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Abstract: A multitude of pose estimation algorithms has been developed in the last decades and many proprietary com-
puter vision packages exist which can simplify the setup process. Despite this, pose estimation still lacks the
ease of use that robots have attained in the industry. The statement ”vision does not work” is still not un-
common in the industry, even from integrators. This points to difficulties in setting up solutions in industrial
applications. In this paper, we analyze and investigate the current usage of pose estimation algorithms. A
questionnaire was sent out to both university and industry. From this survey, it is clear that the actual setup
time of pose estimation solutions is on average between 1–2 weeks, which poses a severe hindrance for the
application of pose estimation algorithms. Finally, steps required for facilitating the use of pose estimation
systems are discussed that can reduce complexities and thus the setup times in industrial applications.

1 INTRODUCTION

Using vision for pose estimation could significantly
increase the possible use cases for robotics, since
expensive positioning systems such as bowl feeders
could be avoided. However, at the moment, setting up
a pose estimation system is very complicated and any
re-configuration is a task almost equal in scale. That is
one reason why ”blind” robot systems are quite com-
mon in industry, while vision based solutions are sel-
dom seen. Even from integrators statements such as
”vision does not work” are still common in industry.

The flexibility of a robot arm provides a tool
which can be reconfigured to different tasks using lit-
tle programming. This flexibility has enabled a mas-
sive growth of robotics in industry, while there are
still many complexities involved in the setup of a vi-
sion based robotic system (Krüger et al., 2014). Thus,
while the number of robots in production is increas-
ing, SMEs (Small- and Medium-sized Enterprises)
have a much lower percentage of robots than large
companies (Sørensen et al., 2015), as they often pro-
duce in much smaller quantities.

The current decade has seen the introduction of
several robotic arms with simple setups; an example
is the Universal Robot. A task can quickly be setup
using 6D poses, given from either the controller or
by kinesthetic guidance. With this manipulator, one
can quickly generate repetitive movements, enabling
automation of tasks for small productions. The limit

of these ”blind” robot solutions is that the object poses
need to be deterministic.

Several methods and software packages are cur-
rently available for doing pose estimation. However,
for the integration of pose estimation into robot sys-
tems, many obstacles still exist.
High Requirements for Performance: The system
should be able to quickly detect the object, allowing
the production to continue at acceptable speed.
Demand for Robustness: Depending on the robot
setup, the number of acceptable mis-detections can be
as low as zero.
Inflexible Setups: A complete setup is often made to
perform for a single task. Any change in the task con-
figuration will often demand an entirely new solution.
Long Development Time: Overcoming the previ-
ously mentioned obstacles will often result in exten-
sive testing before the system is working in an accept-
able way.
Expensive System: Having an expert working on the
setup and a long development time will make the sys-
tem expensive.

Using a questionnaire, (see Fig 1), we have ana-
lyzed and examined the current situation of the ap-
plication of pose estimation in academia and indus-
try. We received 23 responses of which 11 were from
people working in the industry (see Fig 2). In the fol-
lowing plots, we split the answers into industry and
academia, respectively plotted as red and blue.

Our questionnaire sheds light on the actual situa-
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• What is your current employment?

• For how many years have you been using com-
puter vision?

• How long time does it normally take you to
setup and complete a pose estimation task?

• How many vision tasks using pose estimation
have you solved in the last year?

• What software have you used for pose estima-
tion the last year?

• How much time do you as a vision expert use
on the physical aspect (light, camera lens, etc.)
vs. software (algorithm, tuning, etc.), when do-
ing pose estimation?

• How often is your vision system a part of a
robotics setup?

• How often do you use a CAD model in your
pose estimation?

Figure 1: List containing all the questions sent out in the
questionnaire. The possible answers were provided as a
range of multiple choice selections.

tion of the application of pose estimation algorithms
in academia and industry. The following overall state-
ments can be derived from the outcome of the ques-
tionnaire:
• More than 50% of pose estimation algorithms are

applied in the context of a robotic system. Hence
it is important to see pose estimation in this con-
text.

• Although using currently available proprietary
pose estimation software allows for applying a
concrete algorithm within few hours, the average
time used for making the system applicable for a
task is still between 1–2 weeks in industry and 2-4
weeks in academia.

• Most time is spent on adapting a given software
to a task and not for deciding about external fac-
tors such as sensors, light sources and the actual
placement of this equipment.

• Developers often use more than one software
package, indicating that it is far from being clear
what algorithms to choose for a given task.
These insights make it clear that—in addition to

improving the precision and accuracy of algorithms—
an important additional task is to facilitate the actual
use of available pose estimation algorithms. After
having reported on the results of the questionnaire in
section 3, we give pointers to issues that should be ad-
dressed in pose estimation research in that context in
section 4 and 5.

2 STATE OF ART

There has been a significant development in methods
for pose estimation which can solve many complex
tasks using both 2D and 3D, sensors (see, e.g. (Miksik
and Mikolajczyk, 2012) and (Guo et al., 2014)).

This section gives an overview of the current state
of the art, both in terms of algorithms as well as vision
systems applied in industry.

2.1 2D Methods

With a standard RGB or mono camera, the input data
is a 2D matrix of light intensity. Even though the data
is without any 3D information, there exist methods
which can return 6D poses. Two primary methods ex-
ist for handling such 2D data, i.e. template matching
(Lewis, 1995) and feature matching (Gossow et al.,
2012), respectively global and local approaches.
Template Matching (Global Approaches): In tem-
plate matching, a model of the object that we wish to
detect is used to match patches of the image. Meth-
ods to avoid instabilities connected to illumination
changes, use edges instead of the intensity image
(Lewis, 1995). By utilizing the orientation of the
edges, (Hinterstoisser et al., 2012) newer additions
have been able to enhance the robustness. How-
ever, template matching is not robust to occlusions
or other aspects that hinder edge detection. Despite
these problems, template matching is a widely used
method which under the proper circumstances can be
extremely accurate.
Feature Matching (Local Approaches): To avoid
the drop in performance as a result of occlusion and
background clutter small patches are matched withe
the image as opposed to the full object. The proce-
dure is to detect interest points, calculate descriptors
at each interest point and then try to match the de-
scriptors to find a transformation.

An early method which employed this with great
success is SIFT (Lowe, 2004). Using the difference
of Gaussian operator to detect interest points and a
histogram of gradients as the descriptor, the method
creates candidate matches. After evaluating the qual-
ity of the matches, usually using RANSAC (Fischler
and Bolles, 1981), a transformation is found.

Using the same approach, several alterations have
been made to this algorithm, eg. (Bay et al., 2008),
(Alahi et al., 2012) and (Rublee et al., 2011). Using
feature matching, it is possible to acquire real-time
pose estimation of objects (Collet et al., 2011). One
limitation of feature matching is that it requires some
texture on the object to be detected.

Does Vision Work Well Enough for Industry?

199



Figure 2: Employment of those who answered the questionnaire. The answer ”Working WITH Industry as a developer” was
provided by a participant.

2.2 3D Methods

With the introduction of cheap 3D sensors like the
Kinect (Zhang, 2012), along with increased process-
ing power enabling fast stereo processing, a huge in
increase in the availability of 3D algorithms has in-
creased greatly in the last two decades. As in the 2D
case there exist many different global and local meth-
ods.
Global Methods: As in the case of 2D, there
are methods for matching the full model in 3D. The
method in (Mian et al., 2006) uses tensors of differ-
ent views of the object, compared with tensors of the
scene. Another global approach employed in the pro-
prietary software Halcon is called PPF (Drost et al.,
2010). Here point pair features are matched globally
to represent the model as opposed to local methods.
Local Methods: With an overwhelming amount of
different methods (Guo et al., 2014), feature matching
is the most widely investigated approach for pose esti-
mation in 3D data. In these methods, instead of using
2D features, the local 3D space at interest points is
represented. One of the early methods is the Spin Im-
age feature (Johnson and Hebert, 1998), which use a
histogram of signed and radial distances for neigh-
boring normal vectors as the descriptor. As in the
case of 2D methods, there have been several different
descriptors using various local 3D information, e.g.
SHOT (Tombari et al., 2010) and FPFH (Rusu et al.,
2009). Finally, there also exist many different match-
ing schemes for these descriptors (Guo et al., 2014).

2D and 3D methods can also be combined using both
color and depth information. C-SHOT (Tombari et al.,
2011) is an example of a simple combination. Us-
ing the SHOT algorithm (Tombari et al., 2010), a his-
togram of the RGB intensities around the point are
added to the descriptor increasing performance. The
large variety of available pose estimation algorithms
requires making application-specific choices, which
is far from being trivial. This is one of the complex-
ities in setting up pose estimation systems that leads
to long setup times for vision solutions in practical
applications, as it will become evident from our ques-
tionnaire.

2.3 Learning-based Methods

Methods based on training have had much success
in the last years for object classification (Krizhevsky
et al., 2012). Several machine learning approaches
have been shown to work well in the context of pose
estimation, e.g., Random Forest (Lai et al., 2011) and
Neural Networks (Gupta et al., 2015). These methods
use labeled training samples to learn correct parame-
ters for classifying data. This gives the advantage that
if the correct hyper-parameters are provided, they can
be trained by non-professionals. By using robust pa-
rameters, more conventional vision methods can also
utilize learning based approaches for a more simple
setup (Leibe et al., 2008). The input to these models
can be both 2D and 3D data and they can be combined
with other methods to improve performance.

The output of thee applications ranges from a
classification of images (Krizhevsky et al., 2012), to
pixel-vise (Girshick et al., 2014) detection and finally
an actual 6D pose (Rad and Lepetit, 2017). Thus a
realm of possible solutions is beginning to emerge us-
ing machine learning.

2.4 Software Packages for Pose
Estimation

There exist many proprietary software packages and
open source solutions to ease the development of pose
estimation. From figure 3 it is seen that a lot these
packages are used in both industry and university. We
will here list some of these packages and give a short
description of the frameworks. The proprietary pack-
ages are listed with an ”(*)”.
Halcon (*): Halcon (MvTec, b) is a library which
includes different kinds of 2D and 3D based pose es-
timation methods. Examples are template matching
in 2D images, and many different 3D matching meth-
ods.
Matlab Computer Vision Toolbox (*): The com-
puter vision toolbox (Matlab, 2016) in Matlab has a
template matching method and a number of different
feature matching algorithms as well as training based
methods.
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Figure 3: What software have you used in the last year? Proprietary software is marked with ” *”.

Vidi (*): Vidi (Cognex, ) provides the ability to cre-
ate matching systems based on deep learning meth-
ods.
Adaptive Vision (*): This is a suite to perform sim-
ple detection based on template matching (Adaptive-
Vision, ).
OpenCV: OpenCV (Itseez, 2015) is a vision library
for 2D methods. This library has an overwhelming
amount of different methods, but to use the library,
usually a lot of implementation is necessary.
Point Cloud Library: PCL (Rusu and Cousins,
2011) is an open source library for 3D algorithms im-
plemented in C++. Many methods are available, but
as in the case of OpenCV, much coding is required to
implement these methods properly.

3 SETTING UP A POSE
ESTIMATION SYSTEM

The creation of a pose estimation system usually re-
quires many decisions and reiterations before the sys-
tem has a sufficient performance. Fig. 5 illustrate the
usual workflow, from an initial problem into a work-
ing solution. We will use this workflow to present the
main results in our investigations.

The very first step is to analyze the situation and
determine the success criteria, Fig. 5(A). From this,
constraints can be defined and the actual setup can
begin, Fig. 5(B). In Fig. 5(C), a sensor system needs
to be selected; the sensor establishes both the limi-
tation of workspace and possible algorithms. Then,
an algorithm is required to do the actual pose estima-
tion (Fig. 5D) and the parameters can be set (Fig. 5E).

Figure 4: How much time do you spend on physical setup
vs software?

The whole setup is then tested (Fig. 5F), and adjusted
for several iterations until it performs successfully
(Fig. 5G). Depending on the scale of the error, one
often goes back multiple stages while trying to adjust
the system. We will now elaborate these phases and
relate them to the answers in the survey.
Initial Analysis; Fig. 5(B): Pose estimation per-
formed on a dataset often focuses on getting the best
performance in terms of number of correctly recog-
nized poses, whereas a robotics setup often has par-
ticular requirements (such as processing speed, pre-
cision as well as setup time). In Fig. 6 we see that
most pose estimation tasks in industry have an actual
robotics setup, where such requirements need to be
specified.

This will also help to restrict the task, for exam-
ple, if only one object needs to be detected or some
errors can be accepted. Restrictions and requirements
for pose estimation are often quite different between
robotic setups. Thus an analysis of each situation will
make the creation of a pose estimation task much sim-
pler.
Constraints; Fig. 5(B): A user of the pose estimation
algorithm may exploit known constraints to the sys-
tem, which will make the detection more feasible. For
example, an object rarely appears in completely ran-
dom 6D poses. Usually, there are constraints in the
workspace of where objects can appear, which could
increase the speed and reliability of the pose estima-
tion considerably. The object could also be bound to
a particular plane, (e.g. a table, the floor) or some
distinct orientations (e.g. stable poses due to grav-
ity), which could increase the precision significantly.
This knowledge is of course taken into account when
deciding upon the sensor positioning, but usually the
available software packages that we are aware of ig-
nore such constraints in the actual pose estimation
step. Some 2D algorithms have distance as part of
their parameters, whereas many 3D algorithms sel-
dom take additional constraints into account.
Hardware Selection; Fig. 5(C): There exist many
different sensors, which are able to provide intensity
and color images and various kinds of depth informa-
tion. Many combinations exist, each with different
coverage, precision, resolution, etc.
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Figure 5: Visualization of the integrators pipeline to create a working pose estimation setup. A number of reiterations are
performed.

These are external parameters which set the basis
for the following setup. Any constraint established by
the hardware influences the rest of the system. Thus
it is possible that these parameters need adjustment
during development. However from our questionnaire
(see Fig. 4) we can see that this is a task which takes
much less time than choosing and fine tuning the al-
gorithms of the software. The usual way seems to be
to make a qualitative choice and then work hard on
finding a software solution afterwards. However, if
tuning the software solution does not lead to a satis-
fying solution, the decision that the whole physical
setup might be changed might be required at some
point.
Software Selection; Fig. 5(D): As seen in section 2,
there exists an overwhelming amount of different al-
gorithms for pose estimation. Many of these can also
be combined. There exists both open source algo-
rithms and many kinds of proprietary software. Using
knowledge and experience, the user can get a start-
ing point for choosing specific algorithms, but there
are no actual guidelines when deciding which algo-
rithm best fits any particular situation. The setup time
is often much shorter using proprietary software, but
the drawback is a lack of control and flexibility, as
the proprietary systems set the structure for develop-
ment. However, depending on the knowledge level
of the user, this lack of flexibility is not necessarily a
drawback.

The survey shows that a mix of open source and
proprietary methods are used in both industry and
academia, as seen in Fig. 3. The patented HALCON
is used mostly in industry, whereas Matlab is often
used in academia. It can also be observed that the two
open source solutions are used in both industry and
academia. Additionally, our data reveal that 13 out of

Figure 6: How often is your vision system a part of a
robotics setup.

23 parties use more than one type of software.
Selection of Appropriate Parameters; Fig. 5(E):
The methods discussed in Section 2 are seldom used
directly out of the box. There exist many parameters
to select, and the correct configuration can be crucial
for the algorithm to work. These parameters can both
be constraints of the algorithms search space, but can
also be settings unique to the algorithm.

For example with the SIFT (Lowe, 2004) al-
gorithm, crucial parameters are the number of oc-
taves and the sigma value. It requires quite some
knowledge about these parameters to judge what set-
tings are required. Another example is the method
”find shape model 3d” (MvTec, a, Page 155) from
HALCON. Even though HALCON simplifies the in-
stallation procedure by reducing the number of possi-
ble parameters, one still needs to determine the possi-
ble poses and adjust the remaining parameters. These
parameters are ”MinScore” and ”Greediness” which
can be used to adjust between accuracy and process-
ing speed. Although these parameters seem more
straightforward and intuitive than in the case of SIFT,
they still require adjustment to ensure good results.
Optimization; Fig. 5(F and G): When one has gone
through the steps in Fig. 5(A, B, C, D, and E), the
system can be evaluated. For that, the success criteria
of the setup needs to be defined.

A simple success criterion is that the system
should be able to correctly recognize all instances of
an object at high precision in real time. However,
in cases with complicated workspaces, this is rarely
possible. Objects could be blocking each other, unfa-
vorable lighting conditions, random clutter and noise
could make detection almost impossible. Fortunately
though, there are cases where a perfect detection of
every object is not required. For some applications
only 95% precision may be sufficient, or one only
needs to detect one instance at a time from a set of
instances. These are all factors that determine if the
system is usable.

When all the steps have been completed, and the
system has been tested, it rarely performs as desired.
Testing on actual data often reveals a need to adjust
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Figure 7: Time spent to complete a pose estimation task.

parameters. This can either be physical constraints
that need adjustment or that the algorithm does not
perform well enough and needs correction.

Depending on the severity of the error, the devel-
oper might need to go back further and further in the
process. Small errors can be corrected by adjusting
parameters Fig. 5(E), whereas larger errors could re-
sult in the need for a new algorithm, Fig. 5(D). One
could even end up realizing that the sensor system is
not able to solve the problem, Fig. 5(C), or maybe the
problem needs to be redefined, Fig. 5(B).

4 REQUIREMENTS FOR A
DIRECT USE IN SMES

As seen in the previous section, the user needs to
take a lot of decisions when setting up a pose estima-
tion system. For all of these choices, there are addi-
tional parameters and adjustments, making the design
process cumbersome. Implementing these algorithms
takes time, testing takes time and making changes
takes time.

Fig. 7 is a visualization of the time spent on a pose
estimation task. The median time spent on a task is
1–2 weeks for people employed at industry and 2–4
weeks in academia. This indicates a very long break-
even time, which is a significant obstacle for SMEs to
apply vision solutions. There is thus a clear need to
bring down this development time.

To decrease the setup time of pose estimation al-
gorithms a higher level of usability is required. Sev-
eral aspects define the complexity of a solution: in-
tegration, algorithms, and setup. By these complexi-
ties, the usability of different software packages can
be segmented into different levels. A representation
of usability levels is shown in Fig. 8. An example
could be HALCON, although widely applied, it is at
best usable by integrators but not by any person with-
out a solid engineering education. This is because
functions need to be implemented and their param-
eters need adjustment, which presupposes a basic un-
derstanding of the underlying algorithms. To further
facilitate and increase the application of pose estima-
tion in industry (and in particular SMEs), it would be

necessary to decrease the complexity and the average
time used for setting up pose estimation systems.

We will now look into the obstacles and required
means for a system, where an industry user with some
basic education can set up a pose estimation.
Integration: When creating the system, the software
should allow for guidance in the many possible sensor
choices and placements, and should, of course, inte-
grate with the hardware easily. This could be achieved
by simulating the sensor itself and the sensor setup
and optimizing. First steps in this direction are done
in, e.g., (Jørgensen et al., 2017).

Likewise, there should be a simple integration of
the found poses to the robot control system. This
will not only save initial setup time but also allow for
much easier testing of the system.

Algorithms: There are several ways the application
of the algorithm can be facilitated: First, the system
would need algorithms to automatically adapt its in-
ternal parameters to solve the task at hand robustly.
Second, the selection of parameters should be as sim-
ple as possible. A condensation of the parameters
could simplify this to fine tuning between different
aspects, e.g., speed vs. recall. Another approach is to
combine descriptors to cover a larger range of prob-
lems and avoid the need to test every situation (Buch
et al., 2016). Third, there exist good examples of us-
ing simulation using either traditional vision methods
(Jørgensen et al., 2017) or neural networks (Rad and
Lepetit, 2017).

Figure 8: Four scales of usability for implementations of
pose estimation system. The top one being the simplest to
implement for the user.
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Installation Procedure: With knowledge of the dif-
ferent parts of the system, a program would be able
to guide the user through an installation. The user
should select various aspects of the pose estimation
in an intuitive way, potentially selecting on the screen
where the object is to be detected, whether a detec-
tion is correct and so forth. The system should also be
flexible enough to allow for easily adapting to small
changes in objects variants instead of starting the pro-
cess from scratch each time. Ideally, a database would
store already found solutions intelligently and would
match an existing task to earlier found solutions. This
gives a good starting point for a given problem.

5 CONCLUSION

We have shown an analysis of the current situation
of the applications of pose estimation in industry and
academia. Our results show that the average setup
time for pose estimation systems in the industry is 1–
2 weeks, and 2–3 weeks in academia. Despite many
improvements, there still exist many obstacles before
pose estimation can be installed with a reasonable
setup time. This currently limits the application of
vision systems to large production sizes.

The results indicate that in addition to the algo-
rithmic problems of pose estimation, the actual imple-
mentation of the system is still a challenge. In section
4, we proposed a scaling of the usability of vision al-
gorithms. These levels indicate how much time and
expertise it takes to set up a pose estimation system.
At the top level, the system can be quickly set up by a
non-expert, which is currently not possible.

To achieve this level of usability, the parameters of
vision algorithms needs to be condensed, both to re-
duce the number of parameters, but also to make them
more intuitive. There is also a need for a more effi-
cient framework for setting up pose estimation sys-
tems, guiding the user through the complete setup
from image acquisition to the final position. Here
the simulation of sensors and systems before setting
up costly hardware solutions could play an important
role.

This paper shows that when evaluating the quality
of pose estimation systems, the aspect of setup time
might be an important criterion besides the percentage
of recognized objects and the pose accuracy.
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