
Robust K-Mer Partitioning for Parallel Counting

Kemal Efe
Retired Professor of Computer Engineering, Istanbul, Turkey

Keywords: Genome Sequencing, K-Mer Counting, De Bruijn Graph, De Novo Assembly, Next Generation Sequencing.

Abstract: Due to the sheer size of the input data, k-mer counting is a memory-intensive task. Existing methods to

parallelize k-mer counting cannot guarantee equal block sizes. Consequently, when the largest block is too

large for a processor’s local memory, the entire computation fails. This paper shows how to partition the

input into approximately equal-sized blocks each of which can be processed independently. Initially, we

consider how to map k-mers into a number of independent blocks such that block sizes follow a truncated

normal distribution. Then, we show how to modify the mapping function to obtain an approximately

uniform distribution. To prove the claimed statistical properties of block sizes, we refer to the central limit

theorem, along with certain properties of Pascal’s quadrinomial triangle. This analysis yields a tight upper

bound on block sizes, which can be controlled by changing certain parameters of the mapping function.

Since the running time of the resulting algorithm is O(1) per k-mer, partitioning can be performed

efficiently while reading the input data from the storage medium.

1 INTRODUCTION

A k-mer is a substring of length k in a DNA

sequence. k-mer counting refers to creating a

histogram of repetition counts for each k-mer in the

input data. This paper presents a statistically robust

method that divides the input into approximately

equal-sized blocks so that multiple processors can

count the k-mers in each block independently with

equal effort.

Recently, k-mer counting received a lot of

attention from genomics researchers. It is a key step

in DNA sequence assembly (Marçais and Kingsford,

2011). It also found applications in alignment,

annotation, error correction, coverage estimation,

genome size estimation, barcoding, haplogroup

classification, etc.

Due to the sheer size of the input data, k-mer

counting is a memory-intensive task. The size of a

typical input varies in the range 100-300 GB. Earlier

attempts to parallelize this task failed to produce

robust methods that guarantee uniform block sizes,

even in an approximate sense. These methods

generate tens of thousands of blocks whose sizes

vary from under 100 bytes to tens of Gigabytes (see

figure 5 in (Li et al., 2013) or figure 6 in (Erbert et

al., 2017) as examples). Billion-fold difference in

block sizes is just not acceptable. Overheads

involved in managing a large number of irregular

blocks leads to poor utilization of computing

resources. What is a worse, block sizes are input

dependent and unpredictable. When the largest block

is too large for a processor’s local memory, the

entire computation fails. Every paper on k-mer

counting contains example cases where the previous

algorithms failed for a particular input. The fact is,

all of them fail occasionally since these algorithms

are unable to control the sizes of the largest blocks.

This makes the earlier algorithms unusable in

commercial software in which k-mer counting is a

component.

This paper initially considers how to map k-mers

into a small number of blocks so that block sizes

follow a truncated normal distribution. To prove the

claimed statistical properties of this distribution, we

refer to the central limit theorem along with certain

properties of Pascal’s quadrinomial triangle. This

analysis yields an equation that defines a fairly tight

upper bound on the size of the largest block.

Experiments with actual DNA sequences showed

that the maximum block size never exceeded the

theoretical upper bound. Drop from the theoretical

upper bound was about 20-25%. We also show how

to control this upper bound in a wide range by

changing certain parameters of the mapping

function. These parameters also allow changing the

146
Efe, K.
Robust K-Mer Partitioning for Parallel Counting.
DOI: 10.5220/0006638801460153
In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 3: BIOINFORMATICS, pages 146-153
ISBN: 978-989-758-280-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

number of blocks obtained. Then, we show how to

modify the mapping function so that the resulting

block size distribution is almost uniform instead of

normal. Since the running time of the mapping

computation is O(1) per k-mer, partitioning can be

performed efficiently while data is being read from

the storage medium.

2 K-MER COUNTING BASICS

A high-level sketch of a k-mer counting algorithm

can be given as follows:

Input: Multiple files containing reads. (A “read” is a

string of characters A, C, G, T.) With the current

technology, the length of each read is about 100-200

characters. Each file contains several million reads.

Output: A histogram of distinct k-mers found in all

files of the input.

Algorithm:

1. Divide the input into N blocks.

2. For each block, in parallel, count the number of

times each k-mer is seen.

3. Merge the partial results obtained for different

blocks into one global dataset for presentation to

the user.

Step 1 is the most critical step in this algorithm. This

step must satisfy two requirements:

a. All copies of a k-mer in all the input files must

be mapped to the same block. This will ensure

that k-mer counts obtained at the end of Step 2

will be universally valid.

b. Block sizes must be approximately equal. This

will ensure that parallel threads will have equal

work.

As will be discussed in the next section the first

requirement is easily satisfied by simple mapping

schemes. However, none of the mapping methods in

the literature guarantees the second requirement.

3 EXISTING METHODS

In the literature, there are three basic methods for k-

mer partitioning.

1. Hash-based method,

2. Prefix-based method,

3. Minimizer-based method.

The hash-based method is used in DSK algorithm

(Rizk et al., 2013). In this method a hash

function 𝐻(𝑆) maps each k-mer S to a number in the

range 0, … , 264. If P is the desired number of blocks,

S is sent to the block 𝐻(𝑆) 𝑀𝑜𝑑 𝑃. Obviously, all

copies of a k-mer will fall into the same block.

However, the maximum block size depends on the

hash function. The paper contains no information

about the hash function used, and provides no data

about the block size distribution obtained. While

hash functions generally do a good job in

distributing data between different bins, their worst

case performances can be quite bad.

The prefix-based method is used in KMC1

(Deorowicz et al., 2013). This method partitions k-

mers according to a fixed-length prefix. The prefix

becomes the name of the block for a k-mer. The

choice of prefix length depends on the desired

number of blocks. If the length of prefix is p, the

number of blocks will be 4𝑝. This method divides

the theoretical k-mer space into equal sized sub-

spaces. However, the theoretical space is not

uniformly populated by actual k-mers. The size of a

block is sensitive to the probability distributions of

symbols in the prefix. Since nucleotides A and T are

more abundant than C and G, blocks containing A’s

and T’s in their names can be much bigger than

others.

The Minimizer-based method was originally

invented to save memory space when storing k-mers

(Roberts et al., 2004). Later, it is used in k-mer

counting to partition the input data in MSP (Li et al.,

2013; Li, 2015), in KMC2 (Deorowicz et al., 2015),

and in Gerbil (Erbert et al., 2017). To explain, define

a p-string as a substring of length p in a k-mer. A p-

string is a minimizer for a k-mer if no other p-string

in the k-mer is lexicographically smaller than it.

Example 1:
Read: … 𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶 ….

Consider the k-mers derived from this read. Assume

k = 10, then the k-mers are 𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶,

𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺, 𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴, 𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺, and

𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶. If p=3, then the minimizer is 𝐴𝐴𝑇.

All the k-mers in this example share this minimizer.

Instead of mapping these k-mers separately, we can

map the segment of the read that contains them. In

this case, the unit of mapping is a segment of a read

rather than a k-mer. The minimizer itself becomes

the name of the block to which the segment is

mapped. In this scheme, the number of blocks is 4𝑝.

In algorithms, p is chosen in the range 4-10.

In a recent paper, Erbert et al., (2017) set out to

create the fastest possible k-mer counter by

combining the “best ideas” in earlier papers. After

extensively testing different methods, they selected

the signatures method for partitioning the input data

Robust K-Mer Partitioning for Parallel Counting

147

originally used in KMC2. (This is a variant of the

minimizers method designed to exclude certain p-

strings that lead to unacceptably large blocks). Even

with this refinement, block sizes were highly

irregular. The authors report that for one of the input

datasets, the size of the largest block was about six

times the size of the next largest block (see Figure 6

in (Erbert et al., 2017)).

In summary, earlier attempts to parallelize k-mer

counting failed to produce robust methods that can

control the sizes of blocks they generate. When the

largest blocks were too large for the computers they

used, their computations failed.

4 PROPOSED METHOD

4.1 Basic Idea

Let A=0, C=1, G=2, T=3. Then, we can recode a

string consisting of A, C, G, T by their numeric

values. For example CGTTGTTCA = 123323310.

We can represent a k-mer S as 𝑆𝐿 = 𝑠0, … , 𝑠𝑘−1

if it is in the literal form (consisting of A,C,G,T) or

equivalently as 𝑆𝑁 = 𝑛0, … , 𝑛𝑘−1 if it is written in

the numeric form (consisting of 0,1,2,3).

A first attempt to partition k-mers could be by

mapping each k-mer to the block number obtained

by adding up the numeric values of symbols in it.

That is, the block number for 𝑝(𝑆𝑁) is given by

𝑝(𝑆𝑁) = ∑ 𝑛𝑖

𝑘−1

𝑖=0

 (1)

Example: Consider a k-mer
𝑆𝐿 = 𝐶𝐺𝑇𝑇𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶𝐴𝐶𝐶𝑇𝐴𝐺𝐴𝑇𝑇𝐴𝑇𝑇𝑇.

Then 𝑆𝑁 =
1233233100333120210113020330333. The

value of summation is 55. Therefore, the block

number for this k-mer is 55.

This is a very simple way to map strings to

integers. In various textbooks it is often used as an

example of a bad hash function. They would say

“eat” and “tea” would map to the same bin, and

brush it away without further analysis.

However, that summation has a remarkable

property: the central limit theorem states that the

sum of many random variables will have

approximately normal distribution. Moreover, the

normal approximation is guaranteed to hold even

when the underlying terms don’t have the same

distributions (i.e. if symbols A, C, G, T don’t appear

with equal probability). Implications of this fact are

so profound that it deserves to be stated as a

theorem.

Theorem: k-mer sums given by (1) approximate a

truncated normal distribution in the range [0,3𝑘]
with

𝜇 =
3𝑘

2

And

lim
𝑘→∞

𝜎2 = 1.25𝑘

while for finite k,
 𝜎2 > 1.25𝑘.

Proof: The range of k-mer sums [0,3𝑘] follows

from the fact that the characters {A,C,G,T} are

mapped to {0,1,2,3}. When k random number from

the set {0,1,2,3} are added up, the sum can be at

least 0, and at most 3k.

The claim about the normal approximation of the

distribution is a fact stated by the central limit

theorem. Consequently, the claimed value for µ also

follows easily since the normal distribution is

unimodal and symmetric about the mean. Therefore,

the mean value must be in the middle of the range.

Proof of the claimed values for 𝜎 requires some

elaboration. We begin with asking: “how many

different ways a particular sum can be obtained?”

The answer lies in observing that frequency of the

summation values follow the quotients in row k of

Pascal’s quadrinomial triangle. To explain, consider

the binomial equation

(1 + 𝑥)𝑘 = 𝑎0 × 1 + 𝑎1𝑥 + ⋯ + 𝑎𝑘 × 𝑥𝑘

The coefficients 𝑎0, … , 𝑎𝑘 are given by row k of the

binomial triangle

 1

 1 1

 1 2 1

 1 3 3 1

The first row corresponds to the case of k=0. An

arbitrary term 𝑎𝑗 in row k represents how many

different ways k numbers can be selected from the

set {0, 1} so that their sum is equal to j.

This concept generalizes in a straightforward

way for the equation

(1 + 𝑥 + 𝑥2 + … + 𝑥𝑠−1)𝑘 = 𝑎0 × 1 + 𝑎1𝑥 +
⋯ + 𝑎𝑘 × 𝑥𝑘(𝑠−1)

For example, when 𝑠 = 4, we have the quadrinomial

triangle

BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms

148

1

1 1 1 1

1 2 3 4 3 2 1

 1 3 6 10 12 12 10 6 3 1

In this case, term 𝑎𝑗 in row k represents how many

different ways k numbers can be selected from the

set {0, 1, 2, 3} so that their sum is equal to j.

The following well known facts about row k are

relevant here. See (Bondarenko, 1993) for details.

1. There are (𝑠 − 1)𝑘 + 1 terms in row k.

2. The values in row k sum to 𝑠𝑘.

3. The values in row 𝑘 follow the normal

distribution

Let 𝑎𝑚𝑎𝑥
(𝑘)

 denote the biggest number in row k. There

is no known closed form equation for this value

(Smith and Hoggatt, 1979). However, equation 1.18

in (Bondarenko, 1993) states that

lim
𝑘→∞

𝑎𝑚𝑎𝑥
(𝑘)

√𝑘

𝑠𝑘
≤ √

6

𝜋(𝑠2 − 1)

Rearranging this equation, and using 𝑠 = 4,

lim
𝑘→∞

(
𝑎𝑚𝑎𝑥

(𝑘)

4𝑘
) ≤ √

6

15𝑘𝜋
 (2)

For normal density, the peak value is given by

𝑝𝑚𝑎𝑥 =
1

√2𝜋𝜎2
 (3)

Considering the fact 2 above, for any row k, the left

hand side of (2) represents the 𝑝𝑚𝑎𝑥 value for the

corresponding normal density. Hence, together,

equations (2) and (3) imply that

𝜎2 ≥ 1.25𝑘

as claimed. QED.

The central limit theorem already states that k-

mer sums must follow the normal distribution. The

theorem above gives the parameters of this

distribution.

The most remarkable implication of this theorem

is the fact that both the mean and the standard

deviation depend on k alone, and not the input data.

This means, if we map k-mers into blocks by their

sums, regardless of the input data, we obtain the

same distribution shape defined by the value of 𝑘.

The following corollary gives the maximum

block size as a percent of the total data size for all

blocks.

Corollary: When mapping k-mers into independent

blocks by equation (1), the maximum block size is

given by

𝑝𝑚𝑎𝑥 ≤ √
6

15𝑘𝜋
 (4)

This fact trivially follows from equation (2). For

large k, the equation is exact. For realistic values of

k, this formula gives a good upper bound for the size

of the largest block.

Example 2: Let k=18. Then above corollary assures

us that no more than 8.4% of data will be in the

biggest block. The corresponding variance is 𝜎2 ≥
22.5 and the mean value is 𝜇 = 27.

Figure 1: Block size distribution for soybean data, k=18.

To see how closely these equations represent the

actual DNA data, we tested several dataset from

public domain repositories. As an example, Figure 1

illustrates the distribution of block sizes for the

Soybean data for k=18, compared with the

theoretical distribution predicted by the above

theorem. A normal fit matched the observed values

almost perfectly. Parameters for the normal fit was

𝜇 = 27 and 𝜎2 = 39. This yielded a peak value of

6.4%, which is close to, but less than the theoretical

upper bound of 8.4% as claimed.

For every dataset that we tested, the bell shape

has been invariant, and the peak value was around

20-25% below the theoretical value given by (4).

Looking at Figure 1, the reader can immediately

see three problems:

a. The largest block can be as big as 6.4% of the

total data size. This means that for a large data

Robust K-Mer Partitioning for Parallel Counting

149

set, the largest blocks can be too large for the

available memory.

b. The smallest block sizes are close to zero. This

means that there is a big difference between the

sizes of the largest and the smallest blocks.

c. When k-mers are individually mapped to blocks,

the sum of block sizes will reach approximately

𝑘 times the size of the input data. This is because

each input line with length 𝑙 contains 𝑙 − 𝑘 + 1

k-mers.

The next three subsections show how to circumvent

all of these problems.

4.2 Controlling the Upper Bound

Equation (3) says that the size of the largest block is

inversely proportional to the standard deviation.

Therefore, increasing 𝜎 by a factor of f should

reduce 𝑝𝑚𝑎𝑥 by the same factor.

One way to achieve this is by using a different

set of weights for the symbols {A, C, G, T}. For

example, instead of {0, 1, 2, 3}, use {1, 5, 10, 16}.

For this example, the range of block numbers will be

[k, 16k] instead of [0, 3k]. Consequently, 𝜎 will

grow by a factor of 16/3=5.33 and 𝑝𝑚𝑎𝑥 will reduce

by a factor of 5.33.

Figure 2: Block size distributions for 31-mers in human

chromosome-14 for different sets of nucleotide weights.

Data has been translated to line up their mean values to aid

in visual comparison.

Actual DNA data follows this mathematical

reasoning almost precisely. As an example, Figure 2

shows the distributions of block sizes obtained from

human chromosome-14 for different sets of

nucleotide weights. In this example, k=31. For the

weight set {1, 5, 10, 16} the peak block size reduced

from 6.3% down to 1.19%. This is small enough

even for the biggest data sets encountered in

practice. In implementation, different weight sets

can be chosen depending on the amount of required

reduction for the peak value.

4.3 Converting Normal Distribution to
Uniform

The basic idea is to merge smaller blocks with larger

blocks. Thanks to the central limit theorem, we

know which blocks will be small and which blocks

will be large. If a k-mer is going to be in a small

black, re-compute its block number so that it is

mapped to a different block. In doing so, we

basically fold the tail regions of the distribution on

top of the middle region.

Let 𝑖 be the k-mer sum, and 𝑃(𝑖) be the block

number for that k-mer.

Folding rule:

𝑃(𝑖) = {
2(µ − 𝛿) − 𝑖 + 1; 𝑖 < µ − 𝛿

2(µ + 𝛿) − 𝑖 − 1; 𝑖 > µ + 𝛿
𝑖; µ − 𝛿 ≤ 𝑖 ≤ 𝜇 + 𝛿

This rule will be applied to a k-mer iteratively as

explained below.

Here, 𝛿 is a positive number representing the

distance from the mean. After folding, the new block

numbers will be in the range [µ − 𝛿, µ + 𝛿]. In

discussions below, this range will be referred to as

the “target range.” Folding rule says that, if the

initially computed k-mer sum is already in the target

range, no remapping is done (third line of the

mapping rule). In this case, the k-mer sum becomes

the block number. If the k-mer sum is outside the

target range, it is mapped back into the target range,

perhaps after a few iterations.

Selection of 𝛿 determines the shape of the final

distribution as well as the number of iterations

needed. If 𝛿 is too big, there may not be enough data

in the tail regions to level up the blocks in the target

range. If 𝛿 is too small, tails may be too long. In

such case, a block that originally fell outside the

target range on one side may be mapped still outside

the target range on the other side. When this

happens, the folding rule will be applied again for

the new block number, and this will be repeated

until a block number inside the target range is

reached.

Figure 3 illustrates this process schematically. In

this figure the green bell shape represents the

distribution of block sizes that would be obtained

without folding. The two red bars represent the

target range. In the scenario represented in Figure 3,

the sum 𝑖 initially obtained for the k-mer falls

outside the target range on the left. The first time the

folding rule is applied, the computed block number

BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms

150

falls still outside the target range on the right. When

the folding rule is applied to this new value, the final

block number falls inside the target range.

Figure 3: Iterations of the folding rule.

Note that larger blocks outside the target range

must be close to the edge of the target range, so they

will fall near the edge inside the target range the first

time the folding rule is applied. The folding rule will

be repeated only if a block initially falls far enough

outside the target range. Since such blocks are small,

they don’t affect the shape of the final distribution.

Instead of using an iterative algorithm, it is

possible to obtain an equivalent result by using the

mod function applied to 𝑖 with divisor chosen as 2δ

(width of the target range). For example, the

function

𝑃(𝑖) = µ − 𝛿 + |µ − 𝛿 − 𝑖|𝑚𝑜𝑑 2𝛿

maps the k-mer sum 𝑖 to a number in the target range

if 𝑖 was initially outside the target range on the left.

Similarly, the function

𝑃(𝑖) = µ + 𝛿 − |𝑖 − (µ + 𝛿)|𝑚𝑜𝑑 2𝛿

maps the k-mer sum 𝑖 to a number in the target range

if 𝑖 was initially outside the target range on the right.

To select 𝛿, consider the fact that normal

distribution reaches 50% of its peak value at

distance 𝜎√2 ln 2 from the mean. Therefore, by

selecting 𝛿 = 𝜎√2 ln 2 we can guarantee that, after

folding, blocks at the two ends of the target range

will be about the same size as the largest block in the

middle. Bigger blocks in the target range will be

combined with smaller blocks outside the target

range. In the end, all the blocks in the target range

will have approximately equal sizes. As an example,

Figure 4 shows the result from the folding operation

for human chromosome-14 with k=75. For

comparison, distributions corresponding to weight

sets {0, 1, 2, 3} and {1, 5, 10, 16} are also shown.

The folding operation has been applied to the later

with δ computed as discussed above.

Figure 4: Block sizes obtained by the folding operation

applied to human chromosome-14.

4.4 Reducing the Total Data Size

When individual k-mers are used as the basic unit of

mapping, total data size in all the blocks blow up

from Θ(n) to Θ(kn), where 𝑛 is the number of lines

in the input. Without some method of compression,

this data expansion can cause a major problem when

communicating the k-mer data between processors

or when storing k-mers. The minimizers method

alleviates this problem significantly by storing line

segments instead of k-mers. If a line segment

contains 𝑚 k-mers sharing the same minimizer, it

must have length 𝑚 + 𝑘 − 1. We can store that line

segment instead of storing 𝑚 k-mers separately.

Analyses in Li et al (2013) showed that for realistic

values of 𝑘 and 𝑝, this scheme reduces the size of k-

mer data down to Θ(n). With additional compression

techniques such as packing four nucleotides into one

byte, total data size can be reduced further.

This basic idea can be used when mapping k-mer

data into blocks. In this case, the unit of mapping

becomes the line segment instead of a k-mer. When

computing the summation formula (1), we use the p-

strings that glue together the k-mers inside line

segments. Since p-strings have fixed length, the

theoretical analysis in Section 4.1 apply without

change for the number of line segments mapped to

each block. The only modification needed is to use 𝑝

as 𝑘 in Theorem 1.

Example 3: For the k-mers in the line segment

of Example 1, the p-string is AAT. Applying

equation (1) to this p-string, we obtain the

summation 𝑖 = 1 + 1 + 16 = 18 (assuming the

weight set {1,5,10,16}). Therefore, the block

number for this line segment is 18.

When applying this idea to p-strings, it is

important to ensure that 𝑝 is big enough for the

Central Limit theorem to take effect. To guarantee

the bell-shape, the Central Limit Theorem requires

summation of many numbers. In experiments, we

Robust K-Mer Partitioning for Parallel Counting

151

found that at around 𝑝 = 10, the bell shape appears

clearly. Bigger 𝑝 values serve to further smooth this

shape. This is illustrated for the soybean data in

Figure 5.

Figure 5: Distribution of the number of line segments

mapped to different blocks for Soybean data with weight

set {0,1,2,3}, k=30 and different values of p.

Once the bell shape is secured, it can be

converted to a uniform distribution as described in

previous sections.

4.5 A MapReduce Algorithm for
K-Mer Counting

Various parallel counting algorithms can be

developed based on the proposed method. As an

example, a MapReduce algorithm is sketched here:

Input: Normally, input data comes in 10-15 files.

For higher parallelism divide these into hundreds of

smaller files with equal size. Each file becomes the

input for a mapper process selected at random.

Map: Each mapper process computes block

numbers and sends each line segment to its

corresponding reducer process 𝑃(𝑖).

Reduce Each reducer process counts the k-mers in

the block sent to it.

5 COMPARISON WITH OTHER

METHODS

Figures 6 and 7 show the distribution of block sizes

generated by the prefix-based method, and the

minimizer-based method. A comparison with the

hash-based method is not possible, because the

authors provided no information about the hash

function used.

For the prefix-based method, we created a

computer program to generate the resulting

distributions. Figure 6 shows the case for the

soybean data. For the minimizer-based method, Li et

al., (2013) provided a histogram of block sizes for a

number of different datasets (Figure5 in their paper).

Figure 7 shows this figure. As can be seen, the

smallest block size is about 100 bytes while the

largest block size is bigger the 10 GB. The authors

suggest that increasing 𝑝 and then using a

“wrapping” technique will reduce the spread of

block sizes. To explain, let 𝑡 represent the desired

number of blocks. Wrapping here consists of

hashing the p-string that represents the name of a

block to obtain a number 𝐻, and then computing

𝐻 𝑚𝑜𝑑 𝑡. Figure 10 in the cited paper shows the

improvement made by this method. However, the

resulting distribution still shows nearly 100-fold

difference between the sizes of the largest and the

smallest blocks.

Figure 6: Block size distribution for soybean data by the

prefix-based method: prefix length = 5, k=18. The red line

shows the median value.

Figure 7: Block size distributions by the minimizer-based

method, with p=4. (Figure reproduced with permission

from (Li et al., 2013)).

It is noted in (Erbert et al., 2017) that a variant of

the minimizer-based method generally performed

better than the original minimizer-based method

except for the FVesca dataset with k=28. For this

dataset, the method generated one very big block

about six times bigger than the next biggest block.

To see if there was some peculiar property of this

dataset which might also cause our method to fail,

we tested the proposed method on the FVesca

dataset. Figure 8 shows the result. The resulting

BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms

152

distribution did contain random spikes, but the sizes

of these spikes were small.

Figure 8: Block size distribution obtained from FVesca

dataset by the proposed method with k=28.

6 CONCLUSIONS

Due to the sheer size of the input data, k-mer

counting is a memory intensive task. Equal sized

partitioning of input data is essential in order to

ensure that algorithms complete without running out

of memory. In this paper, a robust method for

partitioning input data into approximately equal

sized independent blocks has been presented.

Robustness of the proposed method follows from the

fact that distribution of k-mer sums depends on k

alone, and not the input data, as proven in Theorem

1. The mapping formulas are simple enough that

partitioning can be performed while reading the

input data from the storage medium.

Commercial software cannot be built on

algorithms that might fail occasionally. Since earlier

algorithms cannot guarantee equal block sizes, the

proposed algorithm is probably the only viable

algorithm for commercial applications.

REFERENCES

Bondarenko, B.A., 1993. Generalized Pascal triangles

and pyramids: their fractals, graphs, and applications.

Santa Clara, CA: Fibonacci Association.

Deorowicz, S., Debudaj-Grabysz, A. and Grabowski, S.,

2013. Disk-based k-mer counting on a PC. BMC

bioinformatics, 14(1), p.160.

Deorowicz, S., Kokot, M., Grabowski, S. and Debudaj-

Grabysz, A., 2015. KMC 2: fast and resource-frugal k-

mer counting. Bioinformatics, 31(10), pp.1569-1576.

Erbert, M., Rechner, S. and Müller-Hannemann, M., 2017.

Gerbil: a fast and memory-efficient k-mer counter

with GPU-support. Algorithms for Molecular

Biology, 12(1), p.9.

Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X. and Suri,

S., 2013, January. Memory efficient minimum

substring partitioning. In Proceedings of the VLDB

Endowment (Vol. 6, No. 3, pp. 169-180). VLDB

Endowment.

Li, Yang, 2015. "MSPKmerCounter: a fast and memory

efficient approach for k-mer counting." arXiv preprint

arXiv:1505.06550 (2015).

Marçais, G. and Kingsford, C., 2011. A fast, lock-free

approach for efficient parallel counting of occurrences

of k-mers. Bioinformatics, 27(6), pp.764-770.

Rizk, G, D. Lavenier, R. Chikhi; 2013. DSK: k-mer

counting with very low memory usage. Bioinformatics

29 (5): 652-653. doi: 10.1093/bioinformatics/btt020.

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M. and

Yorke, J.A., 2004. Reducing storage requirements for

biological sequence comparison. Bioinformatics,

20(18), pp.3363-3369.

Smith, C. and Hoggatt, V., 1979. A study of the maximal

values in Pascals quadrinomial triangle. Fibonacci

Quarterly, 17(3), pp.264-269.

APPENDIX

Sources for the datasets mentioned in this paper:

Soybean:

http://public.genomics.org.cn/BGI/soybean_resequencing/

fastq/

Human chromosome-14:

http://gage.cbcb.umd.edu/data/

FVesca:

http://sra.dbcls.jp/search/view/SRP004241

Robust K-Mer Partitioning for Parallel Counting

153

