battery manufacturer for the recommended level 

of discharge. This constraint on the battery SOC can 

be expressed as 
 

xMin ≤ xi+1 ≤ xMax   (9) 
 

xMin= (1 - DOD)∙xMax   (10) 
     

Here, xMax= Ebatt is the rated capacity of the battery.  

 

 

2.2 Interaction with the Grid 

As in the case of the battery, binary variables are 

introduced in order to avoid the concurrent grid 

feed-in and grid power consumption to reformulate 

the logic constraint of Pgfi
∙Pgci

=0 as  
 

Pgfi
= {

0 ≤ Pgfi
 ≤ Pvi 

 ,  if δgf = 1  

                                                             
        0                           , otherwise   

   (11) 

 

Pgci
= {

-PgMax
≤Pgci

≤0  ,  if δgc=1  

                                                             
          0                             , otherwise

    (12) 

  

δgfi
 + δgci

 ≤ 1   (13) 
 

For the optimal control problem, Eq. 11 and Eq. 12 

can be expressed as  
 

0 ≤  Pgfi
 ≤  Pvi 

∙δgfi
    (14) 

 

-PgMax
∙δgci

 ≤  Pgci
≤ 0     (15) 

 

In Eq. 14, the maximum grid feed-in is restricted by 

the PV output power Pvi 
. Likewise, in Eq. 15, the 

maximum grid consumption PgMax
 is defined as the 

maximum possible grid consumption for the system. 

PgMax
 is set to a very high fixed value compared to 

the peak-power demand so that the required grid 

consumption always takes place within it.  

This has been done to make the solution feasibleIt 

doesn’t affect the optimal solution due to the power-

flow balance constraint of Eq. 1. The concurrent grid 

feed-in and grid consumption is avoided with Eq. 

13. Furthermore, the battery is not allowed to 

interact with the grid as the optimal control problem 

is designed for a maximum usage of self-produced 

electricity by using the battery for a single grid 

electricity price and a single feed-in tariff scenario. 

Therefore, the charging of the battery from and its 

discharging to the grid is forbidden, which leads to 

the logical conditions Pbci
∙Pgci

=0 and Pbdci
∙Pgfi

=0, 

which are then expressed as 
 

δgfi
+δbdci

≤1            (16) 
  

δgci
+δbci

≤1            (17) 

2.3 Optimal Control Problem 

The PV power output is defined in a N×1 vector as 

Pv=  [pvi
… p

v
i+N-1  ]

T
 over the prediction horizon 

of 24 hours, where N is the number of time steps. 

Similarly, the load demand over the prediction 

horizon is defined in a N×1 vector as PL= 
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[pLi
… p

L
i+N-1  ]

T
.The difference between the 

predicted PV output power and the predicted load 

demand for each time interval i over the prediction 

horizon is defined in a new N×1vector as Pin=Pv -

 PL=[pini
… p

in
i+N-1  ]

T
. 

The vector Pin provides the reference for the battery 

operation over the prediction horizon. For a 

prediction horizon of 24 hours, the number of time 

intervals N with a time interval of 10 minutes is 

obtained as, N= (24×60) 10⁄ =144. 

The objective of the optimal control problem 

formulation is to find the optimal values for Pbci
 and 

Pbdci
 so as to reduce the PV feed-in to the grid as 

well as grid power consumption. As the problem has 

reference and target variables along with binary 

constraints, the optimal control problem has been 

formulated as a Mixed Integer Quadratic (MIQP) 

problem as 
         

min
u

 ∑
1

2
u

i

T

Rui
i+N-1

i             (18) 
              

Subject to:  Eq.  1 - 3, Eq.  6 - 9 and Eq.  13 - 17 
 

Where,  

ui= [

Pini
-Pbci

  

Pini
-Pbdci

Pgci

]  and R= [ 
100 0 0

0 100 0

0 0 2000

] . 

 

The quadratic penalty on Pgci

2  ensures that the grid 

power consumption is very low, with peaks reduced.   

The penalties on the squared differences (Pini
- Pbci

)
2
 

and (Pini
- Pbdci

)
2
 ensure that the battery power flow 

reaches as close as possible to the reference Pin, 

thereby prioritizing the peaks. Due to the power flow 

balance in Eq. 1, the value of Pgfi
 is obtained 

automatically from the optimal solution. The 

weighting matrix R has been defined by the user to 

be suitable for this process.   

2.4 PV Power-Prediction Update 

To correct the PV prediction, a linear interpolation 

for the next 1 hour was applied based on the PV 

power measurement at an interval. This correction 

procedure is also shown in Figure 2. The initially 

predicted PV data from the day-ahead forecast is 

available as Pv=[pvi
… p

v
i+N-1  ] with a time 

resolution of 10 minutes. So for a given time 

intervali, if Pvmeasi
 is the measured PV output power 

and Pvi+6
 the initially predicted value at an hour-

ahead interval i+6, the formula for the linear 

interpolation between two points is given by  
 

Pc=Pvmeasi
+(î - i)∙( (Pvi+6 

- Pvmeasi
) ((i+6)-i)) ⁄             (19) 

     

Where, î ϵ [i+1 ,i+5] 

 

Figure 2: PV prediction-correction method by using linear 

interpolation.  

3 MPC STRATEGY 

The proposed MPC implementation scheme for the 

experiment is shown in Figure 3. The weather 

forecast data are collected every 24 hours from the 

weather service provider. The global solar insolation 

(Gh), the ambient temperature (Tamb) and relative 

humidity data (rh) are obtained as weather forecast 

data for every hour. The predicted PV output power 

with the prediction model described in (Schmelas et 

al., 2015) is then interpolated for every 10 minutes 

by using Piecewise Cubic Hermite Data 

interpolation. The load profile prediction is collected 

from the database. The predicted PV data Pv, along 

with the load profile PL and the initialized battery 

SOC x̂i from the measurement is then provided so as 

to solve the optimal control problem, which results 

in a sequence of optimal control values: 

ui,ui+1,ui+2,…ui+N-1. Only the first optimal value ui 

for the first control interval i is provided as a local 

command to the battery converter in order to control 

battery power flow. Towards the end of each control 

time interval, the measured PV output power is used 

to correct the PV prediction which then updates the 

predicted PV output-power profile as Pv̂. The load 

profile is automatically updated within the system. 

Load demand was considered to be perfect and 

virtual as there was no real load available due to the 

limitations in the laboratory infrastructure. So the 
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Figure 3: Proposed MPC approach used for the experiment. 

optimal discharging of the battery was considered to 

fulfill the load-demand case.  There is also no real 

grid power consumption, but only the reduction in 

the load demand .The expected grid power 

consumption is calculated from the power-flow 

balance in Eq. 1. The measured battery SOC x̂i is 

used again in order to update and initialize before 

another optimal control problem is solved. This 

process is then repeated online. 

3.1 Experiment Setup Description 

The schematic of the MPC implemented in the 

laboratory system is shown in Figure 4. The 

experiment setup consisted of an installed 2.1 kWp 

PV system. The PV installation was AC-coupled 

with the experimental micro-grid by using a 2.2 

kWp PV inverter. A 1.8 kWp battery converter 

connected the battery with this micro-grid. It was 

used to control battery power flow based on the 

command given to it. A deep-discharge 3 kWh 

lithium-ion battery was used for the experiment. 

This micro-grid was also coupled with the main grid. 

As mentioned before, the load demand is virtual and 

has only been shown for the sake of representation. 

It should be noted that the measurements Pvmeas
, Pbc, 

Pbdc and x were measured directly from the real 

system. However, since PL is virtual, Pgc was 

derived from the calculation. The schematic of the 

communication between the hardware and the 

software interface used in this experiment is shown 

in Figure 5. The weather forecast data and the load-

demand profile were read from a MS-SQL server 

database. The weather forecast data were updated 

every 24 hours. These data were loaded into 

MATLAB by using SQL commands. The optimal 

control problem was solved in MATLAB using 

CPLEX solver. The optimal value of battery power 

flow for the corresponding control time interval was 

transferred from MATLAB into the SQL server 

database by using SQL commands. LABVIEW was 

used as an interface between the SQL server 

database and the CX2040 Beckhoff Programmable 

Logic Controller (PLC) by using the OPC UA 

communication protocol to visualize the process. 

Otherwise, the PLC could read directly from the 

MS-SQL server database as well. The PLC then sets 

the optimal battery power-flow value in the battery 
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Table 1: System specification in the experiment setup. 

System description Specification 

Installed PV array capacity 2.1 kWp 

Installed PV inverter capacity 2.2 kWp 

Nominal battery capacity (𝐸𝑏𝑎𝑡𝑡) 3 kWh 

SOCMax 100 % 

SOCMin 15 % 

Battery converter size (𝑃𝑀𝑎𝑥) 1.8 kWp 

Battery charging efficiency (𝜂𝑐ℎ) 85 % 

Battery discharging efficiency 

(𝜂𝑑𝑐ℎ) 

95 % 

 

Figure 4: Schematic of the experiment setup using the proposed MPC strategy. 

 

Figure 5: Schematic of communication between MPC and PV battery system. 

converter, as well as taking relevant measurements 

from the system. The PLC also writes the measured 

data into the SQL server database which is then 

loaded into the MATLAB. This approach was 

chosen since the MATLAB 2014a version does not 

support the OPC UA protocol.  

The system parameters used for the experiment 

are shown in Table 1. 
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3.2 Preliminary Experiment Results 

In order to test the effectiveness of the proposed 

MPC strategy, the preliminary experiment was 

conducted during the consecutive cloudy days of 

October 11 and 12 in 2016. These two days were 

chosen based on weather forecast data. The results 

presented in this paper are mean values of the 

measurements over the control interval. The initially 

predicted and the measured PV output power at the 

end of the experiment is shown in Figure 6, with 

huge deviations as expected. The experiment results 

from the proposed MPC strategy are shown in 

Figure 7 and Figure 8. They are presented with a 

time resolution of 10 minutes. The results show that 

the PV prediction-correction method is able to 

estimate the behavior of PV output power. Its 

random peaks due to clouds have been detected. 

This, along with the receding horizon feature of the 

MPC, is able to optimally control battery power 

flow, effectively dealing with the deviations in the 

PV prediction errors. The battery charging is 

optimally controlled when peaks in PV power 

production occur. Furthermore, the optimal 

discharge of the battery reduced the peak-load 

demand during the evening and the following 

morning, owing to the receding horizon feature of 

the MPC. The loss in the battery due to self-

consumption from the power electronics of the 

converter was measured to be around 10 watts. Due 

to the optimal discharge of the battery, the Load 

Demand Reduction (LDR) is high for the higher 

values of load demand, as shown in Figure 9. The   

LDR was calculated as  
 

LDR (%)=( Pdci
PLi

⁄ )×100            (20) 
 

The resulting SOC profile for this experiment is 

shown in Figure 10. Since a linear power-flow 

model of the battery was used to predict the battery 

SOC, it is quite understandable that the non-linear 

dynamics of the battery were not captured well. As 

can be seen in Figure 10, there was a sudden 

increase in the SOC from 17 to 18 hours. If a very 

complex non-linear model of the battery is to be 

used, the entire problem formulation becomes non-

linear and non-convex and hence, the optimal 

control problem needs to be reformulated as a 

Dynamic Programming (DP) problem (Riffonneau et 

al., 2011). However, in our case, the continuous 

update of the SOC restricted battery operation within 

its defined SOC boundary conditions and allowed 

for an optimal use of the battery. Therefore, the 

linear power-flow model is still effective to estimate 

the behavior of the battery.  

But there is a limitation in this experiment with 

respect to the time resolution of the MPC. When the 

change in PV power production with respect to time 

(ΔPv Δt⁄ ) was faster than the MPC time resolution 

of 10 minutes, the controller was not able to take any 

control action. Figure 10 shows that due to this, 

during the first charging period after 11 and 13 

hours, the battery charging power was at times more 

than the surplus PV output power. This situation can 

also be seen after 17 and 18 hours as well as after 34 

and 36 hours. So during this time, grid power was 

consumed in order to charge the battery, which was 

an error. There was also a PV feed-in to the grid 

after 16, 38 and 39 hours due to this time-resolution 

limitation. The time required for one complete MPC 

loop in an interval for this experiment was around 

10 seconds from obtaining the predicted and 

measured data to solving the optimal control 

problem and finally sending the control signal to the 

battery converter. It should be noted that increasing 

the time resolution of the optimal control problem 

also reduces the speed of solving it. And with a 

further increase in time resolution, the problem 

might get beyond the solver’s capability. This was 

the reason to consider 10 minutes as a benchmark 

time resolution for this experiment – as the goal was 

only to verify the behavior of the MPC, which was 

as expected. Since this was just a preliminary test, 

the MPC performance does provide a motivation to 

upgrade the MPC strategy for real-time operation. 

The use of a two-level control by using optimal 

scheduling and an MPC loop (as presented in 

(Petrollese et al., 2016) provides a scope of 

upgrading the MPC approach used in this 

experiment for real-time application. Despite the fact 

that the experiment results were not as ideal as 

expected, the behavior of the proposed MPC 

approach in dealing with the weather forecast 

uncertainties (as for PV energy prediction) and the 

disturbance (as with the battery SOC)  were well-

captured.  
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Figure 6: Predicted and measured PV power output. 

 

Figure 7: Experiment results for the optimal charging of the battery. 

 

Figure 8: Experiment results for the optimal discharge of the battery. 
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Figure 9: Reduction in Load demand from the experiment. 

 

Figure 10: Experiment results for the battery SOC profile. 

4 CONCLUSIONS 

The experimental results show that the optimal 

control problem formulated for the peak shaving 

application of the battery always prioritizes the 

peaks in the surplus PV and the load demand 

respectively, as well as maximizing the use of the 

battery. The problem formulation is consistent for 

the given size of the system. This allows the 

prosumer to maximize the use of self-produced 

electricity and to conduct its own DSM. This way, 

the prosumer can conduct its own energy 

management for the benefit of the grid without the 

need for any external control signals. 

  Preliminary results with the proposed MPC 

approach show the ability of the system to deal with 

the forecast uncertainties. The experiment results 

also show that the PV power-prediction correction 

method, together with the moving horizon feature of 

the MPC, is able to estimate the behavior of PV 

output power and deal with forecast uncertainties. 

For the time resolution of 10 minutes (as used in this 

work), the MPC is not able to take decisions for the 

deviations that occur within this time interval. So the 

MPC is still not perfect, and future work is intended 

to improve its strategy for real-time application. 

From the experimental results, it was also deduced 

that with an effective load-prediction model and 

correction method, the MPC can effectively deal 

with the load uncertainty as well, which is also part 

of the future work.   
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