
Parallel Privacy-preserving Record Linkage using LSH-based Blocking

Martin Franke, Ziad Sehili and Erhard Rahm
Database Group, University of Leipzig, Germany

Keywords: Record Linkage, Privacy, Locality Sensitive Hashing, Blocking, Bloom Filter, Apache Flink.

Abstract: Privacy-preserving record linkage (PPRL) aims at integrating person-related data without revealing sensi-
tive information. For this purpose, PPRL schemes typically use encoded attribute values and a trusted party
for conducting the linkage. To achieve high scalability of PPRL to large datasets with millions of records,
we propose parallel PPRL (P3RL) approaches that build on current distributed dataflow frameworks such as
Apache Flink or Spark. The proposed P3RL approaches also include blocking for further performance im-
provements, in particular the use of LSH (locality sensitive hashing) that supports a flexible configuration and
can be applied on encoded records. An extensive evaluation for different datasets and cluster sizes shows that
the proposed LSH-based P3RL approaches achieve both high quality and high scalability. Furthermore, they
clearly outperform approaches using phonetic blocking.

1 INTRODUCTION

Nowadays large amounts of person-related data is
stored and processed, e. g., about patients or cus-
tomers. For a comprehensive analysis of such data it
is often necessary to link and combine data from dif-
ferent data sources, e. g., for data integration in health
care or business applications (Christen, 2012).

The linkage and integration of data from multiple
sources is challenging, especially for person-related
data. Records from different databases referring to the
same person have to be identified. Because of the lack
of global identifiers this can only be achieved by com-
paring available quasi-identifiers, such as name, ad-
dress or date of birth. Moreover, person-related data
contains sensitive information so that a high degree of
privacy should be ensured, especially if required by
law (Vatsalan et al., 2017). This can be achieved by
privacy-preserving record linkage (PPRL) approaches
that identify records from different data sources re-
ferring to the same person without revealing personal
identifiers or other sensitive information. PPRL is
confronted with the Big Data challenges, particularly
high data volumes and different data representations
and qualities (variety, veracity). Hence, the key chal-
lenges for PPRL include (Vatsalan et al., 2013):

Privacy. The protection of privacy is crucial for the
entire PPRL process. To fulfill this requirement it is
necessary to encode the records and to conduct the
linkage on the encoded data. The encoding has to pre-

serve data properties needed for linkage and should
enable efficient similarity calculations.

Quality. The identification of matching records is
hindered by heterogeneous, erroneous, outdated and
missing data (Christen, 2012). To achieve high match
quality approximate matching techniques that can
compensate data quality problems are necessary.

Scalability. PPRL should scale to millions of records
from two or more data owners (parties). The triv-
ial approach is to compare every possible record pair
from the different data sources. For two parties this
lead to a quadratic complexity depending on the size
of the databases to be linked. To make PPRL scalable
to large datasets blocking and filtering techniques are
used. Another option is to perform PPRL in parallel
on multiple processors.

The aim of this work is to improve the scalability
and overall performance of PPRL by supporting both
parallel PPRL (P3RL) and blocking. Our P3RL ap-
proach enables the utilization of large shared nothing
clusters running state-of-the-art distributed process-
ing frameworks, such as Apache Flink1 or Apache
Spark2, to reduce the execution time proportional to
the number of processors in the cluster. Our P3RL
approaches utilize blocking to partition the records
such that only records within the same block need to
be compared. These comparisons are performed in

1https://flink.apache.org/
2https://spark.apache.org/

Franke, M., Sehili, Z. and Rahm, E.
Parallel Privacy-preserving Record Linkage using LSH-based Blocking.
DOI: 10.5220/0006682701950203
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 195-203
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

195

parallel by distributing the blocks among all worker
nodes within the cluster. In this paper, we focus on
blocking based on locality sensitive hashing (LSH)
(Indyk and Motwani, 1998; Durham, 2012) which
can be applied on encoded data and is not domain-
specific. To comparatively evaluate the efficiency of
LSH in a parallel setting we further developed a mod-
ified phonetic blocking approach based on Soundex
(Odell and Russell, 1918). We parallelize both ap-
proaches and compare them in terms of quality, effi-
ciency and scalability. Following previous work, we
realize our P3RL approach as three-party protocol us-
ing a trusted third party to conduct the linkage, the
linkage unit (LU) (Vatsalan et al., 2013). The use of
such a LU is well-suited for P3RL because the LU can
maintain a high-performance cluster. As privacy tech-
nique we adopt the widely-used method by Schnell
(Schnell et al., 2011) to encode record values with
Bloom filters (Bloom, 1970).

Specifically, we make the following contributions:

• We develop parallel PPRL (P3RL) approaches
with LSH-based and phonetic blocking using a
state-of-the-art distributed processing framework
to efficiently execute PPRL on large-scale clus-
ters. For LSH blocking we include optimizations
such as to avoid redundant match comparisons.

• We comprehensively evaluate the quality, effi-
ciency, scalability and speedup of our P3RL ap-
proaches for different parameter settings and large
datasets with up to 16 million records in a cluster
environment with up to 16 worker nodes.

After a discussion of related work in the next sec-
tion, we describe preliminaries regarding PPRL and
LSH-based blocking. In Sec. 4, we present our P3RL
approaches using Apache Flink for both LSH and
phonetic blocking. In Sec. 5, we evaluate the new ap-
proaches for different datasets and cluster sizes. Fi-
nally, we conclude our work.

2 RELATED WORK

Record Linkage (RL). The problem of finding
records that represent the same real-word entity has
been studied for over 70 years (Christen, 2012). RL
approaches aim at achieving a high match quality
and scalability to large datasets (Köpcke and Rahm,
2010). To reduce the number of record comparisons
blocking techniques are used. The standard blocking
method defines a blocking key (BK) to group records
into blocks such that only records of the same block
are compared (Christen, 2012). A BK is determined
by applying a function (e. g., Soundex or attribute

substring) on one or more selected record attributes
(Fisher et al., 2015). For example, one could block
persons based on the Soundex value of their last name
(phonetic blocking) or on the concatenation of the ini-
tial two letters of their first name and the city of birth.
Privacy-preserving Record Linkage (PPRL). The
additional requirement to preserve the privacy of en-
tities led to the development of techniques that allow
a linkage based on encoded values. Analogous to
RL, blocking techniques are applied to make PPRL
scalable to large datasets. A common approach is
to use phonetic codes to enable blocking based on
phonetic similarities of attribute values (Karakasidis
and Verykios, 2009). LSH-based blocking has shown
to achieve high match quality as well as scalabil-
ity (Durham, 2012; Karapiperis and Verykios, 2015;
Karapiperis and Verykios, 2016).
Parallel Record Linkage (PRL). For a further im-
provement of the scalability several parallelization
techniques have been considered for RL. On the one
hand graphic processor have been used to speed up the
similarity computations (Forchhammer et al., 2013;
Ngomo et al., 2013). Another approach is to utilize
Hadoop MapReduce as parallel processing frame-
work to conduct the linkage in parallel (Wang et al.,
2010; Dal Bianco et al., 2011; Kolb et al., 2012).
Parallel Privacy-preserving Record Linkage
(P3RL). We are aware of only two studies on parallel
approaches for PPRL. In (Sehili et al., 2015), graphic
processors are utilized for a parallel matching of
Bloom filters (bit vectors). Furthermore, (Karapiperis
and Verykios, 2013) and (Karapiperis and Verykios,
2014) proposed the use of MapReduce to improve the
scalability of Bloom-filter-based PPRL with LSH-
based blocking. As in the MapReduce approaches
for RL (Kolb et al., 2012), the map function is used
to determine the BK values (LSH keys) in parallel.
Then, the records are grouped based on their LSH
keys and block-wise compared in the reduce step. To
address the problem of duplicate candidate pairs in
different blocks, two MapReduce jobs are chained.
While the first job only emits the ids of candidate
record pairs, the second job groups equal candidate
pairs in the reduce step to calculate the similarity of
each pair only once. Here the usage of MapReduce
shows some limitations: In contrast to modern
distributed processing frameworks like Apache Flink,
MapReduce does not support complex user-defined
functions and requires expensive job chaining and
other workarounds instead. Moreover, the evaluation
is limited to two and four nodes and small datasets
of only about 300,000 records. As a result, the
scalability of the approach to larger datasets with
millions of records and larger clusters remains open.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

196

3 PRELIMINARIES

3.1 Bloom Filter Encoding

A Bloom filter (BF) (Bloom, 1970) is a bit vector of
fixed size m where initial all bits are set to 0. BFs are
used to represent a set of elements E = {e1, . . . ,eω}.
k independent cryptographic hash functions h1, . . . ,hk
are selected. For an element e ∈ E each hash function
hi with 1≤ i≤ k produces a position pi ∈ [0,m− 1].
The bits at the resulting k positions are then set to 1.

BFs are widely used for PPRL to encode records
with their attribute values (Vatsalan et al., 2013). Sev-
eral approaches for constructing BFs have been pro-
posed to reduce the re-identification risk and improve
the linkage quality (Schnell et al., 2011; Durham,
2012; Vatsalan et al., 2014). We use the approach
proposed in (Schnell et al., 2011) where the values of
selected record attributes are tokenized into a set E ′

of Q-grams (substrings of length Q) and then hashed
into one single BF, the cryptographic long-term key
(CLK). To determine the similarity of two BFs binary
similarity measures, mainly the Jaccard or Dice sim-
ilarity, are used (Vatsalan et al., 2013). If two BFs
have a similarity value equal or above a predefined
threshold t ∈ [0,1] the BF pair is classified as match.

An appropriate choice of m and k is essential,
since BFs can return false-positives. The optimal BF
size mopt depends on k and the number of considered
Q-grams ω = |E ′| such that mopt = d(k ·ω)/ ln(2)e
(Mitzenmacher and Upfal, 2005). Because m is fixed
for all BFs, ω is calculated as avg. number of Q-grams
over all n records ri with 1≤ i≤ n to be linked, such
that ωavg = d(∑n

i=1 |E ′i |)/(n)e, where |E ′i | denotes the
number of Q-grams a record ri produces.

BFs are susceptible to cryptanalysis because fre-
quent Q-grams lead to frequent 1-bits. Several stud-
ies have analyzed attacks on BFs (Kuzu et al., 2011;
Kuzu et al., 2013; Kroll and Steinmetzer, 2014; Nie-
dermeyer et al., 2014; Christen et al., 2017). How-
ever, these attacks are only feasible for certain as-
sumptions and building methods, especially for field-
level BFs (Schnell et al., 2009). For record-level
BFs, such as CLK, the re-identification risk can be
reduced by applying hardening techniques (Nieder-
meyer et al., 2014; Schnell, 2015; Schnell and Borgs,
2016).

3.2 Locality Sensitive Hashing

LSH was proposed to solve the nearest neighbor prob-
lem in high-dimensional data spaces (Indyk and Mot-
wani, 1998). For LSH a family of hash functions F
that is sensitive to a distance measure d(·, ·) is used.

Let d1,d2 with d1 < d2 be two distances according to
d; pr1, pr2 with pr1 > pr2 two probabilities and Z a set
of elements. A family F is called (d1,d2,pr1,pr2)-
sensitive if for all f ∈ F and for all elements x,y ∈ Z
the following conditions are met:

• d(x,y)≤ d1 ⇒ P(f (x) = f (y))≥ pr1

• d(x,y)≥ d2 ⇒ P(f (x) = f (y))≤ pr2

With that the probability that a function f ∈ F re-
turns the same output for two elements with a distance
smaller or equal to d1 is at least pr1. Otherwise, if the
distance is greater or equal to d2 then the probability
that f returns the same output is at most pr2.

For applying the LSH method in PPRL context,
the two hash families approximating the Jaccard and
the Hamming distance are most relevant (Durham,
2012). We focus on the hash family FHFHFH that is sen-
sitive to the Hamming distance (HLSH). Each func-
tion fi ∈ FH with 0 ≤ i ≤ m− 1 maps a BF Bf j
representing a record r j to the bit value on posi-
tion i of Bf j. For LSH-based blocking, a set Θ =
{ fλ1 , . . . , fλΨ

| fλι
∈ F } of ΨΨΨ hash functions is used.

To group similar records, a blocking key BKΘ(Bf j)
is generated by concatenating the output values of
the hash functions fλ ∈ Θ, such that BKΘ(Bf j) =
fλ1(Bf j)� . . .� fλΨ

(Bf j), where � denotes the con-
catenation of hash values. As a BK consists of Ψ < m
function values, Ψ defines the length of the block-
ing (LSH) key. Based on the probabilistic assump-
tion of LSH, the BKs of two similar BFs with a dis-
tance smaller or equal to d1 may be different. For this
reason, ΛΛΛ BKs BKΘ1 , . . . ,BKΘΛ

are used to increase
the probability that two similar BFs have at least one
common BK.

Example: Let Θ1 = { f7, f1}, Θ2 = { f0, f5} and
Bf 1 = 11011011, Bf 2 = 10011011 two BFs. We get
BKΘ1(Bf 1) = f7(Bf 1)� f1(Bf 1) = 11, BKΘ2(Bf 1) =
f0(Bf 1) � f15(Bf 1) = 10 and BKΘ1(Bf 2) = 10,
BKΘ2(Bf 2) = 10. Hence, Bf 1 and Bf 2 agree on BKΘ2
and will put into the same block and be compared.

The parameters ΨΨΨ and ΛΛΛ influences the efficiency
and effectiveness of a LSH-based blocking approach.
The higher Ψ (LSH key length) the higher is the prob-
ability that only records with a high similarity are as-
signed to the same block. Thus, the number of records
per block will be smaller. But, a higher Ψ also raises
the probability that matching records are missed due
to erroneous data. Λ determines the number of BKs.
Hence, a higher value of Λ increases the probabil-
ity that two similar BFs have at least one common
BK. However, an increasing Λ leads to more compu-
tations and can deteriorate the scalability. Basically, Λ

should be as low as possible while Ψ is high enough
to build as many blocks so that the search space is

Parallel Privacy-preserving Record Linkage using LSH-based Blocking

197

greatly reduced. An optimal value for Λ can ana-
lytically be determined dependent on Ψ and on the
similarity of true matching BF pairs (Karapiperis and
Verykios, 2014). This is difficult to utilize in practice
since the similarity of true matches is generally un-
known. Using HLSH Ψ should be sufficiently large
because each function f ∈ FH can only return 0 or 1
as output. Thus at most 2Ψ BK values (blocks) exist
for one HLSH key.

4 PARALLEL PPRL (P3RL)

We now explain our P3RL framework based on
Apache Flink. At first, we give a brief introduction
to Flink and outline basic concepts of our framework.
We then describe the implementation of the PPRL
process using HLSH and phonetic blocking. For our
HLSH-based blocking approach we propose two op-
timizations which aim at avoiding duplicate match
comparisons and restrict the choice of HLSH keys by
avoiding the most frequent 0/1-bit positions.

4.1 Apache Flink

We based our implementation on Apache Flink (Car-
bone et al., 2015) which is an open-source frame-
work for the in-memory processing of distributed
dataflows. Flink supports the development of pro-
grams that can be automatically executed in parallel
on large-scale clusters. A Flink program is defined
through Streams and Transformations. Streams are
collections of arbitrary data objects. Since we have
a fixed set of input records, we use bounded streams
of data, called DataSets, and the associated DataSet
API. Transformations produce new streams by mod-
ifying existing ones. Multiple transformations can
be combined to perform complex user-defined func-
tions. Flink offers a wide range of transformations,
where some of them are adopted from the MapReduce
paradigm (Dean and Ghemawat, 2008).

4.2 General Approach

The general approach of our distributed framework
using Flink is illustrated in Figure 1. Similar as in
former work, at first each party individually conducts
a preprocessing step where records are encoded and
static BKs can be defined (Vatsalan et al., 2013).
Then, the parties send their encoded records as BFs
to the LU. The LU utilizes a HDFS cluster and stores
the BFs distributed and replicated among the cluster
nodes. To conduct the linkage, the data is read in par-
allel by the nodes. If the BFs do not contain a BK the

LU generates them. Afterwards, the blocking step is
conducted to group together similar records for search
space reduction. Hence, the records are distributed
and redirected among the cluster nodes based on their
BKs. Thereby, all records with the same BK are sent
to the same worker. Finally, the workers build candi-
date pairs, optionally remove duplicates and perform
the similarity calculations in parallel. The IDs of the
matching pairs are then sent to the data owners.

Encoding

BK Generation

Blocking
GroupBy+GroupReduce

BK Generation
(Flat)Map

Classification
FlatMap

Encoding

BK Generation

Agreement on
Parameters

Party A

Party B

Linkage Unit

Encoded Records
Matches

Pairs of IDs

Duplicate Candidate
Removal
Filter

Pairs of IDs

Figure 1: General approach of the P3RL using Flink. A
dotted line indicates an optional step.

4.3 Hamming LSH

The first step of our HLSH blocking approach is to
calculate the BKs BKΘ1 , . . . ,BKΘΛ

for every input
BF Bf i within a FlatMap function. Such function
applies a user-defined Map function to each record
and returns an arbitrary number of result elements.
We choose fλ1 , . . . , fλΨ

randomly from FH for each
BK, but using each fλι

∈ FH only once so that each
HLSH key uses different bit positions. More formally,
we set Θx∩Θy = /0 ∀x,y ∈ {1, . . . ,Λ}. The output of
the FlatMap function are tuples of the form (keyId,
keyValue, record). Each Bf i is replicated Λ times
since it produces a tuple T i

j = (j, BKΘ j(Bf i), Bf i) for
every j ∈ {1, . . . ,Λ}. The first two fields of T corre-
spond to the HLSH key with its id and the third field
consists of the input BF.

Then, on the first two fields of each T i
j a GroupBy

function is applied. By that the tuples are redis-
tributed so that tuples with the same HLSH key value
are assigned to the same block and worker. By us-
ing a GroupReduce function, every pair of tuples
within a block is formulated as candidate pair Ci′,i′′

j =

(Bf i′ ,Bf i′′) if the BFs originate from different parties.
A GroupReduce function is similar to a Reduce func-
tion but it gets the whole group (block) at once and
returns an arbitrary number of result elements.

Finally, the similarity of all candidate pairs is
computed within a FlatMap function to output only
candidates with a sufficient similarity value. After-
wards, the matches are written into the HDFS.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

198

4.3.1 Removal of Duplicate Candidate Pairs

By using multiple BKs LSH generates overlapping
blocks. Consequently, pairs of BFs may occur in
multiple blocks so that they are compared several
times. To avoid these redundant similarity calcula-
tions, we adapted the approach from (Kolb et al.,
2013), so that for every tuple T i

j additionally a list of
all HLSH keys until the (j−1)-th key is emitted. We
get tuples T̂ i

j = (j, BKΘ j(Bf i), Bf i, keys j(Bf i)) with
keys j(Bf i) = {BKΘ1(Bf i), . . . ,BKΘ j−1(Bf i)}. For

each Ĉi′,i′′
j = ((Bf i′ , keys j(Bf i′)),(Bf i′′ , keys j(Bf i′′)))

it is checked, if the HLSH key lists are disjoint, i. e.
if keys j(Bf i′)∩ keys j(Bf i′′) = /0. If they are disjoint,
then BKΘ j is the least common HLSH key and the
candidate pair is compared. Otherwise, a BKΘ j′ with
j′ < j exists so that the candidate pair is already con-
sidered in another block and can be pruned for BKΘ j .
We realized this overlap check with a Filter func-
tion which is applied to each candidate pair. If the
function evaluates to true, i. e. the key lists do not
overlap, the similarity of the candidate pair will be
calculated. Otherwise, the filter function evaluates to
false and the candidate pair is pruned.

The avoidance of redundant match comparisons
leads to additional computational effort. At maximum
O(Λ− 1) HLSH keys need to be compared for each
candidate pair. Moreover, the tuple objects are larger
leading to higher network traffic.

4.3.2 HLSH Key Restriction (HLSH-KR)

HLSH uses randomly selected bits from BFs to con-
struct BKs. By that, HLSH applies probabilistic
blocking on the presence/absence of certain Q-grams
in the attribute values of a record. With growing data
volume some Q-grams can occur in many records,
because of limited real-world designations and name
spaces that can be built by linguistic units (e. g. mor-
phemes, phonemes) of natural languages. For exam-
ple, most residential addresses end with suffixes like
’street’ or ’road’. Even if such suffixes are abbreviated
many records will produce Q-grams like ’st’ or ’rd’ re-
sulting in the same 1-bits in the BFs. Another exam-
ple is the attribute gender, assuming only two possible
values (’female’, ’male’). If mapped into BFs, every
BF will contain the same 1-bits corresponding to Q-
grams resulting from the substring ’male’. If such fre-
quently occurring 1-bits are used to construct a HLSH
key, many records will share the same HLSH key and
are assigned to the same block. This will lead to large
blocks with records only agreeing on Q-grams hav-
ing a low discriminatory power. On the other hand,
bit positions where the majority of bits are 0-bits can

exist. For example, some Q-grams are very rare, be-
cause they are not common or are only existing due to
erroneous data (typographical errors). Again, using
these bit positions for constructing HLSH keys can
lead to large blocks, because many records share the
property that they do not contain these information.
To overcome these issues, very frequent/infrequent Q-
grams could be treated as stop words to avoid them to
be encoded into BFs. However, the identification of
such Q-grams depends on the domain and on the used
record attributes. Removing Q-grams also influences
the linkage quality by changing the similarity values
of BF pairs.

Based on these observations, we propose to con-
sider only those bit positions for the HLSH keys
where no frequent 0/1-bits occur. For this purpose
we count the number of 1-bits for each position and
for all input BFs. The resulting list of bit positions is
sorted w. r. t. the number of 1-bits at the correspond-
ing position in ascending order. Then, we remove
1
v bit positions at the beginning (frequent 0-bits) and
at the end of the list (frequent 1-bits) resulting in a
bit position list P. Here v denotes the pruning pro-
portion for frequent bits. For the HLSH key gener-
ation, we choose the hash functions randomly from
F̃H = { fι ∈ FH | ι ∈ P}.

4.4 Phonetic Blocking

To comparatively evaluate our HLSH approach we
consider phonetic blocking (PB) as a baseline for
comparison. The idea of PB is to use a phonetic
encoding function that produce the same output for
input values with a similar pronunciation. Usually
attributes like surname or given name are used to
group persons with a similar name while ignoring
typographical variations. For PB the BK is con-
structed during the preprocessing step. Each party
individually builds for every record a phonetic code
for a selected attribute. Providing phonetic codes as
plain text reveal some information about the encoded
records. For example, Soundex reveal the first let-
ter of an attribute value thereby providing an entrance
point for cryptanalysis. Therefore, we encode the
phonetic code for a record ri into a separate BF that is
used as regular BK.

Since frequent/rare phonetic codes are potentially
identifiable by analyzing the frequency distribution of
the blocking BF values, we consider a second variant
denoted as salted phonetic blocking (SPB). Similar to
(Schnell, 2015), we select a record specific key used
as salt for the BF hash functions to affect the hash val-
ues and corresponding BF bit positions. If the salting
keys of two records differs, it is very unlikely that the

Parallel Privacy-preserving Record Linkage using LSH-based Blocking

199

same phonetic code will produce the same BF. Conse-
quently, the attribute(s) used as salting key should be
flawless because otherwise many false-negatives will
occur. Following this idea, for SPB we use a second
phonetic code as salt such that each hash function gets
as input both phonetic codes concatenated. Since only
records agreeing in both phonetic codes are assigned
to the same block, the number of blocks increases and
the block sizes decreases.

5 EVALUATION

In this section, we evaluate our P3RL approaches in
terms of quality, scalability and speedup. Before pre-
senting the evaluation results we describe our experi-
mental setup and the datasets and metrics we used.

5.1 Experimental Setup

We conducted our experiments using a cluster with
16 worker nodes. Each worker is equipped with an
Intel Xeon E5-2430 CPU with 6×2.5 GHz, 48 GB
RAM, two 4 TB SATA disks running openSUSE 13.2.
The nodes are connected via 1 Gbit Ethernet. We
use Hadoop 2.6.0 and Flink 1.3.1. Flink is executed
standalone with 1 JobManager and 16 TaskManagers,
each with 6 TaskSlots and 40 GB JVM heap size.

5.2 Datasets

We generated synthetical datasets using the data gen-
erator and corruption tool GeCo (Christen and Vat-
salan, 2013). We replaced the lookup files for at-
tribute values by German names and address lists3

and added realistic frequency values drawn from Ger-
man census data4. To consider different PPRL sce-
narios we generated datasets DS and DR. With DS a
statewide linkage is simulated by using the complete
look-up files. In contrast, we restrict the addresses
for records from DR to a certain region by only con-
sidering cities whose zip code starts with ’04’. With
that, DR simulates a regional linkage scenario which
imitates a linkage of patient records from local health
care providers. For both datasets we build subsets DSn
and DRn of size n ·106 for all n ∈ {2b | b ∈N : b≤ 4}.
Each obtained dataset consists of (4n/5) ·106 original
and (n/5) · 106 randomly selected duplicate records.
To simulate dirty data each duplicate is corrupted by
choosing α attributes where in each at maximum β

3The lookup files shipped with GeCo are very small
which makes them not suitable for generating large datasets.

4https://www.destatis.de/DE/Methoden/Zensus /Zensus.html

modifications are inserted. We get datasets DS
(α,β)
n

and DR
(α,β)
n respectively. We consider two levels of

corruptions (moderate and high) by generating DS
M
n ,

DR
M
n with M = (2,1) and DS

H
n with H = (3,2).

The records are encoded into BFs (CLK)
by tokenizing the values of the attributes
A = {surname, first name, date of birth (dob), city,
zip code} into a set of trigrams. We set k = 20. To de-
termine mopt we estimate the avg. number of trigrams
ε(ai) each attribute ai ∈ A with an avg. length of Γ

produces: ε(ai) = (Γ−Q)+1. Our estimation using
character padding (Schnell, 2015) to build trigrams is
shown in Tab. 1. Finally, we approximate ωavg with
ωavg ≈ ∑

|A|
i=1 ε(ai) = 42 leading to mopt = 1212 (see

Sec. 2). For PB and SPB we choose the attributes
surname and first name (salt) leading to an optimal
blocking BF length of 29 using 20 hash functions.

Table 1: Estimation of the avg. attribute length and the re-
sulting number of Q-grams.

Name Surname Dob Zip + City
Avg. field length 6 7 8 5 + 10
Q-grams (Q = 3) 8 9 10 15

5.3 Evaluation Metrics

To assess the match quality of our blocking schemes,
we measure the pairs completeness (PC) that is the ra-
tio of true matches (PC ∈ [0,1]) that can be identified
within the determined blocks (Christen, 2012). To
evaluate scalability, we measure the execution times
for several datasets of different sizes. We also cal-
culate the reduction ratio (RR) which is defined as the
fraction of record pairs that are removed by a blocking
method compared to the evaluation of the Cartesian
Product (Christen, 2012). The achievable speedup is
analyzed by utilizing different cluster sizes (ϒ).

5.4 Experimental Results

HLSH Parameter Evaluation: To analyze effective-
ness and efficiency, we evaluate different HLSH pa-
rameter settings by considering several HLSH key
lengths with Ψ ∈ {10,15,20,25} and varying the
number of HLSH keys Λ ∈ {5,10,15, . . . ,30}. For
this experiment we use DS

M
1 and DS

H
1 (1 million

records) setting ϒ = 4. Fig. 2 shows the PC values
compared to the runtimes for the different HLSH set-
tings denoted as LSH(Ψ,Λ) for both moderate and
high degrees of corruption. For a moderate degree of
corruption (Fig. 2a), several configurations achieve a
good PC of over 95%. A high PC result is favored by
low key lengths Λ (e. g., 10 or 15) and thus relatively

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

200

0%25%50%75%100%
0

20

40

60

80

100

120

140

160

180
LSH(10,5) LSH(10,10)
LSH(10,15) LSH(10,20)
LSH(15,5) LSH(15,10)
LSH(15,15) LSH(15,20)
LSH(15,25) LSH(15,30)
LSH(20,5) LSH(20,10)
LSH(20,15) LSH(20,20)
LSH(20,25) LSH(20,30)
LSH(25,5) LSH(25,10)
LSH(25,15) LSH(25,20)
LSH(25,25) LSH(25,30)

Pairs Completeness

R
u

n
ti

m
e

[s
]

(a) DS
M
1

0%25%50%75%100%
0

20

40

60

80

100

120

140

160

180
LSH(10,5) LSH(10,10) LSH(10,15) LSH(10,20)
LSH(15,5) LSH(15,10) LSH(15,15) LSH(15,20)
LSH(15,25) LSH(15,30) LSH(20,5) LSH(20,10)
LSH(20,15) LSH(20,20) LSH(20,25) LSH(20,30)
LSH(25,5) LSH(25,10) LSH(25,15) LSH(25,20)
LSH(25,25) LSH(25,30)

Pairs Completeness

R
u

n
ti

m
e

[s
]

(b) DS
H
1

Figure 2: Pairs Completeness against run time of different HLSH parameter settings for DS
M
1 and DS

H
1 and ϒ = 4.

large blocks. The best results for Ψ = 10 require rel-
atively high run times due to the larger block sizes
compared to configurations with larger key length
(since per key at most 210 blocks are generated for
Ψ = 10). A near-optimal PC with better run times is
achieved with Ψ = 15 and Λ = 20. A large key length
such as Ψ = 25 misses many matches and achieves
only relatively low PC values even with many BKs,
e. g. Λ = 30. This is even more apparent for the re-
sults with a high degree of corruption (Fig. 2b). Here,
choosing Ψ ≥ 20 achieves unacceptably low PC val-
ues of less than 65%. The best results are achieved
for Ψ = 10 and Ψ = 15 where the latter setting needs
already a high number of BKs of at least 30. The best
trade-off between PC and runtime can be achieved by
using Ψ= 15. But, facing very dirty data as simulated
with DS

H
1 , Λ should be sufficiently large with Λ≥ 30.

Table 2: Comparison of the blocking schemes considering
PC, RR, the number of blocks (per HLSH key) and the num-
ber of candidates (in millions) for DS

M
1 and DS

H
1 .

D Method PC [%] RR [%] # Blocks # Cand.

DS
M
1

LSH(10,10) 98.68 98.47 1,024 2,446.25
LSH(10,15) 99.76 97.69 1,024 3,702.66
LSH(15,15) 96.92 99.90 32,425 161.56
LSH(15,20) 98.85 99.87 32,448 213.11

PB 86.70 99.62 2,347 610.77
SPB 73.11 99.99 79,864 19.19

DS
H
1

LSH(10,10) 85.90 98.52 1,024 2,375.22
LSH(10,15) 93.34 97.76 1,024 3,580.99
LSH(15,15) 68.68 99.91 32,489 151.01
LSH(15,20) 77.45 99.88 32,504 199.74

PB 75.50 99.66 2,737 551.34
SPB 54.90 99.99 84,071 18.36

In the following we compare the best performing
HLSH settings to the phonetic blocking approaches
PB and SPB. The results using the same datasets as
before are shown in Tab. 2. One can see that PB
and SPB achieve a quite low PC even for DS

M
1 . The

reason is that phonetic blocking is is more sensitive
w. r. t. data errors compared to HLSH blocking. All
approaches except those with Ψ = 10 achieve a high

RR of over 99 % and are thus able to greatly reduce
the search space. However, the number of candidates
varies significantly between the methods, even if the
RR values are very close. For instance, the number of
candidates for PB is more than a factor of 3.5 higher
compared to LSH(15,15). SPB instead generates 30
times fewer candidate pairs compared to PB. This is
due to the low number of blocks that are generated by
PB. While Soundex theoretically can produce 26 · 73

BK values (blocks), less than 8 ·73 blocks are actually
build making PB not feasible for large datasets.

HLSH Optimizations: We evaluate the HLSH
optimizations described in Sec. 4.3.1 and Sec. 4.3.2
for the datasets DS

M , DR
M setting v = 1

8 and ϒ = 4.
Fig. 3 shows the runtimes and the number of can-
didates (logarithmic scale on the right-side y-axis)
achieved by LSH(15,20) while enabling our optimiza-
tions. In general, the number of candidates for DR

M

is about 2.4 times as high as for DS
M due to a higher

degree of similarity between the records and thus
larger blocks. For both datasets, the removal of du-
plicate candidates could reduce the number of candi-
dates very little by at most 1%. Hence, the overhead
checking the lists of HLSH keys was more significant
so that the total runtimes increased significantly. By
contrast, the key restriction approach HLSH-KR re-
duces the number of candidates substantially by up
to 20% for DS

M and even 40% for DR
M . While for

DS
M the overhead for calculating the bit frequencies

neutralize the savings, for DR
M
8 and DR

M
16 HLSH-KR

leads to significant runtime savings. HLSH-KR gen-
erally improves with growing data volumes since the
data space becomes more dense such that more fre-
quent 0/1-bits occur and thus avoiding overly large
blocks becomes more beneficial. The overhead to de-
termine frequent 0/1-bits is linear and becomes neg-
ligible for large datasets because the complexity of
PPRL remains quadratic. Using HLSH-KR also in-
fluences the linkage quality since fewer bit positions

Parallel Privacy-preserving Record Linkage using LSH-based Blocking

201

1 4 8 16
0

1000

2000

3000

4000

5000

6000

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288
[Candidates] LSH(15,20)
[Candidates] LSH(15,20) + KR
[Candidates] LSH(15,20) + Filter
[Time] LSH(15,20)
[Time] LSH(15,20) + KR
[Time] LSH(15,20) + Filter

#Records [Millions]

T
im

e
[s

]

#
C

an
d

id
at

es
 [M

ill
io

n
s]

(a) DS
M

1 4 8 16
0

1000

2000

3000

4000

5000

6000

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288
[Candidates] LSH(15,20)
[Candidates] LSH(15,20) + KR
[Candidates] LSH(15,20) + Filter
[Time] LSH(15,20)
[Time] LSH(15,20) + KR
[Time] LSH(15,20) + Filter

#Records [Millions]

T
im

e
[s

]

#
C

an
d

id
at

es
 [M

ill
io

n
s]

(b) DR
M

Figure 3: Evaluation of HLSH duplicate candidate filter and HLSH key restriction (denoted as KR) for DS
M and DR

M setting
v = 1

8 and ϒ = 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

1400

1600

1800
LSH(10,10)
LSH(10,15)
LSH(15,15)
LSH(15,20)
PB
SPB

#Records [Millions]

T
im

e
[s

]

Figure 4: Execution times for different blocking methods
for DS

M with ϒ = 16.

are considered. For both datasets we measured a loss
of PC of around 1% while enabling HLSH-KR.

Scalability and Speedup: To evaluate the scal-
ability we execute our blocking approaches on the
datasets DS

M
1 , . . . ,DS

M
16 setting ϒ = 16. The run-

time results depicted in Fig. 4 show that LSH(10,10),
LSH(10,15) and PB do not scale w. r. t. the number
of records which is due to the low number of blocks.
Already for the dataset DS

M
4 , these approaches run

more than 8 times slower than the other. For DS
M
8

and DS
M
16 the runtime increases drastically, so that PB

for example requires around 1650 s and 7120 s, re-
spectively. By contrast, SPB can achieve the low-
est execution times, albeit for an unacceptably low
PC (Tab. 2). In general, even a slightly higher RR
can lead to a huge performance improvement. The
LSH blocking approaches with Ψ = 15 are able to ef-
ficiently link large datasets with a high match quality.
For example, LSH(15,20) is able to conduct the link-
age of DS

M
16 in around nine minutes. It is also inter-

esting that the runtime of LSH(15,20) is higher by a
factor of 1.4 compared to LSH(15,15). Hence, the in-
crease of the runtime corresponds to the higher value
for Λ (4

3). Finally, we evaluate the speedup by utiliz-
ing up to 16 worker nodes using DS

M
1 and DS

M
16. The

1 2 4 8 16
1

2

4

8

16
Ideal
LSH(15,15)|1
LSH(15,20)|1
PB|1
SPB|1
LSH(15,15)|16
LSH(15,20)|16
PB|16
SPB|16

#Worker

Sp
ee

d
u
p

Figure 5: Speedup.

results in Fig. 5 show that for DS
M
16 and up to eight

worker nodes, the speedup is nearly linear for both
LSH methods, while degrades after this. In contrast,
PB achieves a much lower speedup that degrades al-
ready for more than four workers. This is because
of the low number of blocks (Tab. 2) and because of
data skew effects introduced by frequent names lead-
ing to large blocks that need to be processed on a sin-
gle worker. The speedup results for DS

M
1 are lower

compared to DS
M
16 indicating that the lower data vol-

ume can be handled already by fewer workers. This is
confirmed by the speedup of the SPB approach which
already degrades for more than two worker nodes.

6 CONCLUSION

We proposed and evaluated parallel PPRL approaches
using LSH-based blocking. We make use of Apache
Flink as state-of-the-art distributed processing frame-
work. Our evaluation for large datasets and differ-
ent degrees of data quality showed the high efficiency
and effectiveness of our LSH-based P3RL approaches
which clearly outperform approaches based on pho-
netic blocking. We also found that the overhead for
finding duplicate candidates cannot be outweighed by

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

202

the achievable savings. By contrast, avoiding the most
frequent 0/1-bits for LSH blocking proved to be ben-
eficial for very large datasets. For future work, we
plan to investigate further P3RL approaches and make
them available in a toolbox for use in applications and
for a comparative evaluation.

REFERENCES

Bloom, B. (1970). Space/time trade-offs in hash coding
with allowable errors. CACM, 13(7):422–426.

Carbone, P. et al. (2015). Apache Flink: Stream and batch
processing in a single engine. IEEE TCDE, 36(4).

Christen, P. (2012). Data Matching: Concepts and Tech-
niques for Record Linkage, Entity Resolution, and Du-
plicate Detection. Springer.

Christen, P., Schnell, R., Vatsalan, D., and Ranbaduge, T.
(2017). Efficient cryptanalysis of bloom filters for
privacy-preserving record linkage. In PAKDD.

Christen, P. and Vatsalan, D. (2013). Flexible and extensible
generation and corruption of personal data. In ACM
CIKM, pages 1165–1168.

Dal Bianco, G., Galante, R., and Heuser, C. A. (2011). A
fast approach for parallel deduplication on multicore
processors. In ACM SAC, pages 1027–1032.

Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified
data processing on large clusters. CACM, 51(1).

Durham, E. A. (2012). A framework for accurate, efficient
private record linkage. PhD thesis, Vanderbilt Univer-
sity.

Fisher, J., Christen, P., Wang, Q., and Rahm, E. (2015). A
clustering-based framework to control block sizes for
entity resolution. In Proc. KDD.

Forchhammer, B., Papenbrock, T., Stening, T., Viehmeier,
S., Draisbach, U., and Naumann, F. (2013). Duplicate
Detection on GPUs. In Proc. BTW.

Indyk, P. and Motwani, R. (1998). Approximate nearest
neighbors: Towards removing the curse of dimension-
ality. In STOC, pages 604–613. ACM.

Karakasidis, A. and Verykios, V. S. (2009). Privacy pre-
serving record linkage using phonetic codes. In Proc.
BCI.

Karapiperis, D. and Verykios, V. S. (2013). A distributed
framework for scaling up LSH-based computations in
privacy preserving record linkage. In Proc. BCI.

Karapiperis, D. and Verykios, V. S. (2014). A distributed
near-optimal LSH-based framework for privacy-
preserving record linkage. ComSIS, 11(2):745–763.

Karapiperis, D. and Verykios, V. S. (2015). An LSH-
based blocking approach with a homomorphic match-
ing technique for privacy-preserving record linkage.
IEEE TKDE, 27(4):909–921.

Karapiperis, D. and Verykios, V. S. (2016). A fast and effi-
cient hamming LSH-based scheme for accurate link-
age. KAIS, 49(3):861–884.

Kolb, L., Thor, A., and Rahm, E. (2012). Dedoop: Efficient
Deduplication with Hadoop. PVLDB, 5(12).

Kolb, L., Thor, A., and Rahm, E. (2013). Don’t match
twice: Redundancy-free similarity computation with
MapReduce. In DanaC, pages 1–5. ACM.

Köpcke, H. and Rahm, E. (2010). Frameworks for entity
matching: A comparison. DKE, 69(2):197–210.

Kroll, M. and Steinmetzer, S. (2014). Automated crypt-
analysis of bloom filter encryptions of health records.
ICHI.

Kuzu, M., Kantarcioglu, M., Durham, E., and Malin, B.
(2011). A constraint satisfaction cryptanalysis of
bloom filters in private record linkage. In Proc. PETS.

Kuzu, M., Kantarcioglu, M., Durham, E. A., Toth, C., and
Malin, B. (2013). A practical approach to achieve
private medical record linkage in light of public re-
sources. JMIA, 20(2).

Mitzenmacher, M. and Upfal, E. (2005). Probability and
Computing: Randomized Algorithms and Probabilis-
tic Analysis. Cambridge University Press.

Ngomo, A.-C. N., Kolb, L., Heino, N., Hartung, M., Auer,
S., and Rahm, E. (2013). When to reach for the cloud:
Using parallel hardware for link discovery. In ESWC,
pages 275–289. Springer.

Niedermeyer, F., Steinmetzer, S., Kroll, M., and Schnell, R.
(2014). Cryptanalysis of basic bloom filters used for
privacy preserving record linkage. JPC, 6(2):59–79.

Odell, M. and Russell, R. (1918). The soundex coding sys-
tem. US Patents, 1261167.

Schnell, R. (2015). Privacy-preserving record linkage.
Methodological Developments in Data Linkage, pages
201–225.

Schnell, R., Bachteler, T., and Reiher, J. (2009). Privacy-
preserving record linkage using bloom filters. BMC
Medical Informatics and Decision Making, 9(1):41.

Schnell, R., Bachteler, T., and Reiher, J. (2011). A
novel error-tolerant anonymous linking code. German
Record Linkage Center, No. WP-GRLC-2011-02.

Schnell, R. and Borgs, C. (2016). Randomized response and
balanced bloom filters for privacy preserving record
linkage. In ICDMW, pages 218–224. IEEE.

Sehili, Z., Kolb, L., Borgs, C., Schnell, R., and Rahm,
E. (2015). Privacy preserving record linkage with
PPJoin. In Proc. BTW.

Vatsalan, D., Christen, P., O’Keefe, C. M., and Verykios,
V. S. (2014). An evaluation framework for privacy-
preserving record linkage. JPC, 6(1):3.

Vatsalan, D., Christen, P., and Verykios, V. S. (2013). A
taxonomy of privacy-preserving record linkage tech-
niques. Information Systems, 38(6):946–969.

Vatsalan, D., Sehili, Z., Christen, P., and Rahm, E. (2017).
Privacy-preserving record linkage for Big Data: Cur-
rent approaches and research challenges. Handbook
of Big Data Technologies.

Wang, C. et al. (2010). MapDupReducer: Detecting near
duplicates over massiv datasets. In Proc. SIGMOD.

Parallel Privacy-preserving Record Linkage using LSH-based Blocking

203

