
Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable
Cloud-native Applications

Peter-Christian Quint and Nane Kratzke
Lübeck University of Applied Sciences, Center of Excellence for Communication,

Systems and Applications (CoSA), 23562 Lübeck, Germany

Keywords: Cloud-native Applications, TOSCA, Docker Compose, Swarm, Kubernetes, Domain Specific Language,
DSL, Cloud Computing, Elastic Container Platform.

Abstract: Cloud-native applications are intentionally designed for the cloud in order to leverage cloud platform features
like horizontal scaling and elasticity – benefits coming along with cloud platforms. In addition to classical (and
very often static) multi-tier deployment scenarios, cloud-native applications are typically operated on much
more complex but elastic infrastructures. Furthermore, there is a trend to use elastic container platforms like
Kubernetes, Docker Swarm or Apache Mesos. However, especially multi-cloud use cases are astonishingly
complex to handle. In consequence, cloud-native applications are prone to vendor lock-in. Very often TOSCA-
based approaches are used to tackle this aspect. But, these application topology defining approaches are
limited in supporting multi-cloud adaption of a cloud-native application at runtime. In this paper, we analyzed
several approaches to define cloud-native applications being multi-cloud transferable at runtime. We have not
found an approach that fully satisfies all of our requirements. Therefore we introduce a solution proposal
that separates elastic platform definition from cloud application definition. We present first considerations
for a domain specific language for application definition and demonstrate evaluation results on the platform
level showing that a cloud-native application can be transfered between different cloud service providers like
Azure and Google within minutes and without downtime. The evaluation covers public and private cloud
service infrastructures provided by Amazon Web Services, Microsoft Azure, Google Compute Engine and
OpenStack.

1 INTRODUCTION

Elastic container platforms (ECP) like Docker
Swarm, Kubernetes (k8s) and Apache Mesos recei-
ved more and more attention by practitioners in re-
cent years (de Alfonso et al., 2017) – and this trend
still seems to continue (Kratzke and Quint, 2017).
Elastic container platforms fit very well with exis-
ting cloud-native application (CNA) architecture ap-
proaches (Kratzke and Quint, 2017). Corresponding
system designs often follow a microservice-based ar-
chitecture (Sill, 2016; Kratzke and Peinl, 2016). Ne-
vertheless, the reader should be aware that the ef-
fective and elastic operation of such kind of elastic
container platforms is still a question in research – alt-
hough there are interesting approaches making use of
bare metal (de Alfonso et al., 2017) as well as public
and private cloud infrastructures (Kratzke and Quint,
2017). What is more, there are open issues how to
design, define and operate cloud applications on top
of such container platforms pragmatically. This is es-

pecially true for multi-cloud contexts. Such open is-
sues in scheduling microservices to the cloud come
along with questions regarding interoperability, appli-
cation topology and composition aspects (Saatkamp
et al., 2017) as well as elastic runtime adaption as-
pects of cloud-native applications (Fazio et al., 2016).
The combination of these three aspects (multi-cloud
interoperability, application topology definition/com-
position and elastic runtime adaption) is – to the best
of the authors’ knowledge – not solved satisfactorily
so far. These three problems are often seen in iso-
lation. In consequence, topology based multi-cloud
approaches often do not consider elastic runtime
adaption of deployments (Saatkamp et al., 2017) and
multi-cloud capable elastic solutions being adap-
tive at runtime do not make use of topology ba-
sed approaches as well (Kratzke and Quint, 2017).
And finally, (topology-based) cloud-native applicati-
ons making use of elastic runtime adaption are often
inherently bound to specific cloud infrastructure ser-
vices (like cloud provider specific monitoring, scaling

400
Quint, P. and Kratzke, N.
Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native Applications.
DOI: 10.5220/0006683804000408
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 400-408
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



and messaging services) making it hard to transfer
these cloud applications easily to another cloud provi-
der or even operate them across providers at the same
time (Kratzke and Peinl, 2016). Furthermore, Hein-
rich et al. mention several research challenges and
directions like microservice focused performance mo-
nitoring under runtime adaption approaches (Heinrich
et al., 2017). All in all, it seems like cloud engineers
(and researchers as well) just trust in picking only two
out of three options. Is this really the best approach?

Therefore, this contribution strives for a more in-
tegrated point of view to overcome the observable iso-
lation of these mentioned engineering and research
trends (Kratzke and Quint, 2017) and tries to ana-
lyze how and whether the mentioned approaches can
be combined. We intentionally strive for a pragma-
tic and practitioner acceptance instead of richness of
expression like this is done by approaches like CA-
MEL (Rossini, 2015). Other than CAMEL, we focus
microservice architectures and elastic container plat-
forms only to reduce language complexity. So, we
do not follow an holistic approach considering every
imaginable architectural style of cloud applications.

We present a prototype for a domain-specific lan-
guage (DSL) that enables to describe cloud-native ap-
plications being transferable at runtime without do-
wntimes according to the following outline. The
key idea is to describe the platform independently
from the application. Our DSL has been develo-
ped according to a three step DSL design methodo-
logy: analysis, implementation and use as proposed
by (Van Deursen et al., 2000; Mernik et al., 2005;
Strembeck and Zdun, 2009). In Section 2 we analyze
common characteristics of elastic container platforms
and derive concepts that have to be covered by cloud-
native application definition DSLs. In Section 3 we
refine these concepts into more concrete requirements
and analyze related work and existing DSLs like TO-
SCA. We found no existing language that fulfills all of
our identified requirements completely. Accordingly,
we propose and present a prototypic implementation
for such a DSL and evaluate it in Section 4. Our eva-
luation shows, that cloud-native applications can be
transferred between different cloud service providers
like Azure and Google within minutes and without
downtime. We have executed our experiments on pu-
blic and private cloud service infrastructures provided
by Amazon Web Services, Microsoft Azure, Google
Compute Engine and OpenStack. This section closes
with a critical discussion. Finally, we conclude our
considerations and provide an outlook in Section 5.

2 CONTAINERIZATION TRENDS

According to (Kratzke and Quint, 2017), a CNA runs
on top of an elastic runtime environment. This can be
straightaway an Infrastructure-as-a-Service (IaaS) or
an elastic platform (Fehling et al., 2014). Container-
based elastic platforms are getting more and more wi-
despread. Such kind of elastic ECP are shown in Ta-
ble 1. For the aim to avoid vendor lock-in (Kratzke
and Peinl, 2016) we propose to make use of basic and
standardized IaaS service concepts only. Such con-
cepts are virtual machines, virtualized (block-)storage
devices, virtualized networks and security groups.
Elastic container platforms can be deployed on top
of these basic IaaS service concepts (Kratzke, 2017).
And on top of elastic container platforms arbitrary
cloud-native applications can be deployed (Kratzke
and Peinl, 2016).

Figure 1 illustrates such kind of ECP based CNA
deployments. (Kratzke, 2017) showed that arbitrary
ECPs can be operated using a descriptive cluster de-
finition model based on an intended and a current
state. Such kind of defined clusters can be opera-
ted or even transfered across different cloud service
provider infrastructures at runtime. Obviously, this
is a great foundation to avoid vendor lock-in situati-
ons. While a descriptive cluster definition model can
be used for describing the elastic platform (Kratzke,
2017), there is also the need to describe the applica-
tion topology without dependency to a specific ECP.
This paper proposes to do this using a domain-specific
language which focuses on the layer 5 and 6 of the
cloud-native application reference model proposed by
(Kratzke and Peinl, 2016). This DSL is the focal point
of this paper. The central idea is to split the migration
problem into two independent engineering problems
which are too often solved together.
1. The infrastructure aware deployment and ope-

ration of ECPs: These platforms can be deployed
and operated in a way that they can be transferred
across IaaS infrastructures of different private and
public cloud services as (Kratzke, 2017) showed.

2. The infrastructure agnostic deployment of ap-
plications on top of these kind of transferable con-
tainer platforms which is the focus of this paper.
In order to enable an ECP-based CNA deployment

by a domain-specific language that is not bound to a
specific ECP, the particular characteristics and com-
monalities of the target systems have to be identified.
Therefore, the architectures and concepts of elastic
container platforms have to be analyzed and com-
pared. As representatives, we have chosen the three
most often used elastic container platforms Kuberne-
tes, Docker Swarm Mode and Apache Mesos with

Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native Applications

401



Figure 1: An ECP based CNA deployment for elastic and multi-cloud capable operation.

Table 1: Some popular open source elastic platforms. These
kind of platforms can be used as a kind of cloud infrastruc-
ture unifying middleware.

Platform Contributors URL
Kubernetes CNCF http://kubernetes.io
Swarm Docker https://docker.io
Mesos Apache http://mesos.apache.org

Marathon listed in Table 1. As Table 2 shows all
of these ECPs provide comparable concepts (from a
bird’s eye view).

Application Definition. All platforms define ap-
plications as a set of deployment units. The de-
pendencies of these deployment units are expressed
in a descriptive way. Apache Mesos uses Appli-
cation Groups to partition multiple applications into
sets. The dependencies are modeled as n-ary trees of
groups with applications as leaves. Kubernetes mana-
ges an application basically as a set of services com-
posed of pods. A pod can contain one or more con-
tainers. All containers grouped in a pod run on the
same machine in the cluster. ReplicationSet Control-
lers take care that the number of running pods is equal
to the amount of pods defined in replication controller
configurations (Verma et al., 2015). The numbers of
running instances of a pod is defined in a so called de-
ployment (YAML-file). Docker Swarm supports ap-
plication description using a single YAML-file that
defines a multi-container deployment consisting of
the container and there connections. YAML based
definition formats seem to be common for all ECPs
and a DSL should provide something like a model-to-
model transformation (M2M) to these ECP specific
application definition formats [AD].

Service discovery is the task to get service end-
points by name and not by a (permanently) changing
address. All analyzed ECPs supported service disco-

very by DNS based solutions (Mesos, Kubernetes) or
using the service names defined in the application de-
finition format (Docker Swarm). Thus, a DSL must
consider to name services in order to make them dis-
coverable via DNS or ECP-specific naming services
[SD].

Deployment units. The basic units of execution
are named different by the ECPs. However, they mos-
tly based on containers. Docker Swarm is intentio-
nally designed for deploying Docker containers. A
Kubernetes deployment unit is called a pod. And a
pod whose the container can be operated by arbitrary
container runtime environments. But Rocket (rkt) and
Docker are the main container runtime environments
at the time of writing this paper. Only Apache Me-
sos supports by its design arbitrary binaries as deploy-
ment units. However, the Marathon framework sup-
ports container workloads based on Docker containers
and emerges as a standard for the Mesos platform to
operate containerized workloads. A DSL should con-
sider that the deployment unit concept (whether na-
med application group, pod or container) is the basic
unit of execution for all ECPs [DU].

Scheduling. All ECPs provide some kind of a
scheduling service that mostly runs on the master no-
des of these platforms. The scheduler assigns de-
ployment units to nodes of the ECP considering the
current workload and resource efficiency. The sche-
duling process of all ECPs can be constrained using
scheduling constraints or so called (anti-)affinities
(Verma et al., 2015; Naik, 2016; Hindman et al.,
2011). These kind of scheduling constraints must be
considered and expressable by a DSL [SCHED].

Load Balancing. Like scheduling, load balancing
is supported by almost all analyzed platforms using
special add-ons like Marathon-lb-autoscale (Mesos),
kube-proxy (Kubernetes), or Ingress service (Docker

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

402



Table 2: Concepts of analyzed ECP Architectures.

Concept Mesos Docker Swarm Kubernetes
Application Definition Application Group Compose Service + Namespace

Controller (Deployment, DaemonSet, Job, ...)
All K8S concepts are described in YAML

Service discovery Mesos DNS Service names KubeDNS (or replacements)
Service links

Deployment Unit Binaries Container (Docker) Pod (Docker, rkt)
Pods (Marathon)

Scheduling Marathon Framework Swarm scheduler kube-scheduler
Constraints Constraints Affinities + (Anti-)affinities

Load Balancing Marathon-lb-autoscale Ingress load balancing Ingress controller
kube-proxy

Autoscaling Marathon-autoscale - Horizontal pod autoscaling
Component Labeling key/value key/value key/value

Swarm). These load balancers provide basic round-
robin load balancing strategies and they are used to
distribute and forward IP traffic to the deployment
units under execution. However, more sophisticated
load balancing strategies should be considered as fu-
ture extensions for a DSL [LB].

Autoscaling. Except for Docker Swarm, all
analyzed ECPs provide (basic) autoscaling features
which rely mostly on measuring CPU or memory me-
trics. In case of Docker Swarm this could be extended
using an add-on monitoring solution triggering Doc-
ker Compose file updates. The Mesos platform provi-
des Marathon-autoscale for this purpose and Kuber-
netes relies on a horizontal pod autoscaler. Further-
more, Kubernetes supports even making use of cus-
tom metrics. So, a DSL should provide support for
autoscaling supporting custom and even application
specific metrics [AS].

Component Labeling. All ECPs provide a
key/value based labeling concept that is used to name
components (services, deployment units) of applica-
tions. This labeling is used more (Kubernetes) or less
(Docker Swarm) intensively by concepts like service
discovery, schedulers, load balancers and autoscalers.
These concepts could be also of use for the operator of
the cloud-native application to constrain scheduling
decisions in multi-cloud scenarios. This component
labeling can be used to code datacenter regions, pri-
ces, policies and even enable to deploy services only
on specific nodes (Kratzke, 2017). In consequence, a
DSL should be able to label application components
in key/value style [CL].

3 A DSL FOR CNA

For deploying arbitrary CNAs on specific elastic con-
tainer platforms, we have developed a model-to-
model (M2M) generator. As shown in Figure 2, the

generated, ECP specific CNA description can be used
by a ECP scheduler to deploy a new application or
update a still running one. The operation of the ECPs
can be done in a multi-cloud way (Kratzke, 2017).
The elastic container platforms can be transferred
across different cloud service platforms or they can
be operated in a multi- or hybrid-cloud way. More
details can be found in (Kratzke, 2017).

To define a universal CNA definition DSL, we fol-
lowed established methodologies for DSL develop-
ment as proposed by (Van Deursen et al., 2000; Mer-
nik et al., 2005; Strembeck and Zdun, 2009). Ac-
cording to Section 2 the following requirements arise
for a DSL with the intended purpose to define elastic,
transferable, multi-cloud-aware cloud-native applica-
tions being operated on elastic container platforms.
• R1: Containerized deployments. Containers are self-

contained deployment units of a service and the core
building block of every modern cloud-native applica-
tion. The DSL must be designed to describe and la-
bel a containerized deployment of discoverable ser-
vices. This requirement comprises [SD], [DU], and
[CL].

Figure 2: Separation of concerns in deploying a CNA.

Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native Applications

403



Table 3: Requirement Matching.

Requirement #
R1

Container
R2

Application
Scaling

R3
Compendiously

R4
Multi-Cloud

Support

R5
Independence

R6
Elastic

Runtime Env.
Implementations Describtion

CAMEL + - + + + R

CAMEL is designed for modeling and execution of multi-cloud applications (Rossini, 2015).
It integrates and extends existing DSLs like CloudML and supports models@run-time
(Blair et al., 2009),(Chauvel et al., 2013), an environment to provide a model-based representation
of the underlying running system, which facilitates reasoning and adaptation of multi-cloud applications.

CAML - - + R
CAML enables the use of provider-dependent services (described in the CAML Profiles) and the
deployment (described in the CAML Library). The cloud applications deployment
configuration can be reused by using CAML templates (Bergmayr et al., 2014)

CloudML + + - + + + R A DSL for multi-cloud application deployments. The CloudMF (Lushpenko et al., 2015)
framework consists of CloudML (Brandtzæg et al., 2012) and models@run-time (see row above)

Docker Compose + + + + - + P Is an orchestration DSL and tool for defining, linking, and running multiple containers
on any docker host, also on the container cluster Docker Swarm

Kubernetes + + + + - + P
Kubernetes (former Google Borg) is a cluster platform for deploying container
applications. All configurations like the scheduling units (pods) and the scaling properties
(replication controller) can be described in YAML files (Verma et al., 2015)

TOSCA + + - + + - R&P A specification for describing the topology and orchestration of cloud webservices, their
relations and components of composition and how to manage them (Binz et al., 2014)

MODACloudML + + - + + + R
Designed to specify the provision and deployment of applications in multi-cloud
environments (Artač et al., 2016). MODACloudsML is the DSL part of MODACloud and
also uses CloudMF (see row CloudML)

MULTICLAPP - + + - - A framework for modeling cloud applications on multi-cloud environments,
independent from the IaaS-provider. Applications can be modeled with an UML profile

Legend for column Implementation: P: Productive useable implementations available; R: Research implementations available

• R2: Application Scaling. Elasticity and scalability
are one of the major advantages using cloud compu-
ting (Vaquero et al., 2011). Scalability enables to
follow workloads by request stimuli in order to im-
prove resource efficiency (Mao and Humphrey, 2011).
The DSL must be designed to describe elastic servi-
ces. This requirement comprises [SCHED], [LB], and
[AS].

• R3: Compendiously. To simplify operations the DSL
should be pragmatic. Our approach is based on a sepa-
ration between the description of the application and the
elastic container platform. The DSL must be designed
to be lightweight and infrastructure-agnostic. This
requirement comprises [AD], [SD], and [CL].

• R4: Multi-Cloud-Support. Using multi-cloud-
capable ECPs for deploying CNAs is a major require-
ment for our migration approach. Multi-cloud support
also enables the use of Hybrid-cloud infrastructures.
The DSL must be designed to support multi-cloud
operations. This requirement comprises [SCHED],
[CL] and the necessity to be applied on ECPs opera-
ted in a way described by (Kratzke, 2017).

• R5: Independence. To avoid dependencies, the CNA
should be deployable independently to a specific ECP
and also to specific IaaS providers. The DSL must
be designed to be independent from a specific ECP
or cloud infrastructure. This requirement comprises
[AD] and the necessity to be applied on ECPs operated
in a way described by (Kratzke, 2017).

• R6: Elastic Runtime Environment. Our approach
provides a CNA deployment on an ECP which is trans-
ferable across multiple IaaS cloud infrastructures. The
DSL must be designed to define applications being
able to be operated on an elastic runtime environ-
ment. This requirement comprises [SD], [SCHED],
[LB], [AS], [CL] and should consider the operation of
ECPs in way that is described in (Kratzke, 2017) .

According to these requirements, we examined
existing domain-specific languages for similar kind of
purposes. By investigating literature and conducting
practical experiments in expressing a reference appli-
cation, we analyzed whether the DSL fulfills our re-
quirements. The results are shown in Table 3. No of

the examined DSLs covered all of the requirements.
TOSCA, Docker Compose and Kubernetes fulfill the
most of our requirements. But Docker Compose and
the Kubernetes DSL are designed for a specific ECP
(Docker Swarm and Kubernetes). We decided against
TOSCA because of its tool-chain complexity and its
tendency to cover all layers of abstraction (especially
the infrastructure layer). Accordingly, we identified
the need for creating a new DSL (at least for our re-
search activities). Furthermore, to define a new DSL
provides the maximum flexibility in covering all of
the mentioned and derived requirements.

Figure 3 summarizes the core language model for
the resulting DSL. An Application provides a set of
Services. A Service can have an Endpoint on which
its features are exposed. One Endpoint belongs ex-
actly to one Service and is associated with a Load
Balancing Strategy. A Service can use other End-
points of other Services as well. These Services can
be external Services that are not part of the applica-
tion deployment itself. However, each internal Ser-
vice executes at least one DeploymentUnit which is
composed of one or more Containers. Furthermore,
schedulers of ECPs should consider DeploymentPo-
licies for DeploymentUnits. Such DeploymentPoli-
cies can be workload considering Scaling Rules but

Figure 3: DSL Core Language Model.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

404



Figure 4: Architecture of the reference application Sock
Shop, according to (Weaveworks, 2017).

also general Scheduling Constraints.
Table 4 relates these DSL concepts to identi-

fied requirements of Section 3 and initially identified
trends in containerization of Section 2. Multi-Cloud
support (requirement R4) is not directly mapped to a
specific DSL concept. It is basically supported by se-
parating the description of the ECP (Kratzke, 2017)
and the description of the CNA. Therefore, multi-
cloud support must not be a part of the CNA DSL
itself, what makes the CNA description less complex.
Multi-cloud support is simply delegated to the lo-
wer level ECP. This kind of multi-cloud handling for
ECPs is explained in more details by (Kratzke, 2017).

According to (Van Deursen et al., 2000) we im-
plemented this core language model as a declarative,
internal DSL in Java. Although Java is a quite un-
common language to build a DSL, as a full purpose
programming language it provides maximum flexibi-
lity to find DSL internal solutions. On the other hand,
making use of proven software patterns makes it even
possible to provide human readable forms of appli-
cation definitions (see Listing 1). To keep the des-
cription of a CNA simple to use and also short, we
used the Builder Pattern (Gamma et al., 2000). The
usage of this pattern allows a flexible definition of a
CNA without having to pay attention to the order of
the description. The concrete syntax is shown exem-
plary using an example service as part of a SockShop
reference application that we used for our evaluation
(Listing 1).

4 EVALUATION

We validated that our DSL fulfills all requirements we
defined in Section 3 by three evaluation steps:

E1. To evaluate the usability of the DSL for des-
cribing a containerized (R1) , auto-scalable (R2) de-
ployment in a pragmatic way (R3), we described a
microservice demonstration application. Therefore
we selected Sock Shop, a reference microservice e-
commerce application for demonstrating and testing

of microservice and cloud-native technologies (We-
aveworks, 2017). Sock Shop is developed using
technologies like Node.js, Go, Spring Boot and Mon-
goDB and is one of the most complete reference ap-
plications for cloud-native application research accor-
ding to (Aderaldo et al., 2017). As shown in Figure
4, the application consists of nine services. Due to
page limitations, we only provide one description of
the payment-service as example in Listing 1.

E2. To evaluate multi-cloud-support (R4) and
ECP independence (part of R5) we deployed and ope-
rated the Sock Shop on two ECPs hosted on several
IaaS infrastructures. As type representatives we se-
lected Docker Swarm Mode (Version 17.06) and Ku-
bernetes (Version 1.7). The ECPs consist of five wor-
king machines (and one master) hosted on the IaaS in-
frastructures OpenStack, Amazon AWS, Google GCE
and Microsoft Azure.

E3. For demonstrating IaaS independence (R5)
we migrated the deployment between various IaaS
infrastructures of Amazon Web Services, Microsoft
Azure, Google Compute Engine and a research insti-
tution specific OpenStack installation. To validate all
migration possibilities we have done the following ex-
periments:

• E3.1: Migration OpenStack1 ⇔ AWS 2

• E3.2: Migration OpenStack⇔ GCE 3

• E3.3: Migration OpenStack⇔ Azure 4

• E3.4: Migration⇔ and GCE

• E3.5: Migration AWS⇔ Azure

• E3.6: Migration GCE⇔ Azure

We have used Kubernetes and Docker Swarm5 as
ECP for the Sock Shop deployment. Every experi-
ment is a set of migrations in both directions. E.g.,
evaluation experiment E3.1 includes migrations from
OpenStack to AWS and from AWS to OpenStack. All
migrations with OpenStack as source or target infra-
structure (E3.1-E3.3) have been carried out ten times,
all other (E3.4-E3.6) five times. The transfer times of
the infrastructure migrations are shown in Figure 5.
As the reader can see, the needed time for a infrastruc-
ture migration stretches from 3 minutes (E3.1 Open-
Stack ⇒ AWS) to more than 18min (E3.6 Azure ⇒
AWS). Moreover, the transfer time for migrating also
depends on the transfer direction between the source

1Own Plattform, machines with 2vCPUs
2Region eu-west-1, Worker node type m4.xlarge
3Region europe-west1, Worker node type n1-standard-2
4Region europewest, Worker node type Standard A2
5Due to page limitations we only present Kubernetes

data. However, our experiments revealed that most runtime
is spent in infrastructure specific handling and not due to the
choice of the elastic container platform.

Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native Applications

405



Table 4: Mapping DSL concepts to derived requirements (R1-R6) and containerization trends (AD, SD, DU, ..., CL).

Concept R1 R2 R3 R4 R5 R6 AD SD DU SCHED LB AS CL
Application x x
Service x x x
Endpoint x x x x
DeploymentUnit x x x x
Container x x x
DeploymentPolicies x x x x x x
LoadBalancingStrategy x x x x
Scaling Rules x x x x x x x
Scheduling Constraints x x x x x x x

Figure 5: Measured durations of application migrations [seconds].

and the target infrastructure. E.g., as seen in E3.3, the
migration Azure⇒AWS takes four times longer than
the reversed migration AWS ⇒ Azure. Our analysis
turned out, that the differences in the transfer times
are mainly due to different blocking behavior of the
IaaS API operations of different providers. Especi-
ally providers whose terminating operation of virtual
machines or security groups are blocking operations
show significantly longer reaction times. E.g., IaaS
terminating operations of GCE and Azure wait until
an operation is finished completely before starting the
next one. This takes obviously longer than just wai-
ting for the confirmation that an infrastructure ope-
ration has started (IaaS API behavior of OpenStack
and AWS). However, and in all cases the reference
application could be transferred completely and wit-
hout downtime between all mentioned providers. The
differences in transfer times are due to different in-
volved IaaS cloud service providers and not due to
the presented DSL.

Limitations and Critical Discussion. In our cur-
rent work we have not evaluated the migration of a
stateful applications deployment with a mass of data.

This would involve the usage of a storage cluster
like Ceph or GlusterFS. The transfer of such kind
of storage clusters will be investigated separately.
We also rated the DSL pragmatism and practitioner
acceptance higher than the richness of possible DSL
expressions. This was a result according to discussi-
ons with practitioners (Kratzke and Peinl, 2016). This
results in some limitations. For instance, our DSL is
intentionally designed for container and microservice
architectures, but has limitations to express applicati-
ons out of this scope. This limits language complexity
but reduces possible use cases. For applications out-
side the scope of microservice architectures, we re-
commend to follow more general TOSCA or CAMEL
based approaches.

5 CONCLUSION

Open issues in deploying cloud-native applications to
cloud infrastructures come along with the combina-
tion of multi-cloud interoperability, application topo-
logy definition/composition and elastic runtime adap-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

406



Listing 1: The payment service of the Sock Shop reference application expressed in the proposed DSL.
1 DeploymentPolicy dPolicy = new DeploymentPolicy.Builder()
2 .rule(DeploymentPolicy.Type.NUMBER , 3)
3 .rule(DeploymentPolicy.Type.SELECTOR , "openStack.dc1")
4 .build();
5 Container paymentContainer = new Container.Builder("payment")
6 .image("weaveworksdemos/payment :0.4.3")
7 .port(new Endpoint.Builder().containerPort (80).build())
8 .build();
9 DeploymentUnit deploymentUnit = new DeploymentUnit.Builder("payment")

10 .container(paymentContainer)
11 .tag("app", "nginx")
12 .deploymentPolicy(dPolicy)
13 .build();
14 Service service = new Service.Builder("payment")
15 .deploymentUnit(deploymentUnit)
16 .port(new Port.Builder("http")
17 .protocol(Port.Protocol.TCP).containerPort (80). targetPort (80).build())
18 .build();
19
20 new Generator.Builder().targetECP(Generator.ECP_TYPES.KUBERNETES)
21 .deyploment(service)
22 .build()
23 .write(new File("/path/to/folder"));

tion. This combination is – to the best of the authors’
knowledge – not solved satisfactorily so far, because
these three problems are often seen in isolation. It
seems that cloud engineers (and researchers as well)
just trust in picking only two out of these three opti-
ons. Therefore, this paper strived for a more integra-
ted point of view to overcome the observable isolation
of these mentioned engineering and research trends
(Kratzke and Quint, 2017). The key idea is to des-
cribe the platform independently from the application.
According to our lessons learned, the infrastructure
aware deployment and operation of ECPs should be
separated from infrastructure and platform agnos-
tic deployment of applications.

This paper focused on DSL design for the appli-
cation level. However, if we take further research
for the ECP and infrastructure level into considera-
tion (Kratzke, 2017), we are able to demonstrate that
a cloud-native application can be defined in a des-
criptive and infrastructure and platform-agnostic way
simply using a specialized DSL. Our reference appli-
cation composed of nine services could be expressed
using the proposed prototypic version of such kind of
a DSL. Furthermore, the application could be trans-
ferred between different cloud infrastructures within
minutes and without downtimes.

Our DSL core language is implemented as inter-
nal DSL in Java to fulfill our own special demands
in a fast and pragmatic way. But we see the need
for a representation of our core language model wit-
hout the overhead of a full purpose language like Java.
Further research will investigate whether it is useful

to make use of more established topology DSLs like
TOSCA and how to realize a comparable expressive-
ness like CAMEL. However, we do not strive for the
technological possible, but also considere the balance
between language expressiveness, pragmatism, com-
plexity and practitioner acceptance.

ACKNOWLEDGEMENTS

This research is funded by German Federal Ministry
of Education and Research (13FH021PX4). Let us
thank all the anonymous reviewers and their com-
ments that improved this paper.

REFERENCES

Aderaldo, C. M., Mendonça, N. C., Pahl, C., and Jamshidi,
P. (2017). Benchmark requirements for microservices
architecture research. In Proceedings of the 1st Inter-
national Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software
Engineering, pages 8–13. IEEE Press.

Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., and
Tamburri, D. A. (2016). Model-driven continuous
deployment for quality devops. In Proceedings of
the 2nd International Workshop on Quality-Aware De-
vOps, pages 40–41. ACM.

Bergmayr, A., Wimmer, M., Kappel, G., and Grossniklaus,
M. (2014). Cloud modeling languages by example. In
Proceedings - IEEE 7th International Conference on

Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native Applications

407



Service-Oriented Computing and Applications, SOCA
2014.

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). TOSCA: Portable Automated Deployment
and Management of Cloud Applications. In Advanced
Web Services, pages 527–549. Springer New York,
New York, NY.

Blair, G., Bencomo, N., and France, R. B. (2009). Models@
run. time. Computer, 42(10).

Brandtzæg, E., Mosser, S., and Mohagheghi, P. (2012).
Towards cloudml, a model-based approach to provi-
sion resources in the clouds. In 8th European Con-
ference on Modelling Foundations and Applications
(ECMFA), pages 18–27.

Chauvel, F., Ferry, N., Morin, B., Rossini, A., and Solberg,
A. (2013). Models@ runtime to support the iterative
and continuous design of autonomic reasoners. In Mo-
DELS@ Run. time, pages 26–38.

de Alfonso, C., Calatrava, A., and Moltó, G. (2017).
Container-based virtual elastic clusters. Journal of Sy-
stems and Software, 127(January):1–11.

Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., and
Villari, M. (2016). Open Issues in Scheduling Mi-
croservices in the Cloud. IEEE Cloud Computing,
3(5):81–88.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Ar-
bitter, P. (2014). Cloud Computing Patterns: Funda-
mentals to Design, Build, and Manage Cloud Appli-
cations. Springer Publishing Company, Incorporated.

Gamma, E., Hehn, R., Johnson, R., et al. (2000). Design
patterns: Elements of reusable design. soil.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare,
L. E., Pahl, C., Schulte, S., and Wettinger, J. (2017).
Performance Engineering for Microservices: Rese-
arch Challenges and Directions. In 8th ACM/SPEC on
Int. Conf. on Performance Engineering Companion,
pages 223–226.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Jo-
seph, A. D., Katz, R., Shenker, S., and Stoica, I.
(2011). Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 295–308, Ber-
keley, CA, USA. USENIX Association.

Kratzke, N. (2017). Smuggling Multi-cloud Support into
Cloud-native Applications using Elastic Container
Platforms. In 8th. Int. Conf. on Cloud Computing and
Service Sciences, Porto, Portugal.

Kratzke, N. and Peinl, R. (2016). ClouNS - a Cloud-Native
Application Reference Model for Enterprise Archi-
tects. In 2016 IEEE 20th International Enterprise
Distributed Object Computing Workshop (EDOCW),
pages 198–207, Vienna. IEEE.

Kratzke, N. and Quint, P. C. (2017). Understanding cloud-
native applications after 10 years of cloud computing
- A systematic mapping study. Journal of Systems and
Software, 126(January):1–16.

Lushpenko, M., Ferry, N., Song, H., Chauvel, F., and Sol-
berg, A. (2015). Using adaptation plans to control the

behavior of models@ runtime. In MoDELS@ Run.
time, pages 11–20.

Mao, M. and Humphrey, M. (2011). Auto-scaling to mi-
nimize cost and meet application deadlines in cloud
workflows. Proceedings of 2011 International Confe-
rence for High Performance Computing, Networking,
Storage and Analysis on - SC ’11, page 1.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344.

Naik, N. (2016). Building a virtual system of systems using
docker swarm in multiple clouds. In Systems Engi-
neering (ISSE), 2016 IEEE International Symposium
on, pages 1–3. IEEE.

Rossini, A. (2015). Cloud application modelling and exe-
cution language (camel) and the paasage workflow.
In Advances in Service-Oriented and Cloud Compu-
ting—Workshops of ESOCC, volume 567, pages 437–
439.

Saatkamp, K., Breitenbücher, U., Kopp, O., and Leymann,
F. (2017). Topology Splitting and Matching for Multi-
Cloud Deployments. In 8th Int. Conf. on Cloud Com-
puting and Service Sciences (CLOSER 2017).

Sill, A. (2016). The Design and Architecture of Microser-
vices. IEEE Cloud Computing, 3(5):76–80.

Strembeck, M. and Zdun, U. (2009). An approach
for the systematic development of domain-specific
languages. Software: Practice and Experience,
39(15):1253–1292.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: An annotated bibliography. ACM
Sigplan Notices, 35(6):26–36.

Vaquero, L. M., Rodero-Merino, L., and Buyya, R.
(2011). Dynamically scaling applications in the cloud.
ACM SIGCOMM Computer Communication Review,
41(1):45.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. (2015). Large-scale cluster
management at Google with Borg. Proceedings of the
Tenth European Conference on Computer Systems -
EuroSys ’15, pages 1–17.

Weaveworks (2017). Sock shop: A microservices demo ap-
plication. https://www.weave.works/blog/sock-shop-
microservices-demo-application/ . Accessed: 2017-
12-18.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

408


