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Abstract: The Cloud computing model is based on the use of virtual resources and their placement on physical servers 
hosted in the different data centers. Those data centers are known to be big energy consumers. The allocation 
of virtual machines within servers has a paramount role in optimizing energy consumption of the underlying 
infrastructure in order to satisfy the environmental and economic constraints. Since then, various hardware 
and software solutions have emerged. Among these strategies, we highlight the optimization of virtual 
machine scheduling in order to improve the quality of service and the energy efficiency. Through this paper, 
we propose firstly, to study energy consumption in the Cloud environment based on the GreenCloud 
simulator. Secondly, we define a scheduling solution aimed at reducing energy consumption via a better 
resource allocation strategy by privileging data center powered by clean energy. The main contributions of 
this paper are the use of the Taguchi concept to evaluate the Cloud model and the introduction of scheduling 
policy based on the simulated annealing algorithm. 

1 INTRODUCTION 

The last decade has perceived an important expansion 
of Cloud computing due to its practical and economic 
aspect. However, this growth goes with a tremendous 
increase in energy consumption. Indeed, Cloud 
computing services require huge data center that 
consumes energy in order to provide the necessary 
elasticity and scalability to their customers. In 2011, 
Google has announced that its energy consumption 
was around 2,675,898 MWh (Aschberger and 
Halbrainer, 2013). More globally, the quantity of 
electricity used by data centers has been estimated at 
around 1.5% of the world's total electricity 
consumption. As depicted in Figure 1, only 15% of 
the energy utilized by a data center is used for 
computing purposes which open a wide scope for 
possible energy efficiency solutions. In addition, only 
40% of the energy is distributed to IT equipment 
which includes computer servers and communication 
equipment; while 60% of the energy is distributed 
between the cooling system and the system of energy 
distribution. In summary, the Gartner team has 
identified that energy expenditure is equivalent to 
almost 10% of current data center operational 
expenditure (OPEX) and tends to increase over the 

next decade to nearly 50% (Kliazovich et al., 2013a). 
Thus, it is essential to rationalize the energy 
consumption while guaranteeing the highest level of 
quality of service for the customer. Based on the 
previous findings, it becomes clear that alternative 
solutions must be found in order to curb this 
exponential growth. Currently, the two most applied 
concepts for energy saving in computer systems are 
Dynamic Power Management (DPM) and Dynamic 
Voltage and Frequency Scaling (DVFS). The first 
concept is based on a dynamic management of 
frequency and voltages according to the level of 
performance required. The second concept allows us 
to turn off or put on standby the inactive servers. 
However, both of these concepts have some 
shortcomings in terms of performance. Through this 
article, we introduce a new strategy to analyze and 
optimize the energy efficiency within a data center 
based on Taguchi concept and metaheuristics 
algorithms. The main motivation behind this article is 
the evaluation of the parameters that have the most 
influence on energy efficiency in order to propose 
smart policies able to reduce energy losses in a data 
center. 
In summary, the problem of energy efficiency in a 
data center can be dealt with at two levels. The first 
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Figure 1: The distribution of energy consumption. 

level is the quality of the hardware used in the data 
center, notably the category of servers and the 
typology of the network. The second level includes 
all data management procedures including 
scheduling, load balancing, virtual machine 
migration, fault tolerance, and security strategies. The 
optics of concentrating the virtual machines on a 
smaller number of servers is motivated by the fact that 
an idle server consumes two-thirds of its maximum 
consumption and the last tier fluctuates linearly with 
the processes in process of treatment (Zhou et al., 
2015). In other words, an efficient planning strategy 
ensures the consolidation of virtual machines within 
a smaller number of physical servers and enables 
power to be removed from the rest of the servers 
(Sosinsky, 2011; Velte et al., 2010). The rest of paper 
is organized as follows: Section 2, summarizes the 
research works which have tackled the issues of 
scheduling and energy efficiency within a distributed 
computing system. Section 3 introduces the state of 
art and background to evaluate the energy efficiency 
of Cloud environment. Section 4 describes the 
problem statement, the methodology applied to 
evaluate the energy within the Cloud and, the 
proposed scheduling strategies for virtual machines 
allocation. Finally, conclusions are strained in 
Section 5. 

2 RELATED WORK 

In recent years, the energy efficiency of a data center 
has been of major importance. Several research 
studies have addressed this issue from diverse points 
of view in order to propose different solutions to 
enhance the energy efficiency of Cloud data center. 
Particularly, the authors of (Chinnici and Quintiliani, 
2013) introduced an evaluation methodology of 
energy saving which has been carried out following 
the replacement of a set of components by more 
energy efficiency mechanisms. The concept proposed 
by the authors was put in place to match a 

comprehensive strategy to encourage the adoption of 
energy efficiency policies in developing countries. In 
addition, the authors (Zhou et al., 2015) proposed a 
solution called (TESA) for deploying virtual 
machines to optimize the energy efficiency of a large-
scale data center. This solution is based on the linear 
relationship between energy consumption and 
resources use. The TESA solution suggests migrating 
virtual machines hosted by hyper-loaded machines to 
less-loaded machines. In addition, the authors 
introduced five types of virtual machine selection 
policies. Another study (Marotta and Avallone, 2015) 
pointed out the positive impact of the application of 
strategies based on the consolidation of virtual 
machines on the waste of energy in data centers. The 
proposed solution is based on the principles of 
migrating virtual machines in order to reduce the 
number of active servers while guaranteeing the best 
cost-quality compromise. The main contribution of 
this study lies in the introduction of a machine 
consolidation model inspired by the simulated 
annealing algorithm. The proposed algorithm is based 
on calculating the attractiveness value of virtual 
machine migrations by having several input 
parameters. The defined solution allows outlining the 
list of virtual machines migration by reducing the 
power consumption of the active servers. The 
research paper (Guzek et al., 2013) defines a holistic 
model of a data center of the Cloud. The introduced 
model describes Cloud applications, physical 
machines, and virtual machines through the 
description of parameters such as memory and 
storage. The model was tested within the well-known 
GreenCloud simulator. The authors announce that the 
proposed model improves the accuracy of the 
simulations. The authors also plan to develop in the 
future a new module for managing the migration of 
virtual machines. The authors of (Sarji et al., 2011) 
tackle the static analysis of a server before proposing 
two models of energy management in order to ensure 
the energy efficiency in the Cloud computing 
environment. The operating principle of these models 
allows analyzing the state of the system before 
deciding on the migration of the virtual machines 
from one physical node to another. Then, the 
proposed system turns the idle servers off or on 
standby. The two strategies proposed by the authors 
are differentiated by the energy consumed and the 
start-up time of a server previously put into standby 
or off mode. Thus, the authors leave the choice to the 
system administrator to select the level of energy 
efficiency or the response time required by the SLA. 
In the research study (Beloglazov et al., 2012), the 
authors proposed to use heuristic solutions to 
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guarantee energetic efficiency combined with a 
suitable level of quality of service. This study 
includes an analysis of existing solutions and 
possibilities for optimizing energy while taking into 
account quality of service constraints. The authors of 
the research paper (Aschberger and Halbrainer, 
2013), announce that the processing of a task or the 
processing of a virtual machine has different impacts 
on the consumption of energy within the Cloud 
environment. They stated that task management is 
more compatible with energy saving because many 
parameters are known in advance such as CPU usage 
and execution time. This last parameter allows 
predicting the moment when a resource becomes free 
again. On the other hand, the authors indicate that 
virtual machines could be allocated to physical 
machines without specifying the end date of the 
virtual machine which could continue to exist as long 
as the client pays the created instance. Finally, the 
authors of the research paper (Canali et al., 2017) 
stressed the complexity of the minimization of energy 
consumption within the data center and the aspect of 
separating the solutions used from the IT and 
communication aspects. The authors specify that this 
separation has a negative impact on energy efficiency 
in the data center. As a result, they introduce a 
powerful model that takes into account both aspects 
of machine allocation management, which improves 
energy efficiency. The proposed model embraces 
three advantages, including the consideration of data 
traffic exchanges between virtual machines, the 
modeling of the energy consumption relating to the 
virtual machine migration, and finally the 
consideration of several weighting parameters in the 
process of allocating virtual machines. The authors 
confirm that the proposed schema has outperformed 
previous approaches of virtual machine allocation in 
terms of energy efficiency. In summary, we 
emphasize the disparity of approaches used by 
researchers to reduce the energy consumption of data 
centers, which raises the problem of finding the most 
efficient solution and the possibility of combining 
several solutions for an even better energy efficiency 
while respecting the quality of service requirements. 

3 PRELIMINARIES 

3.1 Virtual Machine Migration 

The virtualization has opened diverse possibilities to 
share memory and processor resources in order to 
create virtual machines that can support query 
processing. Nowadays, virtualization is widely 

applied in Cloud data centers for the purpose of 
directing physical resources through partitioning, 
consolidation, and isolation. Primarily, virtual 
machine migration is used to allocate and reassign 
resources by moving an application from one server 
to another server with better technical characteristics 
such as power, memory, or power consumption (Jin 
et al., 2011; Marotta et al., 2018). The virtual machine 
migration policy includes the procedure for triggering 
the virtual machine migration process, the 
identification procedure for the target virtual 
machine, and the procedure of selecting a destination. 
First, the triggering procedure specifies the nature of 
the migration functions. The target virtual machine 
identification procedure allows the selection of 
machines that need to migrate for security or 
performance reasons. Finally, the destination 
selection procedure is applied to identify the 
destination servers that will host the virtual machines 
to migrate (Li et al., 2013). Live virtual machine 
migration is the set of procedures for moving a 
functional virtual machine from one host server to 
another using the applied virtualization solution. 
Finally, the migration improves load balancing, IT 
maintenance and fault tolerance (Sallam and Li, 
2014). 

3.2 GreenCloud Simulator 

GreenCloud is a Cloud simulation platform focused 
on the various technical aspects of data centers and 
which has proved its worth in recent years, notably in 
terms of energy efficiency evaluation. This 
simulation platform has been developed on the basis 
of the ns-2 simulator. It allows configuring the 
typology of the network, the energetic configurations 
as well as other parameters of the Cloud environment 
Through its graphical interface, it is possible to define 
an infinite number of scenarios (Kliazovich et al., 
2012). Following each simulation GreenCloud 
generates a detailed report of the energy consumption 
by kind of component. Particularly, GreenCloud 
offers the possibility of configuring several 
scheduling strategies in order to compare their 
performance. The main strength of GreenCloud 
remains its flexibility to complete detailed analyzes 
of the workload within the data center while insisting 
on the simulations of packet communications. The 
simulator presents four network topologies already 
defined. In addition, GreenCloud offers the 
possibility to define custom topologies. The 
GreenCloud simulator takes into account several 
three-tier data center architectures such as DPillar, 
DCell, BCube, and FiConn. This three-tier 
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architecture (see Figure 2) includes the core level, the 
aggregation level that handles routing, and the access 
level which manages servers in racks Each rack can 
take up to 48 servers. Note that interconnections 
between the servers are achieved via 1 Gigabit 
Ethernet links. The simulator assumes that an inactive 
server consumes nearly two-thirds of its peak load, 
and the remaining tier varies with the workload of the 
server. Moreover, the power consumption of the 
network switches is matched to the port transmission 
rate, the type of switch, number of ports, and cabling 
solutions used (Guzek et al., 2013). 

4 PROPOSED SOLUTION 

4.1 Problem Statement 

Through this article, we strive to analyze the 
optimization of energy efficiency in the Cloud. Based 
on the benchmarks and conclusions of the earlier 
research papers summarized in the related works 
section, it emerges that the most effective approach to 
ensure an energy saving policy is the minimization of 
the number of the running servers. However, reducing 
the number of physical machines cannot be done 
without impacting the performance of Cloud 
applications. In other words, the techniques currently 
applied reduce the energy consumed but increase the 
response time of the system. However, Cloud 
customers expect to have a responsiveness of services 
as close as when using local services. In addition, the 
principle of elasticity of the Cloud requires that 
resource planning policies should be flexible, both 
upward and downward. It is therefore essential to 
define intelligent algorithms capable of managing the 
creation and removal of virtual machines in such a 
way as to respect both the energy saving constraint 
and the response time constraint. In addition, 
considering the environmental impact of a data 
center, we propose to introduce a parameter relating 
to the nature of the energy used in order to give an 
advantage to a data center which uses renewable 
energies. The evaluation of the energy consumed in 
the data center is carried out on the basis of several 
key performance indicators. Particularly, the Green 
Grid consortium has established two indicators which 
are power utilization efficiency (PUE) and data center 
infrastructure efficiency (DCiE), summarized below: ܷܲܧ = (1) 		ݎ݁ݓ݋ܲ	ݐ݊݁݉݌݅ݑݍܧ	ܶܫݎ݁ݓ݋ܲ	ݕݐ݈݅݅ܿܽܨ	݈ܽݐ݋ܶ

 
 

 

 

Figure 2: GreenCloud three-tier architecture. 

ܧ݅ܥܦ = ܧ1ܷܲ = ൬ܶܫ ݈ܽݐ݋ܶݎ݁ݓ݋ܲ	ݐ݊݁݉݌݅ݑݍܧ ×൰ݎ݁ݓ݋ܲ	ݕݐ݈݅݅ܿܽܨ 100 
(2)

 are calculated based on the ratio of ܧ݅ܥܦ and ܧܷܲ
the total amount of energy consumed by the data 
center to the amount of energy consumed by the IT 
equipment. The ܧ݅ܥܦ indicator is the inverse of the ܷܲܧ and is written as a percentage. Thus, a ܧ݅ܥܦ 
value close to 100% means that the data center does 
not waste a lot of energy and can be defined as 
efficient. In brief, the improvement of energy 
efficiency in the Cloud environment is achieved by 
reducing the sum of the energy consumed by the data 
center components at different activity levels 
(standby, full load, power off ...). Based on the 
various studies considered, the components of the 
data center has been classified into three categories: 
IT equipment which includes servers and network 
equipment, cooling equipment and power distribution 
equipment (Aschberger and Halbrainer, 2013). The 
evaluation of energy efficiency in data centers first 
requires the identification of the elements that 
consume electrical energy according to the different 
levels of workload. As depicted in Figure 1 and 
according to the formula (3), the energy consumed is 
a function of time and can be represented as an 
integral part of the energy consumption function over 
a period of time. Thus, the energy consumption of a 
data center (DC) which has ݊ nodes, between an 
instant 1ݐ and 2ݐ is calculated according to the 
equations below: 

ݕ݃ݎ݁݊ܧ   = ݎ݁ݓ݋ܲ (ݐ) 	× ܶ݅݉݁ (3)
஽஼ܧ   = න ( ூ்ܲ௧ଶ

௧ଵ + ஼ܲௌ + P௉ௌ)݀ݐ − ஽஼ܧ௥௘௨௦௘ (4)ܧ = (P୍୘ + ஼ܲௌ + P௉ௌ) × 	ݐ∆ − E௥௘௨௦௘	 (5)
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Where ூ்ܲ is the average power of the IT equipment, ஼ܲௌ is the average power of the cooling system, ௉ܲௌ  
is the average power of distributing system, and ܧ௥௘௦௨௘ is the energy produced by whole data center 
components such as the heat produced by the servers 
and reused in the air conditioning systems or to warm 
water. ܧூ் = ௡௢ௗ௘௦ܧ + ௦௪௜௧௖௛௘௦ܧ + ௡௢ௗ௘௦ܧ௢௧௛௘௥௦ (6)ܧ =෍ ஼௉௎௜ܧ) + ௠௘௠௢௥௬௜௜ୀ௡௜ୀଵܧ + ஽௜௦௞௜ܧ ௢௧௛௘௥௦௜) (7)ܧ	+

Where ܧ௡௢ௗ௘௦ is the energy consumption of the ݊ 
nodes of the data center, ܧ௦௪௜௧௖௛௘௦ is the power 
consumed by the whole switching components, and ܧ௢௧௛௘௥௦ includes the energy consumption of the 
auxiliary parts as well as the energy loss. According 
to (Chinnici and Quintiliani, 2013), the energy 
consumed related to CPU depends on the load of the 
node and could be expressed as below: ܧ஼௉௎೔= ሿݖܪܩሾ	݀݁݁݌݁ݏ	݇ܿ݋݈ܿ × ×(ݎܾ݁݉ݑ݊	ݏ݁ݎ݋ܿ) (ܶℎ݀݀ܽ݁ݎ	ݎ݋݂	݁ݎ݋ܿ ×(ݎܾ݁݉ݑ݊ 	݈݁ܿݕܿ	݇ܿ݋݈ܿ	ݎ݁݌	ݏ݊݋݅ݐܿݑݎݐݏ݊ܫ (8)

In summary, all studies agree that suspending and 
activating servers according to the workload in the 
data center remains the most efficient method of 
ensuring overall energy efficiency including 
equipment which ensures the proper functioning of a 
data center. Nevertheless, continuous modification in 
power modes causes significant delays. In addition, 
the solution must take into account the case of the 
inability to wake up a dormant server by quickly 
making available another inactive server that can 
receive a request without impacting the quality of 
service. Further research works (Sarji et al., 2011) 
have confirmed the importance of the operating 
system (OS) layer in the process of setting up inactive 
devices and thereby improving energy efficiency. 
Lastly, the use of the technique (DVFS) to change the 
server voltage in order to decrease the energy 
consumed without violating SLA requirements is also 
a technique that has proved its worth. However, 
having a narrow number of statuses that can be 
scheduled on the basis of the frequency and voltage 
of the data combined to the fact that it is not adapted 
to the other elements of the data center limits the gain 
that can be derived from the DVFS technique. Thus, 
we aim through this article to evaluate the energy 
efficiency by applying the concept of Taguchi.  

4.2 Problem Analysis Methodology 

In order to evaluate the main factors which could 
impact the energy efficiency of a data center, we have 
used the GreenCloud simulation platform and the 
performance analysis methodology which has been 
defined in a previous paper (Ragmani et al., 2016a). 
The main idea of the proposed methodology is to 
describe a complex system by means of a set of inputs 
that represent the most influential factors and outputs 
that translate the key performance indicators (see 
Figure 3) instead of evaluating all the system’s 
components. Then, the Taguchi experiment plans are 
used to study complex technical problems by 
analyzing the various parameters that could influence 
the effectiveness of the system. The performance to 
analyze is represented by one or more responses such 
as the response time and the energy consumed. 
Experiment plans make it possible to evaluate the 
parameters responsible for the variations of each 
response. In short, the Taguchi experiment plan is a 
set of trials arranged in advance so as to identify in a 
minimum of manipulations and with a maximum of 
precision the influence of multiple parameters on one 
or more responses. The success of the performance 
analysis approach according to the Taguchi concept 
depends on the respect of the following steps: 

 Formalize the problem to study by defining the 
influential factors and key performance; 

 Select the parameters, define their variation 
levels and select their interactions; 

 Build the experiment plan according to the 
Taguchi tables; 

 Carry out the tests; 
 Analyze the results; 
 Conclude after choosing the setting parameters 

that can be controlled and achieve the 
confirmatory test. 

The applied Taguchi plans depend on the number 
of modalities per parameter as well as the number of 
interactions (Taguchi et al., 2005). Parameters are 
assigned to columns taking into account interactions 
and parameters that are difficult to modify. In our 
case, we have 19 factors including 7 factors with two 
levels and 12 factors with 3 levels. These parameters 
correspond to the simulation variables defined by the 
GreenCloud simulator and which make it possible to 
describe the simulation scenarios. But the simulator 
does not identify which parameter has the most 
influence on the energy efficiency and also what 
value must each parameter take in order to have the 
best energy consumption. For these reasons, we have 
performed this analysis. The description of the factors 
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and their level is presented in Table 1. According to 
the Taguchi tables predefined in the Minitab toolkit 
and based on the number of factors, we have applied 
the L36 matrix which corresponds to 36 trials. The 
results are analyzed according to two complementary 
modes. On the one hand, the graphical analysis that 
allows representing the influence of the parameters 
and their interactions. On the other hand, the 
statistical analysis of the variance aims to separate, in 
the global variations of the answer, the part due to the 
real influence of the parameters of the part due to 
chance. In brief, each factor of the inputs can take 
several values identified by levels (see Table 2). 
These values may be quantitative or qualitative (see 
Table 1). The Taguchi method relies on the 
calculation of the signal-to-noise ratio (SNR) in order 
to rank factors based on their influence. According to 
this concept, the optimization of outputs could be 
achieved by minimizing the function described in the 
equation (9). 

SNR୧ = 	−10 logቌ෍y୳ଶN୧୒౟
୳ୀଵ ቍ (9)

Where ݅: experiment number; ݑ: trial number; Ni: 
Number of trials for experiment and ݕ௨: performance 
representative measurements per trial. 

The performance evaluation cannot be done 
without key indicators that ensure an objective 
assessment of the various technical and economic 
aspects of a system. Thus, we have selected five key 
performance indicators that include the switches 
energy consumed by the core level, the switches 
energy consumed by the aggregation level, the 
switches energy consumed by the access level, the 
energy consumed by servers, and the total energy 
consumed the whole system.  

 

Figure 3: A summarized view of Cloud model parameters. 

 

Table 1: The factors values per level. 
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Moreover, these indicators make it possible to 
evaluate the effectiveness of the various scheduling 
algorithms. The first measure studied is the total 
energy consumption by the physical resources of a 
data center caused by the workload of the application. 
the choice of model parameters including influencing 
factors and key performance indicators was guided by 
the possibilities allowed by the GreenCloud 
simulator. 

5 SIMULATION AND RESULTS 

Through this article, we intend to evaluate the energy 
efficiency of the Cloud model and to introduce a 
solution of scheduling of the virtual machines while 
respecting the energy efficiency aspect and the 
response time aspect. In order to properly target the 
actions to be undertaken, we proceed in the first place 
to analyze the operation of the Cloud model through 
the GreenCloud simulation platform. As announced, 
we have carried out 36 simulations according to the 
L36 Taguchi matric. During these experiments, we 
have used three data center topologies. The first 
topology used is a three-tier architecture which 
includes 1536 servers organized into 512 racks as 
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well as 8 cores and 64 switches. The second topology 
is a three-tier high speed which consists of 1536 
servers and 2 cores and 256 switches. The last 
topology applied is three-tier heterogeneous small 
which consists of 288 servers organized in 48 racks, 
2 cores, and 3 switches. Several conclusions have 
emerged from the various simulations carried out (see 
Table 3) and the analysis of the signal-to-noise ratio 
(see Tables 4-7). Thereby, the first observation is that 
the energy consumed depends strongly on the applied 
topology.  

Table 2: The Taguchi experience matrix L36. 

Trials A B C D E F G H I J K L M N O P Q R S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3

4 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 3 3 3 3

5 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1

6 1 1 1 1 1 2 2 3 3 3 3 1 1 1 1 2 2 2 2

7 1 1 2 2 2 1 1 1 1 2 3 1 2 3 3 1 2 2 3

8 1 1 2 2 2 1 1 2 2 3 1 2 3 1 1 2 3 3 1

9 1 1 2 2 2 1 1 3 3 1 2 3 1 2 2 3 1 1 2

10 1 2 1 2 2 1 2 1 1 3 2 1 3 2 3 2 1 3 2

11 1 2 1 2 2 1 2 2 2 1 3 2 1 3 1 3 2 1 3

12 1 2 1 2 2 1 2 3 3 2 1 3 2 1 2 1 3 2 1

13 1 2 2 1 2 2 1 1 2 3 1 3 2 1 3 3 2 1 2

14 1 2 2 1 2 2 1 2 3 1 2 1 3 2 1 1 3 2 3

15 1 2 2 1 2 2 1 3 1 2 3 2 1 3 2 2 1 3 1

16 1 2 2 2 1 2 2 1 2 3 2 1 1 3 2 3 3 2 1

17 1 2 2 2 1 2 2 2 3 1 3 2 2 1 3 1 1 3 2

18 1 2 2 2 1 2 2 3 1 2 1 3 3 2 1 2 2 1 3

19 2 1 2 2 1 1 2 1 2 1 3 3 3 1 2 2 1 2 3

20 2 1 2 2 1 1 2 2 3 2 1 1 1 2 3 3 2 3 1

21 2 1 2 2 1 1 2 3 1 3 2 2 2 3 1 1 3 1 2

22 2 1 2 1 2 2 2 1 2 2 3 3 1 2 1 1 3 3 2

23 2 1 2 1 2 2 2 2 3 3 1 1 2 3 2 2 1 1 3

24 2 1 2 1 2 2 2 3 1 1 2 2 3 1 3 3 2 2 1

25 2 1 1 2 2 2 1 1 3 2 1 2 3 3 1 3 1 2 2

26 2 1 1 2 2 2 1 2 1 3 2 3 1 1 2 1 2 3 3

27 2 1 1 2 2 2 1 3 2 1 3 1 2 2 3 2 3 1 1

28 2 2 2 1 1 1 1 1 3 2 2 2 1 1 3 2 3 1 3

29 2 2 2 1 1 1 1 2 1 3 3 3 2 2 1 3 1 2 1

30 2 2 2 1 1 1 1 3 2 1 1 1 3 3 2 1 2 3 2

31 2 2 1 2 1 2 1 1 3 3 3 2 3 2 2 1 2 1 1

32 2 2 1 2 1 2 1 2 1 1 1 3 1 3 3 2 3 2 2

33 2 2 1 2 1 2 1 3 2 2 2 1 2 1 1 3 1 3 3

34 2 2 1 1 2 1 2 1 3 1 2 3 2 3 1 2 2 3 1

35 2 2 1 1 2 1 2 2 1 2 3 1 3 1 2 3 3 1 2

36 2 2 1 1 2 1 2 3 2 3 1 2 1 2 3 1 1 2 3

Indeed, the classification of the most influential 
factors on energy efficiency shows that the topology 
factor is ranked first for the four indicators studied. In 
other words, it is essential to optimize the number of 
switches and servers used to handle the different 
requests of users. This first observation confirms the 
proposals already announced in the first paragraphs 
of this article. Moreover, the topology three-tier 
heterogonous small is the most efficient on the 
energetic level.  

Table 3: The simulation results. 

T
ri

al
s 

Key Performance Indicators (W*h) 

Switch 
Energy 
(core) 

Switch 
Energy 
(agg.) 

Switch 
Energy 
(access) 

Server 
Energy 

Total 
Energy 

1 466.10 932.10 1 375.70 3 541.00 6 314.90
2 112.30 493.50 1 480.70 4 001.10 6 087.60
3 59.20 118.50 10.50 425.50 613.70
4 537.20 1 074.40 1 585.80 3 725.40 6 922.80
5 1 033.40 458.50 1 375.70 3 542.30 6 409.90
6 55.30 110.60 9.80 375.50 551.20
7 1 112.30 493.50 1 480.70 3 510.90 6 597.40
8 59.20 118.50 10.50 372.40 560.60
9 466.10 932.10 1 375.70 3 792.40 6 566.30
10 59.20 118.50 10.50 349.60 537.80
11 466.10 932.10 1 375.70 3 542.30 6 316.20
12 1 112.30 493.50 1 480.70 3 698.90 6 785.40
13 51.40 102.80 9.10 309.20 472.50
14 501.60 1 003.30 1 480.70 3 598.50 6 584.10
15 1 191.20 528.50 1 585.80 4 212.50 7 518.00
16 55.30 110.60 9.80 329.30 505.00
17 537.20 1 074.40 1 585.80 3 869.70 7 067.10
18 1 033.40 458.50 1 375.50 3 784.50 6 651.90
19 501.60 1 003.30 1 480.70 3 510.00 6 495.60
20 1 191.20 528.50 1 585.80 3 861.60 7 167.10
21 51.40 102.80 9.10 355.50 518.80
22 1 112.30 493.50 1 480.70 3 510.00 6 596.50
23 51.40 102.80 9.10 341.60 504.90
24 501.60 1 003.30 1 480.70 3 998.50 6 984.10
25 1 112.30 493.50 1 480.70 3 378.00 6 464.50
26 59.20 118.50 10.50 372.60 560.80
27 466.10 932.10 1 375.70 3 789.50 6 563.40
28 1 033.40 458.50 1 375.70 3 159.70 6 027.30
29 55.30 110.60 9.80 352.40 528.10
30 537.20 1 074.40 1 585.80 4 213.60 7 411.00
31 51.40 102.80 9.10 312.80 476.10
32 501.30 1 003.30 1 480.70 3 754.70 6 740.00
33 1 191.20 528.50 1 585.80 4 213.00 7 518.50
34 537.20 1 074.40 1 585.80 3 691.40 6 888.80
35 1 033.40 458.50 1 375.70 3 540.90 6 408.50
36 55.30 110.60 9.80 375.50 551.20
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Furthermore, the energy consumed by the servers 
keeps the most impact on the total energy consumed 
by the data center, hence the obligation to reduce the 
number of servers used for processing a batch of 
queries. The variance analysis of the server energy 
indicator (see Table 7 and Figure 4) indicates that the 
topology is a highly influential factor based on the 
value of the ratio P which is equal to zero. 

Table 4: Factors ranks based on SNR Switch Energy (core). 

Factor A B C D E F G H I J 
Rank 17 13 15 14 19 18 16 7 3 1 
Factor K L M N O P Q R S 
Rank 8 10 12 5 11 6 9 2 4 

Table 5: Factors ranks based on SNR Switch Energy (agg.).  

Factor A B C D O F G H I J 
Rank 17 18.5 16 13 4 15 14 8.5 6.5 1 
Factor K L M N E P Q R S
Rank 5 11 3 6.5 18.5 10 12 2 8.5

Table 6: Factors ranks based on SNR Switch Energy (acc.).  

Factor A B C D O F G H I J 
Rank 15 18.5 13.5 17 7 13.5 16 3 9 1 
Factor K L M N E P Q R S 
Rank 8 11 10 6 18.5 4 12 2 5 

Table 7: Factors ranks based on SNR Server Energy. 

Factor A B C D E F G H I 

Rank 13 5 7 11 6 14 10 2 4 

Factor J k L M N O P Q R S 

Rank 1 19 16 18 12 15 9 8 3 17

 

Figure 4: Main Effects Plot for SNR of Server Energy. 

The regression analysis allowed us to define the 
regression equation (10) of the energy server 
indicator. This equation reflects the weight of each 
factor in the performance and the impact of each input 
on the value of the server energy indicator. 

ݎ݁ݒݎ݁ܵ ݕ݃ݎ݁݊ܧ = 5696.69	 − ܣ	13.87	 ܤ50.26+ + 25.13 ܥ − 	ܦ6.49 − 	ܧ52.38			 	ܨ62.38	+ − 	ܩ	50.41	 + 	ܪ	162.82	 − 	ܫ	41.37	 	ܬ	1698.13			− − 	ܭ	16.85	 − 	ܮ	38.38	 + 	ܯ	8.31	 +14.0083 ܰ + 9.67 ܱ + 23.63	ܲ	 − 	50.74	ܳ	 +116.90	ܴ	 − 	47.63	ܵ
(10)

6 PROPOSED ALGORITHM 

As depicted in Figure 5, we apply a three-tiered 
architecture for the Cloud model studied. This 
architecture relies on a combination of several 
algorithms including ant colony optimization 
(Ragmani et al., 2016b). Through the present article 
and following analyses made in the previous 
paragraph, we propose an algorithm for scheduling 
virtual machines within Cloud by applying a 
simulated annealing algorithm.  

 

Figure 5: The proposed Cloud architecture. 

Indeed, thanks to its interesting properties of 
convergence, we target both to find an optimal 
response in a reasonable time. In brief, the simulated 
annealing (SA) is inspired by the Metropolis-
Hastings algorithm, which offers the possibility of 
modeling a thermodynamic system. This algorithm 
relies on a function to be minimized which refers to 
the energy ܧ in the real process and a temperature ܶ 
of the system. The variation of the temperature allows 
to find out the different intermediary solutions before 
reaching the optimal solution. This algorithm starts 
with an initial state of the system that will be modified 
to reach a new state. Two cases then arise; either the 
new state improves the factor to be optimized or it 
degrades it. The validation of the state which has 
improved the factor to optimize allows us to find an 
optimum in the vicinity of the initial state. On the 
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other hand, the acceptance of a bad state induces us 
to seek an optimum outside the neighborhood of the 
initial state (Chibante, 2010; Marotta et al., 2018). 
There are two approaches to the variation of 
temperature. The first approach is to keep the system 
temperature constant. When the system reaches a 
thermodynamic equilibrium, the temperature is 
lowered. This approach corresponds to a resolution in 
increments of temperature. The second approach is 
based on a continuous decrease of the temperature 
according to a precise law. The most applied one is ܶ	 =  ,is less than 1. In both approaches ߙ where ,ܶߙ	
the algorithm stops at a predefined temperature (see 
Figure 6). In our case, we keep the second approach 
because it allowed us to achieve better results. The 
pseudo-code of the proposed scheduling algorithm is 
summarized on Algorithm I. The proposed algorithm 
is an application of simulated annealing. This 
algorithm uses several inputs including the list of 
virtual machines; the available servers, the number of 
iterations and the initial temperature. The ultimate 
goal is to plan the placement of virtual machines in 
the data center servers to minimize power 
consumption. The function to be minimized by the 
algorithm is the total energy consumed. At each 
iteration, the temperature is multiplied by a parameter 
α which makes it possible to reduce the temperature. 
In order to avoid a rapid convergence to a local 
minimum, a random perturbation is applied which 
consists in randomly modifying the location of the 
machines in order to force the algorithm to look for 
new possibilities. In order to validate the operation of 
the proposed algorithm we have configured 22 virtual 
machines and 5 servers and before testing several 
combinations of parameters in order to identify the 
best combination (see Table 8 and Figure 7). 

 

Figure 6: The SA algorithme convergence for M=100, 
N=50, T0=50, α= 0.87. 

Table 8: SA parameters per combination. 

Combination 1 2 3 4 5 6 7

M 100 10
0

10
0

10
0

10
0

20
0

10
0N 50 50 50 50 50 10

0
50

T0 50 50 20 60 10
0

60 50

α 0.87 0.9 0.9 0.9 0.9 0.9 0.8

 

Figure 7: Best energy efficiency per configuration. 

Algorithm I: SA Algorithm for VM Scheduling. 

Inputs: VM list; hosts list;  
N: Number iterations of first loop;  
M: Number iterations of secondary loop;  
T0: Initial Temperature; alpha: cooling 
rate; G: Indicator of environmental 
impact of data center (between 1 for good 
data center and 10 for worst one); 
Output: VM Allocation per server; 
% Initialization 
VM.affactation=random(Hosts) 
% Replace by Best Solution identified 
AllocatedHost= VM.affectation 
T=T0; 
% SA Iterations   
 For i=1to N 
  For j=1 to M 
    Set VM neighbor;  
    Apply random perturbation; 

 If AllocatedHostnew.Energy*G ≤ 
     AllocatedHost.Energy 
     VM.affection = AllocatedHostnew; 
 else 
  delta= AllocatedHostnew.Energy   

- AllocatedHost.Energy; 
݌    =  ;(ܶ/ܽݐ݈݁݀−)݌ݔ݁
   if p ≥ random 
    AllocatedHost = AllocatedHostnew; 
   End 
  End 

 % Save the best Energy Efficiency value 
BestEnergyEfficency(i)=AllocatedHost  
.Energy; 

 % Decrease temperature 
  T=alpha*T;   
  End 
End 
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7 CONCLUSIONS 

In conclusion, through this article, we have pointed 
out the importance of energy efficiency in the Cloud 
computing environment. Then, we proceed to various 
simulations based on the Taguchi concept in order to 
evaluate deeply all major aspects of energy 
consumption within a data center. Finally, we 
introduced a scheduling proposal based on applying 
an algorithm inspired by simulated annealing 
algorithms in order to guarantee an efficient 
scheduling strategy. We have proposed to integrate a 
parameter relative to the source of the energy used in 
a data center in order to give an advantage to data 
center applying environmental standards. The main 
characteristic of the proposed method is allowing to 
model different responses according to influencing 
factors. This knowledge is then used in the 
optimization process of the studied system. In future 
work, we propose to examine in more detail the 
proposed solution within a real Cloud environment in 
order to confirm its gain in terms of energy efficiency. 
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