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Abstract: Genetic algorithms have become popular in automating software refactoring and an increasing level of at-

tention is being given to the use of multi-objective approaches. This paper investigated the use of a mul-

ti-objective genetic algorithm to automate software refactoring using a purpose built tool, MultiRefactor. 

The tool used a metric function to measure quality in a software system and tested a second objective to 

measure the importance of the classes being refactored. This priority objective takes as input a set of classes 

to favor and, optionally, a set of classes to disfavor as well. The multi-objective setup refactors the input 

program to improve its quality using the quality objective, while also focusing on the classes specified by 

the user. An experiment was constructed to measure the multi-objective approach against the alternative 

mono-objective approach that does not use an objective to measure priority of classes. The two approaches 

were tested on six different open source Java programs. The multi-objective approach was found to give 

significantly better priority scores across all inputs in a similar time, while also generating improvements in 

the quality scores. 

1 INTRODUCTION 

Search-Based Software Engineering (SBSE) has 

been used to automate various aspects of the soft-

ware development cycle. Used successfully, SBSE 

can help to improve decision making throughout the 

development process and assist in enhancing re-

sources and reducing cost and time, making the pro-

cess more streamlined and efficient. Search-Based 

Software Maintenance (SBSM) is usually directed at 

minimizing the effort of maintaining a software 

product. An increasing proportion of SBSM research 

is making use of multi-objective optimization tech-

niques. Many multi-objective search algorithms are 

built using genetic algorithms (GAs), due to their 

ability to generate multiple possible solutions. In-

stead of focusing on only one property, the mul-

ti-objective algorithm is concerned with a number of 

different objectives. This is handled through a fit-

ness calculation and sorting of the solutions after 

they have been modified or added to. The main ap-

proach used to organize solutions in a multi-    

objective approach is Pareto. Pareto dominance or-  

 

ganizes the possible solutions into different non-

domination levels and further discerns between them 

by finding the objective distances between them in 

Euclidean space. 

In this paper, a multi-objective approach is cre-

ated to improve software that combines a quality 

objective with one that incorporates the priority of 

the classes in the solution. There are a few situations 

in which this may be useful. Suppose a developer on 

a project is part of a team, where each member of 

the team is concerned with certain aspects of the 

functionality of the program. This will likely involve 

looking at a subset of specific classes in the pro-

gram. The developer may only have involvement in 

the modification of their selected set of classes. They 

may not even be aware of the functionality of the 

other classes in the project. Likewise, even if the 

person is the sole developer of the project, there may 

be certain classes which are more risky or more re-

cent or in some other way more worthy of attention. 

Additionally, there may be certain parts of the code 

considered less well-structured and therefore most in 

need of refactoring. Given this prioritization of some 

classes for refactoring, tool support is better em-    
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ployed with refactoring directed towards those clas-

ses. 

Another situation is that there may be some 

classes considered less suitable for refactoring. 

Suppose a developer has only worked on a subset of 

the classes and is unsure about other areas of the 

code, they may prefer not to modify that section of 

the code. Similarly, older established code might be 

considered already very stable, possibly having been 

refactored extensively in the past, where refactoring 

might be considered an unnecessary risk. Changing 

code also necessitates redoing integration and tests 

and this could be another reason for leaving parts of 

the code as they were. There may also be cases 

where “poor quality” has been accepted as a neces-

sary evil. For example, a project may have a class 

for logging that is referenced by many other classes. 

Generally, highly coupled classes are seen as nega-

tive coding practices, but for the purposes of the 

project it may be deemed unavoidable. In cases like 

this where the more unorthodox structure of the 

class is desired by the developer, these classes can 

be specified in order to avoid refactoring them to 

appease the software metrics used. However, we do 

not want to exclude less favoured classes from the 

refactoring process since an overall higher quality 

codebase may be achieved if some of those are in-

cluded in the refactorings. 

We propose that it would be helpful to classify 

classes into a list of “priority” classes and 

“non-priority” classes in order to focus on the refac-

toring solutions that have refactored the priority 

classes and given less attention to the non-priority 

classes. The priority objective proposed takes count 

of the classes used in the refactorings of a solution 

and uses that measurement to derive how successful 

the solution is at focusing on priority classes and 

evading non-priority classes. The refactorings them-

selves are not restricted so during the refactoring 

process the search is free to apply any refactoring 

available, regardless of the class being refactored. 

The priority objective measures the solutions after 

the refactorings have been applied to aid in choosing 

between the options available. This will then allow 

the objective to discern between the available refac-

toring solutions. In order to test the effectiveness of 

such an objective, an experiment has been con-

structed to test a GA that uses it against one that 

does not. In order to judge the outcome of the ex-

periment, the following research questions have 

been derived: 

RQ1: Does a multi-objective solution using a 

priority objective and a quality objective give an 

improvement in quality? 

RQ2: Does a multi-objective solution using a 

priority objective and a quality objective prioritize 

classes better than a solution that does not use the 

priority objective? 

In order to address the research questions, the 

experiment will run a set of tasks to compare a de-

fault mono-objective set up to refactor a solution 

towards quality with a multi-objective approach that 

uses a quality objective and the newly proposed pri-

ority objective. The following hypotheses have been 

constructed to measure success in the experiment: 

H1: The multi-objective solution gives an im-

provement in the quality objective value. 

H10: The multi-objective solution gives no im-

provement in the quality objective value. 

H2: The multi-objective solution gives signifi-

cantly higher priority objective values than the cor-

responding mono-objective solution. 

H20: The multi-objective solution does not give 

significantly higher priority objective values than the 

corresponding mono-objective solution. 

The remainder of this paper is organized as fol-

lows. Section 2 discusses related work. Section 3 

describes the MultiRefactor tool used to conduct the 

experimentation. Section 4 explains the setup of the 

experiment used to test the priority objective, as well 

as the outcome of previous experimentation done to 

derive the quality objective and the GA parameters 

used. Section 5 discusses the results of the experi-

ment by looking at the objective values and the 

times taken to run the tasks, and Section 6 concludes 

the paper. 

2 RELATED WORK 

Several recent studies in SBSM have explored the 

use of multi-objective techniques. Ouni, Kessentini, 

Sahraoui and Hamdi (Ouni et al. 2012) created an 

approach to measure semantics preservation in a 

software program when searching for refactoring 

options to improve the structure, by using the 

NSGA-II search. Ouni, Kessentini, Sahraoui and 

Boukadoum (Ouni et al. 2013) expanded upon the 

code smells correction approach of Kessentini, Kes-

sentini and Erradi (Kessentini et al. 2011) by re-

placing the GA used with NSGA-II. Wang, Kessen-

tini, Grosky and Meddeb (Wang et al. 2015) also 

expanded on the approach of Kessentini, Kessentini 

and Erradi by combining the detection and removal 

of software defects with an estimation of the number 

of future code smells generated in the software by 

the refactorings. Mkaouer et al. (Mkaouer et al. 

2014; M. W. Mkaouer et al. 2015; W. Mkaouer et al. 
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2015) used NSGA-III to experiment with automated 

maintenance. 

3 MultiRefactor 

The MultiRefactor approach1 uses the RECODER 

framework2 to modify source code in Java programs. 

RECODER extracts a model of the code that can be 

used to analyze and modify the code before the 

changes are applied. MultiRefactor makes available 

various different approaches to automated software 

maintenance in Java programs. It takes Java source 

code as input and will output the modified source 

code to a specified folder. The input must be fully 

compilable and must be accompanied by any neces-

sary library files as compressed jar files. The nu-

merous searches available in the tool have various 

input configurations that can affect the execution of 

the search. The refactorings and metrics used can 

also be specified. As such, the tool can be config-

ured in a number of different ways to specify the 

particular task that you want to run. If desired, mul-

tiple tasks can be set to run one after the other. 

A previous study (Mohan et al. 2016) used the 

A-CMA (Koc et al. 2012) tool to experiment with 

different metric functions but that work was not ex-

tended to produce source code as an output (likewise, 

TrueRefactor (Griffith et al. 2011) only modifies 

UML and Ouni, Kessentini, Sahraoui and Bouka-

doum’s (Ouni et al. 2013) approach only generates 

proposed lists of refactorings). MultiRefactor 

(Mohan and Greer 2017) was developed in order to 

be a fully-automated search-based refactoring tool 

that produces compilable, usable source code. As 

well as the Java code artifacts, the tool will produce 

an output file that gives information on the execu-

tion of the task including data about the parameters 

of the search executed, the metric values at the be-

ginning and end of the search, and details about each 

refactoring applied. The metric configurations can 

be modified to include different weights and the 

direction of improvement of the metrics can be 

changed depending on the desired outcome. 

MultiRefactor contains seven different search 

options for automated maintenance, with three dis-

tinct metaheuristic search techniques available. For 

each search type there is a selection of configurable 

properties to determine how the search will run. The 

refactorings used in the tool are mostly based on 

                                                           
1 https://github.com/mmohan01/MultiRefactor 
2 http://sourceforge.net/projects/recoder 

Fowler’s list (Fowler 1999), consisting of 26 

field-level, method-level and class-level refactorings, 

and are listed below. 

Field Level Refactorings: Increase/Decrease 

Field Visibility, Make Field Final/Non Final, Make 

Field Static/Non Static, Move Field Down/Up, Re-

move Field. 

Method Level Refactorings: Increase/Decrease 

Method Visibility, Make Method Final/Non Final, 

Make Method Static/Non Static, Remove Method. 

Class Level Refactorings: Make Class Fi-

nal/Non Final, Make Class Abstract/Concrete, Ex-

tract Subclass/Collapse Hierarchy, Remove 

Class/Interface. 

The refactorings used will be checked for seman-

tic coherence as part of the search, and will be ap-

plied automatically, ensuring the process is fully 

automated. A number of the metrics available in the 

tool are adapted from the list of metrics in the 

QMOOD (Bansiya and Davis 2002) and 

CK/MOOSE (Chidamber and Kemerer 1994) met-

rics suites. The 23 metrics currently available in the 

tool are listed below. 

QMOOD Based: Class Design Size, Number Of 

Hierarchies, Average Number Of Ancestors, Data 

Access Metric, Direct Class Coupling, Cohesion 

Among Methods, Aggregation, Functional Abstrac-

tion, Number Of Polymorphic Methods, Class Inter-

face Size, Number Of Methods. 

CK Based: Weighted Methods Per Class, Num-

ber Of Children. 

Others: Abstractness, Abstract Ratio, Static Ra-

tio, Final Ratio, Constant Ratio, Inner Class Ratio, 

Referenced Methods Ratio, Visibility Ratio, Lines 

Of Code, Number Of Files. 

In order to implement the priority objective, the 

important classes need to be specified in the refac-

toring tool (preferably by the developer(s) to express 

the classes they are most concerned about). With the 

list of priority classes and, optionally, non-priority 

classes and the list of affected classes in each refac-

toring solution, the priority objective score can be 

calculated for each solution. To calculate the score, 

the list of affected classes for each refactoring is 

inspected, and each time a priority class is affected, 

the score increases by one. This is done for every 

refactoring in the solution. Then, if a list of 

non-priority classes is also included, the affected 

classes are inspected again. This time, if a 

non-priority class is affected, the score decreases by 

1. The higher the overall score for a solution, the 

more successful it is at refactoring priority classes 

and disfavoring non-priority classes. It is important 

to note that non-priority classes are not necessarily 
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excluded completely but solutions that do not in-

volve those classes will be given priority. In this 

way the refactoring solution is still given the ability 

to apply structural refactorings that have a larger 

effect on quality even if they are in undesirable 

classes, whereas the priority objective will favor the 

solutions that have applied refactorings to the more 

desirable classes. 

4 EXPERIMENTAL DESIGN 

In order to evaluate the effectiveness of the priority 

objective, a set of tasks were created that used the 

priority objective to be compared against a set of 

tasks that didn’t. The control group is made up of a 

mono-objective approach that uses a function to 

represent quality in the software. The corresponding 

tasks use the multi-objective algorithm and have two 

objectives. The first objective is the same function 

for software quality as used for the mono-objective 

tasks. The second objective is the priority objective. 

The metrics used to construct the quality function 

and the configuration parameters used in the GAs 

are taken from previous experimentation on software 

quality. Each metric available in the tool was tested 

separately in a GA to deduce which were more suc-

cessful, and the most successful were chosen for the 

quality function. The metrics used in the quality 

function are given in Table 1. No weighting is ap-

plied for any of the metrics. The configuration pa-

rameters used for the mono-objective and mul-

ti-objective tasks were derived through trial and er-

ror and are outlined in Table 2. The hardware used 

to run the experiment is outlined in Table 3. 

For the tasks, six different open source programs 

are used as inputs to ensure a variety of different 

domains are tested. The programs range in size from 

relatively small to medium sized. These programs 

were chosen as they have all been used in previous 

SBSM studies and so comparison of results is possi-

ble. The source code and necessary libraries for all 

of the programs are available to download in the 

GitHub repository for the MultiRefactor tool. Each 

one is run five times for the mono-objective ap-

proach and five times for the multi-objective ap-

proach, resulting in 60 tasks overall. The inputs used 

in the experiment as well as the number of classes 

and lines of code they contain are given in Table 4. 

For the multi-objective tasks used in the experi-

ment, both priority classes and non-priority classes 

are specified for the relevant inputs. The number of 

classes in the input program is used to identify the 

number of priority and non-priority classes to speci-

fy, so that 5% of the overall number of classes in the 

input are specified as priority classes and 5% are 

specified as non-priority classes. In order to choose 

which classes to specify, the number of methods in 

each class of the input was found and ranked. The 

top 5% of classes that contain the most methods are 

the priority classes and the bottom 5% that contain 

the least methods are the non-priority classes for that 

input. Using the top and bottom 5% of classes means 

that the same proportion of classes will be used in 

the priority objective for each input program, mini-

mizing the effect of the number of classes chosen in 

the experiment. In lieu of a way to determine the 

priority of the classes, their complexity as derived 

from the number of methods present, is taken to 

represent priority. Using this process, the configura-

tions of the priority objective for each input were 

constructed and used in the experiment. 

Table 1: Metrics used in the software quality objective, 

with corresponding directions of improvement for each. 

Metrics Direction 

Data Access Metric + 

Direct Class Coupling - 

Cohesion Among Methods + 

Aggregation + 

Functional Abstraction + 

Number Of Polymorphic Methods + 

Class Interface Size + 

Number Of Methods - 

Weighted Methods Per Class - 

Abstractness + 

Abstract Ratio + 

Static Ratio + 

Final Ratio + 

Constant Ratio + 

Inner Class Ratio + 

Referenced Methods Ratio + 

Visibility Ratio - 

Lines Of Code - 

Table 2: GA configuration settings. 

Configuration Parameter Value 

Crossover Probability 0.2 

Mutation Probability 0.8 

Generations 100 

Refactoring Range 50 

Population Size 50 

The tool has been updated in order to use a heu-

ristic to choose a suitable solution out of the final 

population with the multi-objective algorithm to 

inspect. The heuristic used is similar to the method 

used by Deb and Jain (Deb and Jain 2013) to con-

struct a linear hyper-plane in the NSGA-III algo-
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rithm. Firstly, the solutions in the population from 

the top rank are isolated and written to a separate 

sub folder. It is from this subset that the best solution 

will be chosen from when the task is finished. 

Among these solutions, the tool inspects the indi-

vidual objective values, and for each, the best objec-

tive value across the solutions is stored. This set of 

objective values is the ideal point z=(z1
max), 

(z2
max), …, (zM

max) , where (zi
max)  represents the 

maximum value for an objective, and an objective i 

= 1, 2, ..., M. This is the best possible state that a 

solution in the top rank could have. After this is cal-

culated, each objective score is compared with its 

corresponding ideal score. The distance of the objec-

tive score from its ideal value is found, i.e. 

(zi
max)-f (x)

i

 
, where f (x)

i

 
 represents the score for a 

single objective. For each solution, the largest objec-

tive distance (i.e. the distance for the objective that 

is furthest from its ideal point) is stored, i.e. 

fmax(x)=maxi=1
M [(zi

max)-f (x)
i

 
] . At this point each 

solution in the top rank has a value, fmax(x), to 

represent the furthest distance among its objectives 

from the ideal point. The smallest among these val-

ues, minj=0

N-1
fmax(x) (where N represents the num-

ber of solutions in the top rank), signifies the solu-

tion that is closest to that ideal point, taking all of 

the objectives into consideration. This solution is 

then considered to be the most suitable solution and 

is marked as such when the population is written to 

file. On top of this, the results file for the corre-

sponding solution is also updated to mark it as the 

most suitable. This is how solutions are chosen 

among the final population for the multi-objective 

tasks to compare against the top mono-objective 

solution. 

Table 3: Hardware details for the experimentation. 

Operating System Microsoft Windows 7  

Enterprise Service Pack 1 

System Type 64-bit 

RAM 8.00GB 

Processor Intel Core i7-3770 CPU @ 

3.40GHz 

Table 4: Java programs used in the experimentation. 

Name LOC Classes 

Mango 3,470 78 

Beaver 0.9.11 6,493 70 

Apache XML-RPC 2.0 11,616 79 

JHotDraw 5.3 27,824 241 

GanttProject 1.11.1 39,527 437 

XOM 1.2.1 45,136 224 

 

For the quality function the metric changes are 

calculated using a normalization function. This 

function causes any greater influence of an individu-

al metric in the objective to be minimized, as the 

impact of a change in the metric is influenced by 

how far it is from its initial value. The function finds 

the amount that a particular metric has changed in 

relation to its initial value at the beginning of the 

task. These values can then be accumulated depend-

ing on the direction of improvement of the metric 

(i.e. whether an increase or a decrease denotes an 

improvement in that metric) and the weights given 

to provide an overall value for the metric function or 

objective. A negative change in the metric will be 

reflected by a decrease in the overall func-

tion/objective value. In the case that an increase in 

the metric denotes a negative change, the overall 

value will still decrease, ensuring that a larger value 

represents a better metric value regardless of the 

direction of improvement. The directions of im-

provement used for the metrics in the experiment are 

given in Table 1. In the case that the initial value of 

a metric is 0, the initial value used is changed to 0.01 

in order to avoid issues with dividing by 0. This 

way, the normalization function can still be used on 

the metric and its value still is low at the start. Equa-

tion (1) defines the normalization function, where m 

represents the selected metric, Cm is the current met-

ric value and Im
 is the initial metric value. Wm

 is the 

applied weighting for the metric (where 1 represents 

no weighting) and D is a binary constant (-1 or 1) 

that represents the direction of improvement of the 

metric. n represents the number of metrics used in 

the function. For the priority objective, this normal-

ization function is not needed. The objective score 

depends on the number of priority and non-priority 

classes addressed in a refactoring solution and will 

reflect that. 

∑ D.Wm
(

Cm

Im

- 1)

n

m=1

 (1) 

5 RESULTS 

Figure 1 gives the average quality gain values for 

each input program used in the experiment with the 

mono-objective and multi-objective approaches. For 

most of the inputs, the mono-objective approach 

gives a better quality improvement than the mul-

ti-objective approach, although for Mango the mul-

ti-objective approach was better. For the mul-

ti-objective approach all the runs of each input were 
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able to give an improvement for the quality objec-

tive as well as look at the priority objective. For both 

approaches, the smallest improvement was given 

with GanttProject. The inputs with the largest im-

provements were different for each approach. For 

the mono-objective approach it was Beaver, whereas 

for the multi-objective approach, it was Apache 

XML-RPC. 

 

Figure 1: Mean quality gain values for each input. 

Figure 2 shows the average priority scores for 

each input with the mono-objective and mul-

ti-objective approaches. For all of the inputs, the 

multi-objective approach was able to yield better 

scores coupled with the priority objective. The val-

ues were compared for significance using a 

one-tailed Wilcoxon rank-sum test (for unpaired 

data sets) with a 95% confidence level (α = 5%). 

The priority scores for the multi-objective approach 

were found to be significantly higher than the 

mono-objective approach. For two of the inputs, 

Beaver and Apache XML-RPC, the mono-objective 

approach had priority scores that were less than zero. 

With the Beaver input, one of the runs gave a score 

of -6 and another gave a score of -10. Likewise, one 

run of the Apache XML-RPC input gave a priority 

score of -37. This implies that, without the priority 

objective to direct them, the mono-objective runs are 

less likely to focus on the more important classes 

(i.e. the classes with more methods), and may sig-

nificantly alter the classes that should be disfavored 

(leading to the minus values for the three 

mono-objective runs across the two input programs). 

Figure 3 gives the average execution times for 

each input with the mono-objective and mul-

ti-objective searches. For most of the input pro-

grams, the multi-objective approach took less time 

than the mono-objective but, for GanttProject, the 

multi-objective approach took longer. The Wilcoxon 

rank-sum test (two-tailed) was used again and the 

values were found to not be significantly different. 

The times for both approaches understandably in-

crease as the input program sizes get bigger and the 

GanttProject input stands out as taking longer than 

the rest, although the largest input, XOM, is unex-

pectedly quicker. The execution times for the XOM 

input are smaller than both JHotDraw and GanttPro-

ject, despite it having more lines of code. However, 

both of these inputs do contain more classes. Con-

sidering the relevance of the list of classes in an in-

put program to the calculation of the priority score, 

it makes sense that this would have an effect on the 

execution times. Indeed, GanttProject has by far the 

largest number of classes, at 437, which is almost 

double the amount that XOM contains. Likewise, the 

execution times for GanttProject are similarly 

around twice as large as those of XOM for the two 

approaches. The longest task to run was for the mul-

ti-objective run of the GanttProject input, at over an 

hour. The average time taken for those tasks was 53 

minutes and 6 seconds. 

 

Figure 2: Mean priority scores for each input. 

 

Figure 3: Mean times taken for each input. 

6 CONCLUSIONS 

In this paper an experiment was conducted to test a 

new fitness objective using the MultiRefactor tool. 

The priority objective measures the classes modified 

in a refactoring solution and gives an ordinal score 

that indicates the number of refactorings that relate 

to the important classes in the input program. These 

“priority classes” are specified as an extra input in 
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order for the program to calculate when the im-

portant classes are inspected. There is also an option 

to include a list of “non-priority classes” which, if 

refactored, will have a negative effect on the priority 

score. This objective helps the search to generate 

refactoring solutions that have focused on what a 

software developer envisions to be the more im-

portant areas of the software code, and away from 

other areas that should be avoided. The priority ob-

jective was tested in conjunction with a quality ob-

jective (derived from previous experimentation) in a 

multi-objective setup. To measure the effectiveness 

of the priority objective, the multi-objective ap-

proach is compared with a mono-objective approach 

using just the quality objective. The quality objec-

tive values are inspected to deduce whether im-

provements in quality can still be derived in this 

multi-objective approach and the priority scores are 

compared to measure whether the developed priority 

function can be successful in improving the focus of 

the refactoring approach. 

The average quality improvement scores were 

compared across six different open source inputs 

and, for the most part, the mono-objective approach 

gave better improvements. The likely reason for the 

better quality score in the mono-objective approach 

is due to the opportunity for the mono-objective GA 

to focus on that single objective without having to 

balance the possibly contrasting aim of favoring 

priority classes and disfavoring non-priority classes. 

The multi-objective approach was able to yield im-

provements in quality across all the inputs. In one 

case, with the Beaver input, the multi-objective was 

able to not only yield an improvement in quality, but 

also generate a better improvement on average than 

the mono-objective approach. This may be due to 

the smaller size of the Beaver input, which could 

mean a restricted number of potential refactorings in 

the mono-objective approach. It could also be influ-

enced by the larger range of results gained the mul-

ti-objective approach for that input. The average 

priority scores were compared across the six inputs 

and, for the mono-objective approach, were able to 

give some improvement. However, in some specific 

runs, the priority scores were negative. This would 

relate to there being more non-priority classes being 

refactored in a solution than priority classes, which, 

for the mono-objective approach, is unsurprising. 

The average priority scores for the multi-objective 

approach were better in each case. It is presumed 

that, as the mono-objective approach has no 

measures in place to improve the priority score of its 

refactorings, the solutions are more likely to contain 

non-priority classes and less likely to contain priori-

ty classes than the solutions generated with the mul-

ti-objective approach. 

The average execution times for each input were 

inspected and compared for each approach. For most 

inputs, the multi-objective approach was slightly 

quicker than the mono-objective counterpart. The 

times for each input program increased depending 

on the size of the program and the number of classes 

available. The average times ranged from two 

minutes for the Mango program, to 53 minutes for 

GanttProject. While the increased times to complete 

the tasks for larger programs makes sense due to the 

larger amount of computation required to inspect 

them, XOM took less time than GanttProject and 

JHotDraw. Although XOM has more lines of code 

than these inputs, the reason more this is likely due 

to the number of classes available in each program, 

which is more reflective to the time taken to run the 

tasks for them. Therefore, it seems to be implied that 

the number of classes available in a project will have 

a more negative effect on the time taken to execute 

the refactoring tasks on that project than the amount 

of code. It was expected that, due to the higher com-

plexity of the multi-objective GA in comparison to 

the basic GA, the execution times for the mul-

ti-objective tasks would be higher also. Although the 

times taken were similar for each approach, and 

were more affected by the project used, this wasn’t 

the case for all of the inputs. This may have been 

due to the stochastic nature of the search. Depending 

on the iteration of the task run, there may be any 

number of refactorings applied in a solution. If one 

solution applied a large number of refactorings, this 

could likely have a noticeable effect on the time 

taken to run the task. The counterintuitive execution 

times between the mono-objective and mul-

ti-objective tasks may be a result of this property of 

the GA. 

In order to test the aims of the experiment and 

derive conclusions from the results a set of research 

questions were constructed. Each research question 

and their corresponding set of hypotheses looked at 

one of two aspects of the experiment. RQ1 was 

concerned with the effectiveness of the quality ob-

jective in the multi-objective setup. To address it, 

the quality improvement results were inspected to 

ensure that each run of the search yielded an im-

provement in quality. In all 30 of the different runs 

of the multi-objective approach, there was an im-

provement in the quality objective score, therefore 

rejecting the null hypothesis H10 and supporting H1. 

RQ2 looked at the effectiveness of the priority ob-

jective in comparison with a setup that did not use a 

function to measure priority. To address this, a non-
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parametric statistical test was used to decide whether 

the mono-objective and multi-objective data sets 

were significantly different. The priority scores were 

compared for the multi-objective priority approach 

against the basic approach and the multi-objective 

priority scores were found to be significantly higher 

than the mono-objective scores, supporting the hy-

pothesis H2 and rejecting the null hypothesis H20. 

Thus, the research questions addressed in this paper 

help to support the validity of the priority objective 

in helping to improve the focus of a refactoring so-

lution in the MultiRefactor tool while in conjunction 

with another objective. 

For future work, further experimentation could 

be conducted to test the effectiveness of the priority 

objective. The authors also plan to investigate other 

properties in order to create a better supported 

framework to allow developers to maintain software 

based on their preferences and their opinions of what 

factors are most important. It would also be useful to 

gauge the opinion of developers in industry and find 

out their opinion of the effectiveness of the Multi-

Refactor approach, and of the priority objective in an 

industrial setting. 
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