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Abstract: There is a growing number of easily accessible Big Data repositories hosted on cloud infrastructures that offer 
additional sets of cloud-based products such as compute, storage, database, or analytics services. The Sentinel-
2 earth observation satellite data available via Amazon S3 is a good example of a petabyte-sized data 
repository in a rich cloud environment. The combination of hosted data and co-located cloud services is a key 
enabler for efficient Big Data processing. When the transport of large amounts of data is not feasible or cost 
efficient, processes need to be shipped and executed as closely as possible to the actual data. This paper 
describes standardization efforts to build an architecture featuring high levels of interoperability for 
provisioning, registration, deployment, and execution of arbitrary applications in cloud environments. Based 
on virtualization mechanisms and containerization technology, the standardized approach allows to pack any 
type of application or multi-application based workflow into a container that can be dynamically deployed on 
any type of cloud environment. Consumers can discover these containers, provide the necessary 
parameterization and execute them online even easier than on their local machines, because no software 
installation, data download, or complex configuration is necessary.

1 INTRODUCTION 

Environmental sciences are witnessing a rapid 
increase in the amount of available data. They follow 
the general trend of data generated and shared by 
businesses, public administrations, numerous 
industrial and not-to-profit sectors, and scientific 
research that has increased immeasurably (Sivarajah 
et al, 2016). A large share of these data is the result of 
environmental monitoring, either in situ or via remote 
sensing (Vitolo et al, 2015). At the same time, Big 
Data Analytics is increasingly becoming a trending 
practice that many organizations are adopting with 
the purpose of constructing valuable information 
from Big Data (Sivarajah et al, 2016).  

Data providers are looking for new opportunities 
to realize revenue with data, or at least to minimize 
local data storage and maintenance costs by 
outsourcing elementary services such as storage, 
cataloguing, or data access to external partners 
(Sookhak et al, 2017). These constellations led to new 
partnerships with commercial cloud operators serving 
earth observation data that was traditionally offered 
by e.g. space agencies.  

A good example is the Sentinel-2 earth 
observation satellite data, a petabyte-sized data 
repository. The original data is produced by the 

European Space Agency (ESA) as part of the 
Copernicus mission, but storage, maintenance, and 
access are currently available via Amazon S3 
(Amazon, 2018).  

There is a growing number of easily accessible 
Big Data repositories hosted on cloud infrastructures 
that offer additional sets of cloud-based products such 
as compute, storage, database, or analytics services. 
The combination of hosted data and co-located cloud 
services is a key enabler for efficient Big Data 
processing. When the transport of large amounts of 
data is not feasible or cost efficient, processes need to 
be shipped and executed as closely as possible to the 
actual data. This paradigm, though postulated earlier, 
was a complex endeavour before container 
technologies such as Docker became popular. Locally 
developed software couldn’t be shipped and executed 
reliably when moved from one computing 
environment to another. 

With the shift from download-and-process-locally 
to remote storage and remote processing of data, new 
revenue opportunities arise from selling computing 
cycles and data analytics services on these cloud 
platforms. The first are often realized in the form of 
virtual machines and application container 
environments combined with data storage, streaming, 
messaging, or database services. The latter is an 
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emerging field where application developers can 
offer additional services on top of data analytics 
offered by the cloud provider. These application 
developers offer their domain expertise and sell it in 
the form of optimized applications that can become 
part of externally controlled workflows and 
processing routines. Essentially, the necessary 
environment is not that different from app stores 
commonly used in the mobile phone sector, where a 
limited number of vendors offer platforms for 
software developers to make their applications 
available to the mass market for further deployment 
close to the data on various target platforms. Just, the 
applications addressed here are deployed on powerful 
machines.  

A major challenge with the growing number of 
Big Data repositories, data sets, and available 
processing capacities and capabilities is the level of 
interoperability between and among all involved 
components. With the criticality of information 
technology to today’s science, information standards 
are now fundamental to the progress of advancing the 
knowledge of our world (Percivall et al, 2015). The 
Open Geospatial Consortium (OGC) is an 
international not for profit organization committed to 
making quality open standards for the global 
geospatial community.  

This paper describes standardization efforts to 
build an architecture featuring high levels of 
interoperability for provisioning, registration, 
deployment, and execution of arbitrary applications 
in cloud environments. Based on virtualization 
mechanisms and containerization technology, the 
standardized approach allows to pack any type of 
application or multi-application based workflow into 
a container that can be dynamically deployed on any 
type of cloud environment. Consumers can discover 
these containers, provide the necessary 
parameterization and execute them even easier than 
on their local machines, because no software 
installation, data download, or complex configuration 
is necessary. 

2 EO CLOUD PROCESSING 
ENVIRONMENT 

The work described herein has been executed in 
support of the ESA Thematic Exploitation Platforms 
(TEP), combined with domain specific requirements 
coming from the agriculture, forestry, and fisheries 
sectors.  

With the goal to leverage the full potential of its 
earth observing missions, ESA has started in 2014 the 
Earth Observation Exploitation Platforms initiative, a 
set of research and development activities that in the 
first phase (up to 2017) aimed to create an ecosystem 
of interconnected Thematic Exploitation Platforms 
for Earth Observation data. In short, an Earth 
Observation (EO) exploitation platform is a 
collaborative, virtual work environment providing 
access to EO data and the relevant information and 
communication technologies (ESA, 2017). These 
platforms implement three abstract user scenarios: 
First, to explore and manipulate the data, second to 
deploy new applications that work on that data 
(service development), and third the publication of 
new results (product development). Here, we 
concentrate on the second use case, the provisioning 
of new applications. Goal is to allow any TEP user to 
develop their own algorithms and workflows on the 
their local machines, then to upload it to the TEP for 
further testing and optimization, and eventually to 
make these algorithms and workflows available to 
other users in the form of a software container and its 
complementary metadata, the Application Package. 
These software containers are then deployed upon 
request by the TEP in cloud environments close the 
the actual data. All necessary information to deploy 
and execute a container is provided by the 
Application Package.  

3 CONTAINERIZED 
APPLICATIONS 

An application package (OGC, 2018) needs to 
contain all information required to deploy and 
execute the package on the cloud. As illustrated in 
Figure 1 below, an application package encapsulates 
the description of the application itself, i.e. the 
application metadata, a reference to the application 
software container, metadata about the container 
itself and its resource types, deployment, execution, 
and mapping instructions of external data to 
container-specific locations for input and result data, 
and auxiliary information such as Web-based 
catalogues for data discovery and selection. The 
container itself is located on a Web-accessible hub, 
but not part of the Application Package.  
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Figure 1: Overview of the Application Package. 

The Application Metadata describes the 
application that is encapsulated in the container with 
sufficient detail, i.e. it provides information about the 
application’s purpose, capabilities, and requirements in 
terms of input data, parameterization for execution, 
and result data. It does not contain any detail about the 
encapsulated software as such, i.e. types and versions 
of libraries, programming languages, internal 
workflows etc. This information is entirely opaque. 

The container itself is not part of the application 
package, but referenced from herein (Container 
Reference). Using state of the art container 
technology such as Docker, the reference would point 
to a Docker Hub where the container is stored.  

The optional Auxiliary Data contains any type of 
references, links, or further information that helps 
users to execute the application package successfully. 
It may, for example, contain links to Web-based 
catalogues that provide (Big) process-ready data that 
this application can work with.  

The Input/Output Data section of the application 
package describes the required input data to run an 
application, e.g. satellite imagery, reference data, 
calibration data, etc. and informs what type of output 
the application produces. Given the volatile nature of 
many containers, applications will most likely 
produce output that is made persistent externally to 
the application container itself.  

Some elements of the container package serve 
administrative purposes only. The Data Mappings 
provide instructions to the execution environment how 
external data sets need to be mapped and mounted to 
the container system, and the Deployment and 
Execution instructions provide all information required 
to deploy the container in a virtual machine 
environment and to start the actual application process. 

4 OGC WEB SERVICE 
ENVIRONMENT 

The information model of the Application Package 
and its encoding is ideally matching the service and 

information environment it operates in. The Web 
service interface standards, information models, and 
encodings released by the Open Geospatial 
Consortium (OGC) provide a robust and standardized 
environment for geospatial data, processing, and 
visualization and provide all required base-types for 
Application Package definition and serialization.  
To exchange information about geospatial resources 
and services, the OGC has released the OGC Web 
Services Context Document (OWS Context 
Document). Initially developed to allow a set of 
configured information resources (the so-called 
service set) to be passed between applications, OWS 
Context is used today for general exchange of 
information about geospatial data and services. It 
supports OGC Web service instances, arbitrary online 
resources, and inline encoded content. A ‘context 
document’ specifies a fully configured set which can 
be exchanged (with a consistent interpretation) 
among clients supporting the standard (OGC, 2017).  
In order to achieve maximal interoperability, the core 
context document is largely agnostic of any particular 
resource type and therefore serves as a solid base for 
the Application Package. Specific resource types are 
then defined in individual requirement classes that 
further specify the handling of that resource offering. 
The standardized resources types include Web 
service interface types (e.g. to access maps (Web Map 
Service, WMS), feature data (Web Feature Service, 
WFS), or coverage data (Web Coverage Service, 
WCS)), encodings for in-line content (e.g. Geography 
Markup Language (GML) or GeoTiff), and storage 
for external content. The work described in this paper 
has extended this set with the notion of containers and 
application parameters to support the deployment of 
applications in hybrid cloud environments.  
Alternatively to the OWS Context Document based 
approach, process descriptions as offered by the Web 
Processing Service, WPS, can be used. The WPS is 
the second essential component within the OGC Web 
service environment necessary for standardized Big 
Data processing in hybrid clouds. The service 
interface allows to execute any type of software 
process in a standardized way. Recursively, any WPS 
process can spawn any number of child processes that 
again call other WPS or data access or processing 
services. The WPS interface standard defines process 
descriptions that contain sufficient detail for any type 
of parameterization in a similar fine-granular 
structure as the OWS Context Document. The service 
supports synchronous and asynchronous interaction 
patterns, out-of-band parameterization, and can be 
extended with publish-subscribe messaging 
functionality.  
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5 STANDARDIZED 
ARCHITECTURE 

5.1 Application Package 

OWS Context Documents provide sufficient 
functionality to support all requirements set by the 
Application Package definition. It has been used for 
the definition of the application package, following 
the OGC Context Conceptual Model (OGC, 2014a) 
and implementing an ATOM encoding (OGC, 
2014b). Experiments with JSON encodings have been 
started but are not concluded yet.  

The Application Package contains mandatory 
metadata elements such as id, title, abstract, author, 
and creation date; and a number of optional items that 
shall help during the initial discovery process. All 
elements have been mapped to Atom elements. 

5.2 Application Container 

Any application should be executed as a Docker 
Container in a Docker environment. The application 
developer needs to build the container with all libraries 
and other resources required to execute the application. 
This includes all data that will not be provided in the 
form of a parameter setting at runtime. The Docker 
Container Image itself can be built from a Docker 
Build Context stored in a repository following the 
standard manual or Dockerfile-based scripting 
processes. To allow standards-based application 
deployment and execution, the application should be 
wrapped with a start-up script.  

5.3 Standardized Service Environment 

The goal of the standardized service and application 
package environment is threefold: First to minimize 
the overhead for the application developer to make 
his work available to others. Second the full 
decoupling of the three players application developer, 
cloud environment operator, and application user; and 
third full flexibility for the application user to process 
his own or referenced data. The following 
architecture supports these elements by off-loading 
application deployment and execution tasks from the 
developer to a service environment, by standardized 
interfaces between all components, and standards-
based parameterization of applications.  

5.3.1 Application Development and 
Provisioning 

The application developer  uses  a  local  development  

environment for the application development, 
configuration, and description. This includes the 
definition of all software components such as 
commercial off-the-shelf software, software libraries, 
scripts, calibration data etc. Once the application runs 
successfully within the local environment, all 
elements need to be packed into a Docker container, 
which then has to be uploaded to a Docker Hub. 
Figure 2 illustrates this first step (1).  

 

Figure 2: Application developer tasks. 

Afterwards, the application package needs to be 
described with the necessary detail (2), which 
includes some basic description of the application 
itself, all required input parameters, the mapping of 
external sources to internal mount points, type and 
nature of all resulting products and output locations. 
In a last step, the application package is made 
available to the cloud environment. This can be done 
either by executing the corresponding WPS call, or 
supported by an application management client web 
application that façades the WPS and supports the 
developers with the definition of the application 
package. 

5.3.2 Application Discovery and Usage 

The end user discovers the application on the cloud 
platform (Figure 3 step (4)). The application package 
provides sufficient detail that can be stored in a 
catalogue service. If necessary, the user can be 
pointed to further data catalogues that allow the 
discovery of input data to be processed by this 
application (5).  
Once all input data references or actual data sets are 
available, the user provides all required application 
parameters and executes the application (6). Upon 
completion of the data, the user can retrieve the final 
products. 
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Figure 3: Application user tasks.  

5.3.3 Standards based Cloud Environment 

The entire workflow, including the provisioning of 
the application package, the deployment, parameter-
zation and execution of the Docker container, and the 
provisioning of final products are supported by 
standardized interfaces. The following diagram 
illustrates the setup.  

 

Figure 4: Standards based software architecture. 

The application developer makes the application 
package available at a Web Processing Service, WPS 
(blue, left), which serves as the application 
management client. This WPS frontends the actual 
Thematic Exploitation Platform as described in 
section 2. It interacts with a second WPS to the right 
(red), which serves as the Application Deployment 
and Execution Service (ADES). In order to accept 
new processes as part of its offered processes 
portfolio, the application management client WPS 
needs to support transactions. If the WPS offers a 
dedicated process for transactions, then the 
application developer can call this WPS-execute 
operation directly and provide the OWS-Context 
encoded Application Package as parameter payload. 

Alternatively, the OGC WPS Transactional 
Extension (OGC, 2014c) can be applied, which offers 
dedicated deploy and undeploy operations.  

The application package is described using the 
ProcessOffering process description mechanism or 
the OWS Context Document based implementation. 
Both approaches have been successfully tested. 
Further research is necessary to identify the ideal 
solution for dedicated scenarios. To handle input of 
externally stored data and to save results to external 
locations, the Application Package defines 
Application Parameters using the WPS Process 
Descriptions to cover both process input and process 
output. Currently, the architecture is limited to pass 
simple parameters (named WPS Literal Data in the 
WPS standard) only. These parameters are passed 
from the Application Deployment and Execution 
Service (ADES) to the application using either 
command line parameters or environment variables. 
Interoperability is assured by re-using parameter 
names as defined in the WPS Process Descriptions.  

If execution is requested by the client, the ADES 
deploys the Docker container on cloud environments 
such as Amazon AWS, or, tested here, the EO Cloud 
Earth Observation Innovative Platform Testbed 
Poland (IPT Poland). Upon completion, the final data 
is served back to the client via standardized data 
access and visualization interfaces such as Web 
Mapping Service (WMS), Web Feature Service 
(WFS), or Web Coverage Service (WCS).  

6 CONCLUSIONS 

The work described herein illustrates results of the 
OGC Testbed-13 innovation program initiative. Six 
OGC members were challenged in April 2017 to 
develop a standards-based integration architecture 
that allows standards-compliant provisioning, 
deployment, execution and result access of arbitrary 
applications in hybrid cloud environments. The 
resulting developments combined with technical 
interoperability experiments demonstrate the 
feasibility of standard-based application handling. 
Alternative approaches have been tested, as e.g. for 
the definition of mount points and data mappings, 
application package definitions based on OWS 
Context and WPS process descriptions, or 
transactional WPS extensions vs. dedicated 
processes. In general, it has been demonstrated that 
the current standards portfolio requires only 
minimum extension and profiling work in order to 
achieve a high level of interoperability. Further 
research is necessary to identify best practices and to 
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further enhance the overall architecture with e.g. 
security concepts and additional functionality, such as 
application execution quoting and negotiation mecha-
nisms. Dynamic integration of resources and applica-
tions from different cloud environments remains a 
research challenge in terms of cloud federation, 
security handling, and general performance. 
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