
Authorization-aware HATEOAS

Marc Hüffmeyer1, Florian Haupt2, Frank Leymann2 and Ulf Schreier1

1Hochschule Furtwangen, Furtwangen im Schwarzwald, Germany
2Universität Stuttgart, Stuttgart, Germany

Keywords: REST, Web Services, Authorization, Attribute Based Access Control.

Abstract: The architectural style named Representational State Transfer (REST) is nowadays widely established and still
enjoys a growing popularity. One of the core principles of REST is referred as ”Hypermedia as the Engine of
Application State” (HATEOAS). HATEOAS is one of the foundations of the scalability that RESTful systems
provide and enables the decoupling of client and server. But the realization of HATEOAS is challenging,
because there is no systematic approach how to enforce the constraint. Therefore, the implementation is
mostly up to the developer of a RESTful service. This work describes a new method of how to apply the
HATEOAS constraint. We describe a method that systematically enables HATEOAS based on REST API
models and the integration of access control mechanisms. In order to avoid unauthorized access attempts and
unnecessary network traffic, the resource representations are customized to the requesting subject. References
that lead to not accessible resources, are not included in the customized resource representations. Therefore, an
attribute based access control mechanism is extended to distinguish between static and dynamic attributes. A
2-phase authorization procedure is introduced that relies on this discrimination and determines the references
which must be included in the resource representation. The result is a flexible realization of HATEOAS based
on formal models.

1 INTRODUCTION

REST (Fielding, 2000) is an architectural style that
describes foundations on how to build highly scalable,
distributed systems. The building blocks of REST
have been developed as an abstraction of the World
Wide Web which can be seen as a primary example
of a highly scalable, distributed system. Applications
that follow the constraints of the architectural style
will benefit from scalabilty, mashup-ability, usability
and accessability (Wilde and Pautasso, 2011).

HATEOAS is one of the major constraints of
REST and requires that a server is able to send possi-
ble application state transitions to the client (Amund-
sen, 2017). Therefore, it is reasonable to model the
state transitions between resources as metadata. Hav-
ing a metamodel which describes the state transitions
enables to exploit the model in order to apply ac-
cess control. State transitions that must not be per-
formed by the client can be skipped and not included
in the response. This helps to increase security, reduce
unnecessary network traffic (especially in machine-
to-machine communication) and eliminate annoying
navigation paths for users. The presented approach
uses REST API models and the HATEOAS constraint

to integrate fine-grained access control with REST-
ful services. Instead of providing plain representa-
tions of resources in response to a service request, the
results of authorization-aware HATEOAS processing
are customized representations of resources that re-
spect access rights in advance.

The remainder of this works is organized as fol-
lows: the paper first introduces an example sce-
nario which is used throughout the paper in sec-
tion 2. In section 3 we describe the foundations of
authorization-aware HATEOAS, namely REST, hy-
permedia navigation models, attribute based access
control and an access control system for RESTful ser-
vices named RestACL. In section 4 the main ideas
are described on how to build a RESTful system that
is authorization-aware. An evaluation of the proposed
system is presented in section 5. Finally, related work,
conclusion and future work complete this work.

2 EXAMPLE SCENARIO

Industry 4.0 (Lasi et al., 2014) is an area where differ-
ent subjects like customers, suppliers, providers, op-

78
Hüffmeyer, M., Haupt, F., Leymann, F. and Schreier, U.
Authorization-aware HATEOAS.
DOI: 10.5220/0006683700780089
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 78-89
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



erators and smart machines act together on the same
resources. Imagine a factory that builds a dedicated
product and offers the customer to parameterize the
product even if it is already in production. A auto-
motive factory might be an example where customers
can decide to change the interior even if body parts
and the engine are already in production. From a
REST oriented point of view, the product is a resource
and the parameterizable parts are subresources of that
resource. Figure 1 depicts a state chart of a single
resource and shows the state transitions for this re-
source. Inside the boxes the particular state name is
mentioned. The transitions between the boxes indi-
cate the operations that can be performed to create
or update the resource. Note that state charts and
resources in a real world application are much more
complex and we use the same simplified chart for all
resources (cf. Table 1) in order to focus on the main
idea of authorization-aware HATEOAS.

Initial
In

Production
Completed

P
U
T

P
U
T

P
O
ST

Figure 1: Simplified state chart for production state.

For example, a customer can order a prod-
uct by sending a creation request to the factory
(e.g. by sending a POST request to the address
http://example.org/products). The product resource is
then in an initial state until a worker of the factory de-
cides to update the resource and set it into a produc-
tion state (e.g. by using a PUT request to the address
http://example.org/products/{id}). From now on the
customer must be capable to view the state of the pro-
duction but must not change it. The product state must
only be changeable by the workers in the factory.

But the customer is capable to add additional
parts to the product and change an individual part’s
details until a worker closes the part list (by up-
dating the part list state). The customer can add
new parts by sending a POST request to the ad-
dress http://example.org/products/{id}/parts. Parts
can only be added by the customer as long as the
http://example.org/products/{id}/parts resource is in
the Initial state. The customer can update dedi-
cated parts by sending a PUT request to the address
http://example.org/products/{id}/parts/{id}. Individ-
ual parts can only be changed as long as they are in
the Initial state.

Table 1 shows the sample Product API that is
used throughout this work as an example. The ta-
ble lists the aforementioned resources, the possible
access methods and the subjects which are allowed
to perform the individual API calls.

From the scenario description one can see that the
different access methods are bound either exclusively

Table 1: Product API.

Resource Met. Subjects
1 /products POST Customer
2 /products/{id} GET Customer,

Worker
3 /products/{id} PUT Worker
4 /products/{id}/parts GET Customer,

Worker
5 /products/{id}/parts POST Customer
6 /products/{id}/parts PUT Worker
7 /products/{id}/parts/{id} GET Customer,

Worker
8 /products/{id}/parts/{id} PUT Customer,

Worker

to the customer, exclusively to the workers or to both
of them. In addition, the access privileges of some
resources depend on an attribute of the resource (the
actual state name). The update operation for the prod-
uct (operation 3), the creation operation of new parts
(operation 5), the update operation of the part list (op-
eration 6) and the update operation of individual parts
(operation 8) depend on the actual state name.

3 FOUNDATIONS

3.1 Representational State Transfer

Representational State Transfer (REST) is an archi-
tectural paradigm that defines constraints on how
to scale distributed systems. It is neither a tech-
nology nor a standard but a collection of design
guidelines. REST was first introduced by Fielding
(Fielding, 2000). HTTP (Internet Engineering Task
Force (IETF), 1999) is a protocol that supports the
design guidelines and that is very often associated
with REST. Note that HTTP is a well known exam-
ple, but there are several other protocols that enable
REST. The Richardson maturity model as described
in (Webber et al., 2010) defines layers that identify
at which level a system supports the different REST
constraints.

Level 0: The system is distributed and invokes re-
mote procedure calls. These might be some sort of
reusable methods that offer specific services.

Level 1: Resource orientation is likely the most
fundamental design guideline for REST. Instead of in-
voking reusable services, resources are targeted indi-
vidually. Therefore each resources has a unique ad-
dress. At this level, access methods are usually en-
capsulated in the address.

Level 2: HTTP Verbs determine the action that is

Authorization-aware HATEOAS

79



performed on resources instead of encapsulating the
method into the resources address. The resource ad-
dress only consists of nouns and the underlying proto-
col carries the action. Using HTTP, the access method
is determined by one of the verbs like GET, POST,
PUT or DELETE.

Level 3: Hypermedia as the engine of application
state (HATEOAS) is clearly the most difficult con-
straint to understand in theory. But every ordinary
web user applies HATEOAS in practice (Richardson,
2010). Web browsers are based on HATEOAS. When
using a web browser, the user runs an algorithm:
1) Retrieve a hypermedia representation of a re-

source.
2) Interpret the representation to get the current re-

source state.
3) Decide which hypermedia link or form will bring

you closer to your goal and click it.
4) Repeat the steps until you got the resource of your

liking.
Level 3 of the Richardson maturity model means

that the system applies the HATEOAS constraint.
That means, a server sends any possible state transi-
tion together with the resource to the client. The state
transitions are transferred as hypermedia, hence the
term hypermedia as the engine of application state.

The payoff of the HATEOAS paradigm is scalabil-
ity in distributed systems and the decoupling of clients
and servers. The goal of scalability can be achieved
by a stateless communication between clients and
servers, because if the communication is stateless, a
server must not hold any session information but can
handle every request individually. HATEOAS fulfills
this condition, because the server sends the possible
state transitions as hypermedia and redirects the man-
agement of the application state to the client. Be-
sides the scalability benefit this also means that stan-
dardized hypermedia clients can consume the services
and no application specific client is required. There-
fore, clients and servers are decoupled and a client
can automatically adapt to changes on the server side
(Richardson and Amundsen, 2013).

3.2 Hypermedia Navigation Model

The approach presented in this paper inherently re-
quires knowledge about the structure of a REST API,
particularly about the available resources and the
navigation relations between them. There are sev-
eral metamodels for REST APIs available, including
industry-driven languages like Swagger1, OpenAPI2

1https://swagger.io/
2https://www.openapis.org/

or RAML3, and also several works that originate
from academia (Schreier, 2011; Laitkorpi et al., 2009;
Sanchez and de Mattos Fortes, 2014; Haupt et al.,
2017). Although HATEOAS is one central feature
of REST APIs, most metamodels do not cover it,
meaning that they do not provide any means to model
hypermedia-based (navigation or other) relations be-
tween resources. However, this deficit has been ad-
dressed by the metamodel by (Haupt et al., 2014;
Haupt et al., 2015) (which is reused in this work), and
also lately by the OpenAPI specification v3.0 that in-
troduces the Link construct for describing navigation
relationships between resources.

The hypermedia-aware metamodel as we de-
scribed it so far comprises all possible navigation re-
lations between resources. However, at any specific
point in time, it might not be possible or allowed
to follow all these navigation relations (as illustrated
by our running example). There exist two basic ap-
proaches that show how this issue can be reflected
in the metamodel. The first approach extends the re-
source model with the capability to model the internal
state of resources as well as the relation between this
internal state and the supported operations and hyper-
media links (Schreier, 2011). The second approach
that our work is based on does not focus on describing
the internal state of the resources but aims at checking
when hypermedia links between resources are active
(i.e. shown to the user) and when not. This decision
may be based on some resource state, but it may also
depend on completely different parameters like e.g.
time, the access rights of the user, or its geographical
location. In the following sections we will demon-
strate that Attribute Based Access Control (ABAC)
is a suitable model to describe and evaluate all these
conditions and that the combination of a hypermedia-
aware resources model with ABAC provides a power-
ful solution approach for the systematic realization of
hypermedia-driven REST APIs.

In section 2 a REST API (cf. Table 1) and the
state chart of single resources (cf. Figure 1) in our
example scenario are shown. One can see that there
is no information about the relations between the re-
sources. The API and the resource state chart do not
cover the information if or how the product resource
is linked with the part resources. A metamodel that
covers HATEOAS addresses this problem.

Figure 2 shows the relations of the product re-
source from the example scenario. A POST request to
the product list creates a dedicated product resource.
From Figure 1 one can see that the state of the product
can be updated using a PUT request. The metamodel
includes the information that this PUT request leads

3https://raml.org/

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

80



/products/{id}

/parts/{id}

POST

PUT

GET, PUT

/partsGET, POST, 
PUT

Figure 2: Hypermedia Navigation Model.

the client to the updated product resource. In addi-
tion, the metamodel shows that there are state tran-
sitions to the part list as well as to dedicated parts.
While the state transition to the part list can be passed
using a GET, a POST or a PUT request, the state tran-
sition to an individual part can be passed using a GET
or a PUT request.

For example, a customer may have created a
product (/product/1) and added two parts (/pro-
duct/1/parts/1 and /product/1/parts/2). Table 2 lists
the hypermedia relations of /product/1, as they are
provided by the metamodel. According to Figure
2 the product resource has a reference to itself that
can be traversed with a PUT request. The part list
(the /parts subresource of /product/1) can be fetched
with GET, POST or PUT request. Finally, both parts
(/parts/1 and /parts/2) can be directly consumed fol-
lowing a hypermedia reference in the representation
of the /product/1 resource

Table 2: Metamodel example for /product/1.

Resource Methods
/products/1 PUT
/products/1/parts GET, POST, PUT
/products/1/parts/1 GET, PUT
/products/1/parts/2 GET, PUT

3.3 Attribute based Access Control

Attribute Based Access Control (ABAC) is an access
control model that determines access decision based
on attributes. The access control policies that can be
implemented with ABAC are only limited by the com-
putational language and the richness of the attributes
(Ferraiolo et al., 2015). An attribute can be any prop-
erty of an entity. For example, a subject might have
a name or a resource might have an URI. Access then
can be restricted (either permitted or denied) depend-
ing on whether dedicated attribute values are given.
For example, access might only be granted if the sub-
ject name is equal to X and the resource URI is equal
to Y. ABAC enables the specification of rich access
policies when compared to classical access control
models like RBAC or DAC. It will likely become the

dominant access control model in the future because
its benefits are too compelling (Sandhu, 2012).

3.4 RestACL

The REST Access Control Language (RestACL) is
an access control language and mechanism that is
founded on the principles of the ABAC model and
that has been designed to fit the requirements of
RESTful services (Hüffmeyer and Schreier, 2016c).
Therefore, security policies are aligned along re-
source structures and access is determined on various
attributes of different entities, e.g. subjects, resources,
actions or other contextual information.

The two major data structures in a RestACL sys-
tem are domains and policy repositories. While do-
mains are used to quickly map from requested re-
sources to applicable policies, the policy repositories
contain all the access policies that are build upon at-
tributes.

Listing 1 shows a domain. It has an entry for the
/products/1 resource at the host http://example.org. If
a GET request is send to that resource, policy P1 is
evaluated. A second entry regulates access to one of
the subresources of /product/1. If a POST request is
send to /products/1/parts, policy P2 must be evalu-
ated. Note that nested resource entries expand the
path attribute and employ the same host as their parent
resource.

{
"host": "http://example.org",
"path": "/products/1",
"access": [
{"methods": ["GET"],
"policies": ["P1"]}

],
"resources": [
{
"path": "/parts",
"access": [
{"methods": ["POST"],
"policies": ["P2"]}

]
}

]
}

Listing 1: RestACL domain.

Listing 2 shows this policy as it is stored in a pol-
icy repository. The policy declares two conditions
which are logically conjuncted. It becomes applica-
ble in case that the conditions subject type is equal to
Customer and resource state is equal to Initial both
are fulfilled. If the policy is applicable, access is per-
mitted.

Authorization-aware HATEOAS

81



{
"policies": [
{
"id": "P1",
"description": "Policy example",
"effect": " Permit ",
"priority": "1" ,
"compositeCondition": {
"operation": "AND",
"conditions": [
{
"function": "equal",
"arguments": [
{"category": "subject",
"designator": "type"},

{"value": "Customer"}
]

},{
"function": "equal",
"arguments": [
{"category": "resource",
"designator": "state"},

{"value": "Initial"}
]

}
]

}
}

]
}

Listing 2: RestACL policy.

The RestACL language has been designed to eas-
ily integrate with RESTful services and to ensure
high-performance access control for those services
(Hüffmeyer and Schreier, 2016a). A detailed descrip-
tion of the language can be found in (Hüffmeyer and
Schreier, 2016c).

4 AUTHORIZATION-AWARE
HATEOAS

4.1 Customized Resources
Representations

The HATEOAS constraint requires that a requesting
subject must receive all possible state transitions from
the server. For example, if the product resource is re-
quested, the resource representation must contain the
identical hypermedia controls as they are described
by the hypermedia navigation model. Access control
in general is not considered in the HATEOAS con-
straint. That means, if a customer requests the product
resource, the response contains the option to update
the product even if the customer is never allowed to
do so. In contrast, if one of the workers of the factory

requests the product resource, the response contains
the option to add new parts to the product. But adding
new parts is an operation that a workers must never
execute.

This problem can be addressed by performing an
evaluation of access privileges before the response is
send to the client. The operations that must never be
executed by the client can be omitted from the re-
source representation so that the client does not rec-
ognize these operations as possible next state transi-
tions. That means, if access privileges are considered
in advance, the resource representation is customized
to the requesting subject. The customized response
only contains those state transitions that the subject
is actually allowed to perform. This helps to increase
security, avoid unnecessary network traffic and reduce
frustration for human web users.

4.2 2-Phase Authorization

In order to customize resource representations in a
authorization-aware fashion, two phases of authoriza-
tion are required to process the resource request. In
the first phase the permission to execute the actual re-
source request is evaluated. In the second phase the
permissions to execute the next state transitions need
to be evaluated. Figure 3 gives an overview about the
customization process.

The process starts with an initial resource request
from a subject, e.g. a customer, a worker from the
factory or a machine. The request arrives at the Re-
source Server which immediately forwards it to its
Authorization Manager. The Authorization Manager
performs a check whether the initial request can be
performed by the requesting subject. Therefore, the
Authorization Manager sends an access request to
a RestACL System. The RestACL System checks
whether the initial request is permitted and returns
the result back to the Authorization Manager. If the
system denies the request, the Authorization Manager
returns a message that indicates that the subject is not
allowed to perform the request. The Resource Server
has to enforce the access decision (e.g. by sending an
HTTP 403 Forbidden response). If the RestACL Sys-
tem permits the request, the Authorization Manager
starts with the computation of the authorization-aware
response. Therefore, the Authorization Manager first
needs a list of possible state transitions that are linked
to the requested resources. Therefore, the Autho-
rization Manager consults the Hypermedia Naviga-
tion Model. The Navigation Model knows the pos-
sible state transitions for any resource. For exam-
ple, for the product from the example, the Navigation
Model knows that there are state transitions to update

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

82



Figure 3: Authorization-aware HATEOAS overview.

the product itself and that there are state transitions to
add new parts to the product or view and update ex-
isting parts. The Navigation Model returns the given
state transitions (as pairs of URIs and methods) for
a requested resource to the Authorization Manager.
The Authorization Manager then iterates over the list
of state transitions. For each state transition an access
request is send to the RestACL System which checks
whether the requesting subject may perform the state
transition. If the subject is permitted to perform the
state transition, the state transition is kept within the
resource representation. If the subject is not permit-
ted to perform the state transition, the transition is not
included from the resource representation. Once all
state transitions are either included or skipped, the
Authorization Manager responds to the initial request
and returns the customized resource back to the Re-
source Server. The Resource Server then needs to
adjust the response according to included state tran-
sitions and send it to the Subject.

While Subject, Resource Server and an access
control system are well known components in a

RESTful architecture, the Authorization Manager and
the Hypermedia Navigation Model are new compo-
nents. The Authorization Manager is a coordinator
of the access control operations. It coordinates the
process of building an authorization-aware response.
That means, the Authorization Manager hides all ac-
cess control operations to the Resource Server. When
a request arrives, it consults the Navigation Model and
creates a set of access request from the set of possible
state transitions as provided by the Navigation Model.
These access requests are actually evaluated by the
access control system.

One can see there are two phases of authorization.
In Phase 1 the execution of the initial request is either
permitted or denied. In Phase 2 access to the related
resources is evaluated. The differentiation between
the two phases is important since in both phases there
are different attribute types that need to be evaluated.

4.3 Authorization Process Example

Before we discuss different attribute types in Section

Authorization-aware HATEOAS

83



4.4, we take a closer look at the product example. In
the real world, there might be several access policies
that permit or deny writing access to the product re-
source. But to explain the concept of authorization-
aware HATEOAS, we focus on only two policies.

The first policy grants access to the customer. P1
(cf. Listing 3) grants access if the requesting subject
is of the type Customer and the requested resource is
in the Initial state.

{
"policies": [
{
"id": "P1",
"description": "Customer access policy",
"effect": " Permit ",
"priority": "1" ,
"compositeCondition": {
"operation": "AND",
"conditions": [
{
"function": "equal",
"arguments": [
{"category": "subject",
"designator": "type"},

{"value": "Customer"}
]

},{
"function": "equal",
"arguments": [
{"category": "resource",
"designator": "state"},

{"value": "Initial"}
]

}
]

}
}

]
}

Listing 3: Customer access policy.

The second policy from the Industry 4.0 scenario
restricts worker access. P2 (cf. Listing 4) grants ac-
cess if the requesting subject is of the type Worker and
the resource is not in the Completed state. This en-
sures that a worker can not update resources anymore
once the production process is finished.

According to the scenario description in section 2
these two policies must be assigned to the resources
as indicated in Listing 5 to control access to resources
as described in the example scenario.

Both - customer and workers - can perform a read-
ing access (by sending a GET request) to the product
resource, the part list and to the individual parts at any
time. Therefore, access to these resources must not
be restricted. But only the workers of the factory can
update the state of the product (by sending a PUT re-
quest to the /product/1 resource), while only the cus-

tomer can add new parts of the product (by sending a
POST request to the /parts subresource of the product
as long as the /parts resource is in the Initial state).

{
"policies": [

{
"id": "P2",
"description": "Worker access policy",
"effect": " Permit ",
"priority": "1" ,
"compositeCondition": {
"operation": "AND",
"conditions": [
{
"function": "equal",
"arguments": [
{"category": "subject",
"designator": "type"},

{"value": "Worker"}
]

},{
"function": "unequal",
"arguments": [
{"category": "resource",
"designator": "state"},

{"value": "Completed"}
]

}
]

}
}

]
}

Listing 4: Worker access policy.

{
"host": "http://example.org"
"path":"/products/1",
"access":[
{"methods":["PUT"],"policies":["P2"]}

],
"resources":[
{
"path":"/parts",
"access":[
{"methods":["POST"],"policies":["P1"]},
{"methods":["PUT"],"policies":["P2"]}

],
"resources":[
{
"path":"/parts/{id}",
"access":[
{"methods":["PUT"],
"policies":["P1, P2"]}

]
}

]
}

]
}

Listing 5: Resource-policy assignment (domain).

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

84



If the customer requests the product (identified by
the path /products/1), policy P1 is evaluated in the
first phase. The policy grants access and the Autho-
rization Manager consults the Hypermedia Naviga-
tion Model which returns all possible state transitions.
For every state transition the Authorization Manager
creates an access request and passes it to the RestACL
System. The system computes whether the subject is
allowed to perform the state transition or not. For ex-
ample, the customer is not allowed to update the prod-
uct resource itself. A PUT request is only permitted to
the workers of the factory. Therefore, the Authoriza-
tion Manager excludes this state transition. But the
customer can add new parts by using POST requests.
This state transition is kept and send to the customer
in the final response.

4.4 Static and Dynamic Attributes

One important aspect for an authorization-aware HA-
TEOAS system is the time factor. In RESTful ap-
plications that apply HATEOAS, the communication
between client and server is stateless and client and
server are decoupled. A client requests a resource
and the server responds with a representation of the
resource including several state transitions. The pres-
ence of the state transitions does not specify any re-
strictions about when the state transition can or must
be performed. This can happen immediately, within
an hour, after a day, a week or even a month. In conse-
quence, it is not possible to compute access decisions
for all state transitions at the time the resource is re-
quested. The attribute values possibly change until
the next request arrives. Therefore, no reliable pre-
diction can be made, if the attribute value can change.
That means, if attribute based access control is used
to compute access decisions, one needs to distinguish
between static and dynamic attributes.

Definition (Static/Dynamic Attribute): An at-
tribute is dynamic if the attribute value might change
between two requests from the same subject. An at-
tribute is static if the attribute value does not change
until the next request arrives.

That means, an attribute is called static, if it is
guaranteed that there is no change to the attribute
value until the next state transition is done. A po-
tential future state transition can be executed at any
time and the resulting access decision can not always
be precomputed because the values of dynamic at-
tributes might change. If the access decision relies on
dynamic attributes, an undetermined access decision
is send from the RestACL system to the Authoriza-
tion Manager. The Authorization Manager includes

the related resource references as long as there are no
static attributes that prevent the applicability of the
access policy. Attribute conditions targeting dynamic
attributes are only evaluated if an resource request is
actually performed.

A look at the product example shows the differ-
ence between static and dynamic attributes. Con-
sidering that the subject has a type like customer or
worker, this attribute will not change between two re-
quests and therefore can be declared static. On the
other side the resource state (e.g. Initial or In Produc-
tion) might change between two requests. Therefore,
an attribute state must be declared dynamic. The dis-
tinction between static and dynamic is application de-
pendent and is an additional task of the access control
design.

4.5 Authorization-aware Responses

In (Liskin et al., 2011) the authors describe how HA-
TEOAS support can be added to existing services that
do not support all of the REST constraints. The main
idea is to add Link headers in HTTP responses to in-
clude the HATEOAS support. Every state transition
is added a a Link header. Therefore, they introduce a
wrapper between client and server. The wrapper cap-
tures the response from the HTTP server and performs
a look-up for possible state transitions. The transi-
tions are stored in a so called state chart. Knowing
the possible transitions, the wrapper can create and
insert hyperlinks to the next states.

We extended this approach and included the ex-
ecution of access control logic. Instead of simply
adding all theoretically possible state transitions to the
response, an access control request is performed for
every state transition and they are only added if access
is not prohibited. As described in the previous sec-
tions, those additional access requests only consider
attribute conditions with static attributes. Attribute
conditions based on dynamic attribute values are in-
terpreted as applicable. If the access control system
allows the state transition (or it might be allowed in
the future), the Authorization Manager adds a header
to the response. In case that static attributes prevent
the applicability, the header is not included in the re-
sponse.

In the product scenario the customer or the work-
ers of the factory might request the product resource
using a GET request as indicated in Listing 6.
GET /products/1 HTTP/1.1
Host: example.org

Listing 6: HTTP request.

If no authorization-aware HATEOAS is per-
formed the server would return a response including

Authorization-aware HATEOAS

85



any known state transition (cf. Table 2), no matter
whether the requesting subject is allowed to perform
it or not. All subjects receive the same response (cf.
Listing 7) and resource representation, resulting in
subjects that might try to access the resource.

HTTP/1.1 200 OK
Link: </products/1>; verb="Put"
Link: </products/1/parts>; verb="Get,Post,Put"
Link: </products/1/parts/1>; verb="Get,Put"

Listing 7: Non-authorization-aware response.

If authorization-aware HATEOAS is done, the re-
source representation can be customized to the re-
questing subject depending on the resource state or
any other attribute. If the customer requests the prod-
uct resource, the state transition to update the product
itself is not included, because the customer is not al-
lowed to do so at any time (cf. Listing 8). The same
applies for the state transition to update the part list.
Note that the Put operation is not included in the Link
header.

HTTP/1.1 200 OK
Link: </products/1/parts>; verb="Get,Post"
Link: </products/1/parts/1>; verb="Get,Put"

Listing 8: Customer customized response.

If authorization-aware HATEOAS is done and the
workers of the factory request the product resource,
the state transition to update the product is included,
but the state transition to add new parts of the product
is skipped (cf. Listing 9). Note that the worker of
the factory can only perform Get or Put requests on
the part list but not Post requests. The option to send
a Post request to the part list is not included in the
response.

HTTP/1.1 200 OK
Link: </products/1>; verb="Put"
Link: </products/1/parts>; verb="Get,Put"
Link: </products/1/parts/1>; verb="Get,Put"

Listing 9: Worker customized response.

Note that we extended the Link header and added
the verb property. This is a easy way to instruct the
client what methods can be used to access the re-
source.

The use of Link headers works fine in machine-
2-machine communication. In order to provide an
appropriate response to a human user, the Resource
Server must be capable to render the response so that
only references mentioned in the Link headers are dis-
played. Note that details about rendering of represen-
tations are out of the scope of this paper but are part
of our future work.

5 EVALUATION

The delay that is caused by the additional authoriza-
tion checks might be a critical number. If the ef-
forts are too high, the authorization system might be-
come a bottleneck that slows an entire application
down. Therefore, it is crucial to analyze how the de-
lay is composed and measure its size in practice. The
overall processing time t to access a resource in an
authorization-aware fashion can be computed as the
sum of the time t1 to process the resource request and
the time t2 to build the authorization-aware response:

t = t1 + t2 (1)

t1 = tnetwork + tresource + taccess (2)

t2 = tmodel +n∗ (taccess + tmanipulation) (3)

The time intervals are listed in Table 3 and n is the
number of possible next state transitions as given by
the Hypermedia Navigation Model.

The first phase of the 2-phase authorization pro-
cess (cf. Section 4.2) is represented in t1 as taccess,
while t2 describes the second phase that enables
authorization-aware processing.

Table 3: Processing times.

t network The network runtime (request and
response) between the requesting
subject and the resource server
and the processing time for the un-
derlying protocol stack (e.g. IP,
TCP, HTTP).

t resource The time that is required to send
an access request from the re-
source server to the authorization
manager and enforce the decision.

t access The time that is required to send
an access request from the au-
thorization manager to the access
control system and receive a re-
sponse.

t model The time that is required to send
a request from the authorization
manager to the model service and
to receive the state list as response.

t manipulation The time that is required to manip-
ulate the response (include or skip
a state transition).

To verify the functionality and measure the per-
formance of the authorization-aware processing, we

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

86



created a test setup. In this setup the Resource
Server and the Authorization Manager have been in-
tegrated into a single software component. Addition-
ally, the RestACL system and the Hypermedia Navi-
gation Model have been set up on the same machine
as the Resource Server/Authorization Manager com-
ponent. To minimize the effects of the network run-
time, also the requesting client ran on the same ma-
chine. The tests have been executed on a quad core
unit with 2.90 GHz clock speed. 2 GB memory have
been reserved for testing purposes only.

We did an analysis on the RESTful services of the
example scenario. That means, we created a RESTful
API as described in section 2 using JAX-RS4 and a
metamodel as described in section 3.2. The RestACL
system has been setup to protect a product with two
parts. Note that the RestACL system has been an-
alyzed in detail in (Hüffmeyer and Schreier, 2016a;
Hüffmeyer and Schreier, 2016b). It was demonstrated
that the processing time for an access request is in-
dependent from the number of resources that are ad-
dressed in a domain description. Therefore, already
a small amount of resources is sufficient to test the
performance of the authorization-aware system.

For testing purposes the product, the part list and
the individual parts have been requested. For each re-
source we created requests that cover different user
types (Customer or Worker) and different resource
states (Initial, In Production or Completed). Each re-
quest has been executed at least ten times.

Table 4 lists the min., max. and average process-
ing times (in milliseconds) that we observed for an
authorization-aware HATEOAS request. As one can
see, the processing times are very small and differ
only slightly. The biggest interval between min. and
max. processing time is given for an access control
request. But even this distance is less than 2ms.

Table 4: Test results.

t resource t access t model t manipulation
min. 0.002 0.270 0.344 0.001
max. 0.015 2.073 0.792 0.031
avg. 0.003 0.532 0.445 0.009

According to (3), the average additional delay for
a resource with 6 state transitions (like the example
from Listing 7) can be computed to:

t2 = 0.445ms+6∗ (0.532ms+0.009ms) = 3.691ms

About 3-4ms are small compared to the aver-
age network runtime between a client and a resource
server even in a local network. For example, t has

4https://jcp.org/en/jsr/detail?id=311

been measured as about 20ms in the test setup. There-
fore, the additional delay caused by the authorization-
aware processing is negligible in the test setup for the
example scenario. This might change if the resource
has much more than 6 state transitions, because the
delay heavily depends on the number of possible state
transitions for a resource. Also the manipulation time
may vary much more if the actual resource repre-
sentation must be adjusted. In a machine-2-machine
scenario the inclusion and exclusion of Link headers
works fine, but if the resource representation must be
tailored for humans, higher computation efforts can
be expected.

6 RELATED WORK

Authorization in the context of REST has been dis-
cussed in detail when it comes to sharing resources
in the Internet. OAuth is a protocol that enables the
user to share its data in various applications (Internet
Engineering Task Force (IETF), 2012). For example,
if the user has two accounts on different social media
platforms, the user can grant the first application to
access his data in the second application without re-
vealing the users credentials in the first application to
the second application. An approach to centralize per-
mission management using OAuth tokens is described
in (Memeti et al., 2015). The authors present an ap-
proach in which a centralized coordinator issues to-
kens to clients which enable the clients to access dif-
ferent services.

User Managed Access (UMA) is another protocol
that targets sharing of resources (Internet Engineer-
ing Task Force (IETF), 2015). While OAuth focuses
on resource sharing between applications, UMA en-
ables the user to grant access privileges to other users
instead of applications. UMA defines message se-
quences that describe how to manage access permis-
sions and how to retrieve access tokens. Like OAuth,
UMA does not specify any details about access re-
quest evaluation or permission storage.

In (Bhatti et al., 2005) the authors describe that
a key challenge in securing Web Services is the de-
sign of effective access control schemes. The authors
try to solve this problem using a context-aware ap-
proach to secure access. The approach extends Role
Based Access Control (RBAC) and includes context
information (e.g. time and location) to determine ac-
cess privileges. In (Jin et al., 2012) the authors show
that ABAC is capable to cover multiple Access Con-
trol Models like Discretionary Access Control (DAC),
Mandatory Access Control (MAC) and Role Based
Access Control (RBAC). Therefore, ABAC can be

Authorization-aware HATEOAS

87



seen as an appropriate model that covers many of the
challenges of access control for Web Services.

Authorization-aware representations of resources
is clearly a topic that has been very rarely discussed
in science. Adaptive Hypertext and Hypermedia is an
research area that targets customized representations
of resources depending on user knowledge or pref-
erences (Brusilovsky, 1998). Approaches from that
research area try to increase user experience by deliv-
ering content according to what the user wants to see
(Höök et al., 1995; Kaplan et al., 1993) rather than en-
forcing access rights. Therefore, such approaches are
focused on the user and the modeling of the user but
do not target the evaluation of any kind of attributes.
Authorization awareness is also an approach to in-
crease the user experience, but the way to achieve this
goal is very different.

7 CONCLUSION AND FUTURE
WORK

This works extends the HATEOAS principle of REST
and introduces authorization awareness for RESTful
services. Therefore, in an additional authorization
phase all state transitions that would lead the request-
ing subject to another application state, but that are
not executable for the subject, are skipped. This leads
to customized resources depending on what subject
requests the resource. We have proven the function-
ality of the approach in an example scenario from the
Industry 4.0 area. The implemented solution adds a
negligible delay to the overall processing time for the
resource request.

In our future work we want to perform a more de-
tailed analysis on large amounts of resources, since
scalability is one of the major benefits of REST
and the approach must be capable to handle large
amounts of data. It has been already shown that the
RestACL system can easily handle large amounts of
data (Hüffmeyer and Schreier, 2016a). Therefore, we
expect the authorization-aware HATEOAS approach
to be scalable in practice, too.

As we have mentioned previously, we imple-
mented the customized resources using Link headers.
This works totally fine in machine-2-machine com-
munication. But if the requesting subject is a human
using a web browser, one needs additional render-
ers that exclude the skipped state transitions from the
body part of the response. Therefore, a manipulation
of different content types must be performed. The de-
sign and implementation of such manipulators is also
be part of our future work.

REFERENCES

Amundsen, M. (2017). RESTful Web Clients - Enabling
Reuse Through Hypermedia. O’Reilly Media.

Bhatti, R., Bertino, E., and Ghafoor, A. (2005). A Trust-
Based Context-Aware Access Control Model for Web-
Services. In Distributed and Parallel Databases, Vol.
18. Springer.

Brusilovsky, P. (1998). Methods and techniques of adaptive
hypermedia. In Adaptive Hypertext and Hypermedia.
Springer.

Ferraiolo, D., Kuhn, R., and Hu, V. (2015). Attribute-Based
Access Control. In Computer, Vol.48. IEEE Computer
Society.

Fielding, T. R. (2000). Architectural Styles and the Design
of Network-based Software Architectures. University
of California, Irvine.

Haupt, F., Karastoyanova, D., Leymann, F., and Schroth, B.
(2014). A Model-Driven Approach for REST Compli-
ant Services. In ICWS ’14 - 2014 IEEE International
Conference on Web Services. IEEE.

Haupt, F., Leymann, F., and Pautasso, C. (2015). A conver-
sation based approach for modeling REST APIs. In
WICSA ’15 - 12th Working IEEE / IFIP Conference
on Software Architecture. IEEE.

Haupt, F., Leymann, F., Scherer, A., and Vukojevic-Haupt,
K. (2017). A Framework for the Structural Analy-
sis of REST APIs. In ICSA ’17 - Proceedings of the
IEEE International Conference on Software Architec-
ture. IEEE.

Höök, K., Karlgren, J., Wærn, A., Dahlbäck, N., Jansson,
C. G., Karlgren, K., and Lemaire, B. (1995). A Glass
Box Approach to Adaptive Hypermedia. In Adaptive
Hypertext and Hypermedia. Springer.

Hüffmeyer, M. and Schreier, U. (2016a). Analysis of an Ac-
cess Control System for RESTful Services. ICWE ’16
- Proceedings of the 16th International Conference on
Web Engineering.

Hüffmeyer, M. and Schreier, U. (2016b). Formal Compar-
ison of an Attribute Based Access Control Language
for RESTful Services with XACML. SACMAT ’16 -
Proceedings of the 21st ACM Symposium on Access
Control Models and Technologies.

Hüffmeyer, M. and Schreier, U. (2016c). RestACL - An At-
tribute Based Access Control Language for RESTful
Services. ABAC ’16 - Proceedings of the 1st Workshop
on Attribute Based Access Control.

Internet Engineering Task Force (IETF) (1999). Request
for Comments: 2616 - Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616.

Internet Engineering Task Force (IETF) (2012). Request
for Comments: 6749 - The OAuth 2.0 Authorization
Framework.

Internet Engineering Task Force (IETF) (2015). Internet-
Draft: User-Managed Access (UMA) Core Protocol.

Jin, X., Krishnan, R., and Sandhu, R. (2012). A Uni-
fied Attribute-Based Access Control Model Covering
DAC, MAC and RBAC. DBSec ’12 - Proceedings of
the 26th Annual Conference on Data and Applications
Security and Privacy.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

88



Kaplan, C., Fenwick, J., and Chen, J. (1993). Adaptive
hypertext navigation based on user goals and con-
text. In User Modeling and User-Adapted Interaction.
Springer.

Laitkorpi, M., Selonen, P., and Systa, T. (2009). Towards
a model-driven process for designing restful web ser-
vices. ICWS ’09 - Proceedings of the 2009 IEEE In-
ternational Conference on Web Services.

Lasi, H., Fettke, P., Kemper, H.-G., and Feld, T. (2014).
Industry 4.0. In Business & Information Systems En-
gineering. Springer.

Liskin, O., Singer, L., and Schneider, K. (2011). Teaching
Old Services New Tricks: Adding HATEOAS Support
as an Afterthought. WS-REST ’11 - Proceedings of the
Second International Workshop on RESTful Design.

Memeti, A., Selimi, B., Besimi, A., and Cico, B. (2015).
A Framework for Flexible REST Services: Decou-
pling Authorization for Reduced Service Dependency.
MECO’15 - Proceedings 4th Mediterranean Confer-
ence on Embedded Computing.

Richardson, L. (2010). Developers Like Hypermedia, But
They Don’t Like Web Browsers. WS-REST ’10 -
Proceedings of the First International Workshop on
RESTful Design.

Richardson, L. and Amundsen, M. (2013). RESTful Web
APIs - Services for a Changing World. O’Reilly Me-
dia.

Sanchez, Robson Vincius Vieira, R. R. d. O. and de Mat-
tos Fortes, R. P. (2014). RestML: Modeling RESTful
Web Services. In REST: Advanced Research Topics
and Practical Applications. Springer.

Sandhu, R. (2012). The authorization leap from rights to
attributes: maturation or chaos? SACMAT ’12 - Pro-
ceedings of the 17th ACM Symposium on Access Con-
trol Models and Technologies.

Schreier, S. (2011). Modeling restful applications. In
Proceedings of the Second International Workshop on
RESTful Design, WS-REST 2011, Hyderabad, India,
March 28, 2011.

Webber, J., Parastatidis, S., and Robinson, I. (2010). REST
in Practice - Hypermedia and Systems Architecture.
O’Reilly Media.

Wilde, E. and Pautasso, C. (2011). REST: From Research
to Practice. Springer.

Authorization-aware HATEOAS

89


