
Standardized Big Data Processing in Hybrid Clouds

Ingo Simonis
Open Geospatial Consortium, OGC, 236 Gray's Inn Road, London, U.K.

Keywords: Big Data, Standards, Spatial Data Infrastructure, OGC, Cloud, Container, Docker.

Abstract: There is a growing number of easily accessible Big Data repositories hosted on cloud infrastructures that offer
additional sets of cloud-based products such as compute, storage, database, or analytics services. The Sentinel-
2 earth observation satellite data available via Amazon S3 is a good example of a petabyte-sized data
repository in a rich cloud environment. The combination of hosted data and co-located cloud services is a key
enabler for efficient Big Data processing. When the transport of large amounts of data is not feasible or cost
efficient, processes need to be shipped and executed as closely as possible to the actual data. This paper
describes standardization efforts to build an architecture featuring high levels of interoperability for
provisioning, registration, deployment, and execution of arbitrary applications in cloud environments. Based
on virtualization mechanisms and containerization technology, the standardized approach allows to pack any
type of application or multi-application based workflow into a container that can be dynamically deployed on
any type of cloud environment. Consumers can discover these containers, provide the necessary
parameterization and execute them online even easier than on their local machines, because no software
installation, data download, or complex configuration is necessary.

1 INTRODUCTION

Environmental sciences are witnessing a rapid
increase in the amount of available data. They follow
the general trend of data generated and shared by
businesses, public administrations, numerous
industrial and not-to-profit sectors, and scientific
research that has increased immeasurably (Sivarajah
et al, 2016). A large share of these data is the result of
environmental monitoring, either in situ or via remote
sensing (Vitolo et al, 2015). At the same time, Big
Data Analytics is increasingly becoming a trending
practice that many organizations are adopting with
the purpose of constructing valuable information
from Big Data (Sivarajah et al, 2016).

Data providers are looking for new opportunities
to realize revenue with data, or at least to minimize
local data storage and maintenance costs by
outsourcing elementary services such as storage,
cataloguing, or data access to external partners
(Sookhak et al, 2017). These constellations led to new
partnerships with commercial cloud operators serving
earth observation data that was traditionally offered
by e.g. space agencies.

A good example is the Sentinel-2 earth
observation satellite data, a petabyte-sized data
repository. The original data is produced by the

European Space Agency (ESA) as part of the
Copernicus mission, but storage, maintenance, and
access are currently available via Amazon S3
(Amazon, 2018).

There is a growing number of easily accessible
Big Data repositories hosted on cloud infrastructures
that offer additional sets of cloud-based products such
as compute, storage, database, or analytics services.
The combination of hosted data and co-located cloud
services is a key enabler for efficient Big Data
processing. When the transport of large amounts of
data is not feasible or cost efficient, processes need to
be shipped and executed as closely as possible to the
actual data. This paradigm, though postulated earlier,
was a complex endeavour before container
technologies such as Docker became popular. Locally
developed software couldn’t be shipped and executed
reliably when moved from one computing
environment to another.

With the shift from download-and-process-locally
to remote storage and remote processing of data, new
revenue opportunities arise from selling computing
cycles and data analytics services on these cloud
platforms. The first are often realized in the form of
virtual machines and application container
environments combined with data storage, streaming,
messaging, or database services. The latter is an

Simonis, I.
Standardized Big Data Processing in Hybrid Clouds.
DOI: 10.5220/0006681102050210
In Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2018), pages 205-210
ISBN: 978-989-758-294-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

205

emerging field where application developers can
offer additional services on top of data analytics
offered by the cloud provider. These application
developers offer their domain expertise and sell it in
the form of optimized applications that can become
part of externally controlled workflows and
processing routines. Essentially, the necessary
environment is not that different from app stores
commonly used in the mobile phone sector, where a
limited number of vendors offer platforms for
software developers to make their applications
available to the mass market for further deployment
close to the data on various target platforms. Just, the
applications addressed here are deployed on powerful
machines.

A major challenge with the growing number of
Big Data repositories, data sets, and available
processing capacities and capabilities is the level of
interoperability between and among all involved
components. With the criticality of information
technology to today’s science, information standards
are now fundamental to the progress of advancing the
knowledge of our world (Percivall et al, 2015). The
Open Geospatial Consortium (OGC) is an
international not for profit organization committed to
making quality open standards for the global
geospatial community.

This paper describes standardization efforts to
build an architecture featuring high levels of
interoperability for provisioning, registration,
deployment, and execution of arbitrary applications
in cloud environments. Based on virtualization
mechanisms and containerization technology, the
standardized approach allows to pack any type of
application or multi-application based workflow into
a container that can be dynamically deployed on any
type of cloud environment. Consumers can discover
these containers, provide the necessary
parameterization and execute them even easier than
on their local machines, because no software
installation, data download, or complex configuration
is necessary.

2 EO CLOUD PROCESSING
ENVIRONMENT

The work described herein has been executed in
support of the ESA Thematic Exploitation Platforms
(TEP), combined with domain specific requirements
coming from the agriculture, forestry, and fisheries
sectors.

With the goal to leverage the full potential of its
earth observing missions, ESA has started in 2014 the
Earth Observation Exploitation Platforms initiative, a
set of research and development activities that in the
first phase (up to 2017) aimed to create an ecosystem
of interconnected Thematic Exploitation Platforms
for Earth Observation data. In short, an Earth
Observation (EO) exploitation platform is a
collaborative, virtual work environment providing
access to EO data and the relevant information and
communication technologies (ESA, 2017). These
platforms implement three abstract user scenarios:
First, to explore and manipulate the data, second to
deploy new applications that work on that data
(service development), and third the publication of
new results (product development). Here, we
concentrate on the second use case, the provisioning
of new applications. Goal is to allow any TEP user to
develop their own algorithms and workflows on the
their local machines, then to upload it to the TEP for
further testing and optimization, and eventually to
make these algorithms and workflows available to
other users in the form of a software container and its
complementary metadata, the Application Package.
These software containers are then deployed upon
request by the TEP in cloud environments close the
the actual data. All necessary information to deploy
and execute a container is provided by the
Application Package.

3 CONTAINERIZED
APPLICATIONS

An application package (OGC, 2018) needs to
contain all information required to deploy and
execute the package on the cloud. As illustrated in
Figure 1 below, an application package encapsulates
the description of the application itself, i.e. the
application metadata, a reference to the application
software container, metadata about the container
itself and its resource types, deployment, execution,
and mapping instructions of external data to
container-specific locations for input and result data,
and auxiliary information such as Web-based
catalogues for data discovery and selection. The
container itself is located on a Web-accessible hub,
but not part of the Application Package.

GISTAM 2018 - 4th International Conference on Geographical Information Systems Theory, Applications and Management

206

Figure 1: Overview of the Application Package.

The Application Metadata describes the
application that is encapsulated in the container with
sufficient detail, i.e. it provides information about the
application’s purpose, capabilities, and requirements in
terms of input data, parameterization for execution,
and result data. It does not contain any detail about the
encapsulated software as such, i.e. types and versions
of libraries, programming languages, internal
workflows etc. This information is entirely opaque.

The container itself is not part of the application
package, but referenced from herein (Container
Reference). Using state of the art container
technology such as Docker, the reference would point
to a Docker Hub where the container is stored.

The optional Auxiliary Data contains any type of
references, links, or further information that helps
users to execute the application package successfully.
It may, for example, contain links to Web-based
catalogues that provide (Big) process-ready data that
this application can work with.

The Input/Output Data section of the application
package describes the required input data to run an
application, e.g. satellite imagery, reference data,
calibration data, etc. and informs what type of output
the application produces. Given the volatile nature of
many containers, applications will most likely
produce output that is made persistent externally to
the application container itself.

Some elements of the container package serve
administrative purposes only. The Data Mappings
provide instructions to the execution environment how
external data sets need to be mapped and mounted to
the container system, and the Deployment and
Execution instructions provide all information required
to deploy the container in a virtual machine
environment and to start the actual application process.

4 OGC WEB SERVICE
ENVIRONMENT

The information model of the Application Package
and its encoding is ideally matching the service and

information environment it operates in. The Web
service interface standards, information models, and
encodings released by the Open Geospatial
Consortium (OGC) provide a robust and standardized
environment for geospatial data, processing, and
visualization and provide all required base-types for
Application Package definition and serialization.
To exchange information about geospatial resources
and services, the OGC has released the OGC Web
Services Context Document (OWS Context
Document). Initially developed to allow a set of
configured information resources (the so-called
service set) to be passed between applications, OWS
Context is used today for general exchange of
information about geospatial data and services. It
supports OGC Web service instances, arbitrary online
resources, and inline encoded content. A ‘context
document’ specifies a fully configured set which can
be exchanged (with a consistent interpretation)
among clients supporting the standard (OGC, 2017).
In order to achieve maximal interoperability, the core
context document is largely agnostic of any particular
resource type and therefore serves as a solid base for
the Application Package. Specific resource types are
then defined in individual requirement classes that
further specify the handling of that resource offering.
The standardized resources types include Web
service interface types (e.g. to access maps (Web Map
Service, WMS), feature data (Web Feature Service,
WFS), or coverage data (Web Coverage Service,
WCS)), encodings for in-line content (e.g. Geography
Markup Language (GML) or GeoTiff), and storage
for external content. The work described in this paper
has extended this set with the notion of containers and
application parameters to support the deployment of
applications in hybrid cloud environments.
Alternatively to the OWS Context Document based
approach, process descriptions as offered by the Web
Processing Service, WPS, can be used. The WPS is
the second essential component within the OGC Web
service environment necessary for standardized Big
Data processing in hybrid clouds. The service
interface allows to execute any type of software
process in a standardized way. Recursively, any WPS
process can spawn any number of child processes that
again call other WPS or data access or processing
services. The WPS interface standard defines process
descriptions that contain sufficient detail for any type
of parameterization in a similar fine-granular
structure as the OWS Context Document. The service
supports synchronous and asynchronous interaction
patterns, out-of-band parameterization, and can be
extended with publish-subscribe messaging
functionality.

Standardized Big Data Processing in Hybrid Clouds

207

5 STANDARDIZED
ARCHITECTURE

5.1 Application Package

OWS Context Documents provide sufficient
functionality to support all requirements set by the
Application Package definition. It has been used for
the definition of the application package, following
the OGC Context Conceptual Model (OGC, 2014a)
and implementing an ATOM encoding (OGC,
2014b). Experiments with JSON encodings have been
started but are not concluded yet.

The Application Package contains mandatory
metadata elements such as id, title, abstract, author,
and creation date; and a number of optional items that
shall help during the initial discovery process. All
elements have been mapped to Atom elements.

5.2 Application Container

Any application should be executed as a Docker
Container in a Docker environment. The application
developer needs to build the container with all libraries
and other resources required to execute the application.
This includes all data that will not be provided in the
form of a parameter setting at runtime. The Docker
Container Image itself can be built from a Docker
Build Context stored in a repository following the
standard manual or Dockerfile-based scripting
processes. To allow standards-based application
deployment and execution, the application should be
wrapped with a start-up script.

5.3 Standardized Service Environment

The goal of the standardized service and application
package environment is threefold: First to minimize
the overhead for the application developer to make
his work available to others. Second the full
decoupling of the three players application developer,
cloud environment operator, and application user; and
third full flexibility for the application user to process
his own or referenced data. The following
architecture supports these elements by off-loading
application deployment and execution tasks from the
developer to a service environment, by standardized
interfaces between all components, and standards-
based parameterization of applications.

5.3.1 Application Development and
Provisioning

The application developer uses a local development

environment for the application development,
configuration, and description. This includes the
definition of all software components such as
commercial off-the-shelf software, software libraries,
scripts, calibration data etc. Once the application runs
successfully within the local environment, all
elements need to be packed into a Docker container,
which then has to be uploaded to a Docker Hub.
Figure 2 illustrates this first step (1).

Figure 2: Application developer tasks.

Afterwards, the application package needs to be
described with the necessary detail (2), which
includes some basic description of the application
itself, all required input parameters, the mapping of
external sources to internal mount points, type and
nature of all resulting products and output locations.
In a last step, the application package is made
available to the cloud environment. This can be done
either by executing the corresponding WPS call, or
supported by an application management client web
application that façades the WPS and supports the
developers with the definition of the application
package.

5.3.2 Application Discovery and Usage

The end user discovers the application on the cloud
platform (Figure 3 step (4)). The application package
provides sufficient detail that can be stored in a
catalogue service. If necessary, the user can be
pointed to further data catalogues that allow the
discovery of input data to be processed by this
application (5).
Once all input data references or actual data sets are
available, the user provides all required application
parameters and executes the application (6). Upon
completion of the data, the user can retrieve the final
products.

GISTAM 2018 - 4th International Conference on Geographical Information Systems Theory, Applications and Management

208

Figure 3: Application user tasks.

5.3.3 Standards based Cloud Environment

The entire workflow, including the provisioning of
the application package, the deployment, parameter-
zation and execution of the Docker container, and the
provisioning of final products are supported by
standardized interfaces. The following diagram
illustrates the setup.

Figure 4: Standards based software architecture.

The application developer makes the application
package available at a Web Processing Service, WPS
(blue, left), which serves as the application
management client. This WPS frontends the actual
Thematic Exploitation Platform as described in
section 2. It interacts with a second WPS to the right
(red), which serves as the Application Deployment
and Execution Service (ADES). In order to accept
new processes as part of its offered processes
portfolio, the application management client WPS
needs to support transactions. If the WPS offers a
dedicated process for transactions, then the
application developer can call this WPS-execute
operation directly and provide the OWS-Context
encoded Application Package as parameter payload.

Alternatively, the OGC WPS Transactional
Extension (OGC, 2014c) can be applied, which offers
dedicated deploy and undeploy operations.

The application package is described using the
ProcessOffering process description mechanism or
the OWS Context Document based implementation.
Both approaches have been successfully tested.
Further research is necessary to identify the ideal
solution for dedicated scenarios. To handle input of
externally stored data and to save results to external
locations, the Application Package defines
Application Parameters using the WPS Process
Descriptions to cover both process input and process
output. Currently, the architecture is limited to pass
simple parameters (named WPS Literal Data in the
WPS standard) only. These parameters are passed
from the Application Deployment and Execution
Service (ADES) to the application using either
command line parameters or environment variables.
Interoperability is assured by re-using parameter
names as defined in the WPS Process Descriptions.

If execution is requested by the client, the ADES
deploys the Docker container on cloud environments
such as Amazon AWS, or, tested here, the EO Cloud
Earth Observation Innovative Platform Testbed
Poland (IPT Poland). Upon completion, the final data
is served back to the client via standardized data
access and visualization interfaces such as Web
Mapping Service (WMS), Web Feature Service
(WFS), or Web Coverage Service (WCS).

6 CONCLUSIONS

The work described herein illustrates results of the
OGC Testbed-13 innovation program initiative. Six
OGC members were challenged in April 2017 to
develop a standards-based integration architecture
that allows standards-compliant provisioning,
deployment, execution and result access of arbitrary
applications in hybrid cloud environments. The
resulting developments combined with technical
interoperability experiments demonstrate the
feasibility of standard-based application handling.
Alternative approaches have been tested, as e.g. for
the definition of mount points and data mappings,
application package definitions based on OWS
Context and WPS process descriptions, or
transactional WPS extensions vs. dedicated
processes. In general, it has been demonstrated that
the current standards portfolio requires only
minimum extension and profiling work in order to
achieve a high level of interoperability. Further
research is necessary to identify best practices and to

Standardized Big Data Processing in Hybrid Clouds

209

further enhance the overall architecture with e.g.
security concepts and additional functionality, such as
application execution quoting and negotiation mecha-
nisms. Dynamic integration of resources and applica-
tions from different cloud environments remains a
research challenge in terms of cloud federation,
security handling, and general performance.

ACKNOWLEDGEMENTS

This paper describes an integration architecture and
elaborates the results of Testbed-13, a recent
innovation initiative conducted by the Open
Geospatial Consortium (OGC). The OGC thanks all
participants for their active contributions. The work
was further co-sponsored by European Union through
the Horizon 2020 research and innovation
programme under grant agreement No 732064,
project DataBio.

REFERENCES

Amazon, 2018. Sentinel-2 on AWS. Website: http://
sentinel-pds.s3-website.eu-central-1.amazonaws.com.

ESA, 2017. About TEP. https://tep.eo.esa.int/about-tep.
OGC, 2014a. OGC OWS Context Conceptual Model. OGC

12-080r2.
OGC, 2014b. OGC OWS Context Atom Encoding

Standard. OGC 12-084r2.
OGC, 2014c. OpenGIS WPS2.0 Transactional Extension

Discussion Paper. OGC 13-071r1.
OGC, 2017. OGC Web Services Context Document (OWS

Context.
http://www.opengeospatial.org/standards/owc.

OGC, 2018. Testbed-13: Application Package Engineering
Report. OGC 17-035.

Percivall, G., Simonis, I., Idol, T., 2015. Scientific
Knowledge from Geospatial Observations. In:
IGARRS 2015.

Sivarajah, U., Kamal, M., Irani, Z., Weerakkody, V. 2017.
Critical analysis of Big Data challenges and analytical
methods. Journal of Business Research 70 (2017) 263–
286.

Sookhak, M., Gani, A., Khan, M., Buyya, R. 2017.
Dynamic remote data auditing for securing big data
storage in cloud computing. Information Science
(2017) 380, 101-116.

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C., Buytaert,
W. 2015. Web technologies for environmental Big
Data. Environmental Modelling & Software 63 (2015)
185-198.

GISTAM 2018 - 4th International Conference on Geographical Information Systems Theory, Applications and Management

210

